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Abstract

Both proNGF and the neurotrophin receptor p75 (p75NTR) are known to regulate photoreceptor cell death caused by
exposure of albino mice to intense illumination. ProNGF-induced apoptosis requires the participation of sortilin as a
necessary p75NTR co-receptor, suggesting that sortilin may participate in the photoreceptor degeneration triggered by
intense lighting. We report here that light-exposed albino mice showed sortilin, p75NTR, and proNGF expression in the outer
nuclear layer, the retinal layer where photoreceptor cell bodies are located. In addition, cone progenitor-derived 661W cells
subjected to intense illumination expressed sortilin and p75NTR and released proNGF into the culture medium.
Pharmacological blockade of sortilin with either neurotensin or the ‘‘pro’’ domain of proNGF (pro-peptide) favored the
survival of 661W cells subjected to intense light. In vivo, the pro-peptide attenuated retinal cell death in light-exposed
albino mice. We propose that an auto/paracrine proapoptotic mechanism based on the interaction of proNGF with the
receptor complex p75NTR/sortilin participates in intense light-dependent photoreceptor cell death. We therefore propose
sortilin as a putative target for intervention in hereditary retinal dystrophies.
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Introduction

Neurotrophins are a family of proteins that include nerve growth

factor (NGF), brain derived neurotrophin factor, neurotrophin-3,

and neurotrophin-4/5, which are known to regulate the develop-

ment and maintenance of the nervous system [1]. These proteins

transduce their signals through two different transmembrane

receptors: Trk receptor tyrosine kinases [2] and the p75

neurotrophin receptor (p75NTR) [3]. The latter is a member of

the NGF/tumor necrosis factor (TNF) receptor superfamily, which

has been shown to cooperate with Trks to induce survival and

differentiation [2]. p75NTR can also induce proapoptotic signals [4],

which are initiated in vivo by immature proneurotrophin forms [5–

7], including proNGF. Indeed, proNGF is the predominant form of

NGF in the brain [8] and has been shown to induce apoptosis in

different neurodegenerative conditions [8–10].

High-affinity binding of proNGF to p75NTR appears to be

mediated by the interaction of the ‘‘pro’’ domain of the former

(pro-peptide) with sortilin [11,12], a transmembrane receptor

containing a Vps10p domain [13]. Sortilin would act as a

necessary co-receptor of p75NTR to promote apoptosis in different

cell systems, including the developing retina [11,14,15]. In fact,

the expression of both p75NTR and sortilin is increased after

neuronal stress situations such as facial nerve injury [16] or

retrovirus-induced spongiform encephalomyelopathy [17]. More-

over, the proNGF/sortilin/p75NTR complex has been shown to

participate in neurodegenerative processes, including Parkinson’s

disease [18] and age-related neurodegeneration [14,19,20].

Retinitis pigmentosa (RP) is a heterogeneous group of

hereditary retinal dystrophies characterized by progressive photo-

receptor degeneration of apoptotic nature, due to mutations

affecting to basic rod physiology [21,22]. RP initially manifests as

night blindness with peripheral visual field loss and frequently

results in full visual loss. Several animal models of RP are currently

available, including a number of mouse and rat mutants [23].

Photoreceptor degeneration reminiscent of RP is also observed in

albino mice after chronic exposure to moderate illumination or

acute exposure to intense illumination [24]. Upregulation of

p75NTR expression has been demonstrated in the retina of light-

exposed albino mice [25–27] and has also been reported in the

cone-progenitor-derived cell line 661W after acute illumination

with intense light [27]. p75NTR is expressed by the human retina

[28] and has been reported to participate in photoreceptor

degeneration driven by intense illumination in Wistar rats and

p75NTR knock-out mice [25], as well as in 661W cells [27].

Interestingly, lack of p75NTR expression does not protect

photoreceptors from light-induced cell death in Ngfr2/2 albino

mice [29], suggesting that other pathways may trigger the

apoptotic signal in these mice. In contrast, the loss of one copy
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of the gene encoding p75NTR in Ngfr+/2 albino mice provided

significant neuroprotection upon constant lighting [29]. Increased

expression of proNGF has been reported in the retina of RCS rats

[30], and proNGF is known to induce apoptosis in 661W cells

[30]. Despite these data on the participation of proNGF and

p75NTR in photoreceptor degeneration, the involvement of sortilin

in this process has yet to be demonstrated. We therefore

hypothesized that sortilin plays a role in RP models in which

proNGF/p75NTR is known to trigger apoptosis.

In this study, we present evidence that sortilin and p75NTR are

both expressed in photoreceptors exposed to intense light, and that

these cells also produce proNGF. Pharmacological inhibition of

sortilin partially prevents the death of 661W cells as well as of

photoreceptors in vivo. Hence, sortilin may be useful for

pharmacological intervention in hereditary retinal dystrophies.

This would avoid targeting p75NTR, which also participates in

other, sometimes beneficial, neural processes [3].

Results

Intense light enhances p75NTR Expression within the
Outer Nuclear Layer (ONL) in Vivo

Several observations suggest that p75NTR is involved in photic

injury. In this regard, p75NTR expression has been shown to

correlate with intense light-dependent photoreceptor loss [25,27],

while enhanced survival of photoreceptors can be observed in

Ngfr+/2 albino mice maintained under constant light [29]. In order

to confirm that the mRNA encoding p75NTR can be expressed by

the photoreceptors in response to intense light, we performed in

situ hybridization with Ngfr specific probes in retinal cryosections

from albino mice subjected to intense illumination and from

control mice. The illumination procedure used for this study was

previously shown to result in photoreceptor degeneration, which

was already observed at 6 h after lighting [31]. The diverse

neuronal types present in the adult retina are disposed within three

layers: the ganglion cell layer (GCL), which contains the somas of

retinal ganglion cells (RGCs) and displaced amacrine cells; the

inner nuclear layer (INL), which is constituted by the somas of

bipolar, horizontal, amacrine, and Müller cells and displaced

RGCs; and the ONL, which contains the somas of the

photoreceptors. Therefore, it is possible to determine whether a

particular gene is expressed by particular neural types by using

simple morphological criteria.

In the control, non-illuminated mice, Ngfr-specific mRNA was

detected in all retinal layers, including the ONL (Fig. 1A, left

panels). This pattern was modified by intense light treatment.

Thus, enhanced Ngfr expression was detected at 6 h after lighting

in both the GCL and INL, whereas in the ONL Ngfr expression

remained at similar levels as in the control (Fig. 1B, left panels). At

24 h post-illumination, when strong cell death in the ONL can still

be observed [31], Ngfr-specific mRNA remained at high levels in

the GCL and INL but only a few scattered cells from the ONL

showed increased Ngfr expression (Fig. 1C, left panels). Hence,

photoreceptors appear to constitutively express Ngfr in albino mice,

and intense lighting enhances its expression in specific regions

following a dynamic spatiotemporal pattern.

In order to verify that not only the transcripts but also p75NTR

protein is expressed in the retina of albino mice subjected to

intense light, retinal cryosections were immunostained with an

anti-p75NTR specific antibody. As expected from the generalized

expression of the Ngfr transcript in the control retina, p75NTR was

detected in all retinal layers in mice adapted to darkness (Fig. 2A,

left panel). Intense light induced prominent p75NTR protein

expression in groups of cells within the ONL, although low levels

of p75NTR remained in most cells located in this retinal layer. This

pattern was already detected at 6 h post-illumination and persisted

throughout the study period (Fig. 2B–D, left panels). At 24 h post-

illumination, high levels of p75NTR protein continued to be

detected in the ONL, where only a few cells showed strong Ngfr

expression (see Fig. 1C, left panels), suggesting that the half life of

p75NTR is longer than that of the Ngfr transcript.

Intense Light Transiently Induces Sortilin Expression
within the ONL in Vivo

Proapoptotic signals triggered by proNGF are known to require

the presence of the receptor sortilin for inducing their effect [11].

In order to determine whether mRNA encoding sortilin is

expressed in cells within the ONL in response to intense light,

we performed in situ hybridization with a Sort1 specific probe in

both control mice and mice subjected to intense lighting. In

control mice, mRNA for Sort1 was not expressed at detectable

levels in any retinal layer (Fig. 1A, middle panels). In contrast,

intense lighting induced a marked burst of Sort1 expression in

patches located within the ONL, which was already observed at

6 h post-illumination (Fig. 1B, middle panels), suggesting that

intense light does not homogeneously affect all photoreceptors.

Twenty four hours later, only a few cells randomly scattered

throughout the ONL showed elevated Sort1 expression (Fig. 1C,

middle panels), similar to observations for Ngfr (Fig. 1C, left

panels).

Sortilin protein was detected by immunostaining, using a

specific anti-sortilin antibody [14], in the retinas of control mice

and mice subjected to intense light. In control retinas, sortilin was

detected in the GCL and inner plexiform layer but not in the ONL

(Fig. 2A, middle panel), suggesting that low mRNA expression

levels of Sort1, undetectable by in situ hybridization, could account

for this expression pattern. In contrast, conspicuous sortilin

expression appeared at 6 h after illumination within the ONL,

showing stronger intensity in certain areas (Fig. 2B–D, middle

panels). As described above for p75NTR, ONL labeling with the

sortilin antibody still appeared at 24 h after illumination (Fig. 2D,

middle panel) but only a few cells showed strong Sort1 mRNA

expression (Fig. 1C, middle panels). This suggests that the half life

of the protein is longer than that of the Sort1 mRNA, and that

sortilin remains in the retina despite the fall in mRNA expression.

As nearly all cells in the ONL show some degree of p75NTR

labeling (see the former section), it was apparent that those cells

expressing sortilin can also express the 75NTR co-receptor.

Intense Light Transiently Induces proNGF Expression
within the ONL in Vivo

ProNGF can induce apoptosis through the p75NTR/sortilin

complex. In order to determine whether proNGF is expressed in

the ONL in response to intense lighting, in situ hybridization was

performed using an Ngf specific probe in retinal cryosections from

control mice and mice subjected to intense light. Ngf expression

was undetectable in control retinas (Fig. 1A, right panels) but was

upregulated in cells within the GCL and INL and in patches

within the ONL at 6 h post-illumination (Fig. 1B, right panels). As

occurs with Sort1, Ngf expression in the retina was virtually absent

at 24 h post-illumination, except in a few unevenly distributed cells

within the ONL (Fig. 1C, right panels).

In order to verify whether proNGF protein is expressed in the

retina of mice subjected to intense illumination, retinal cryosec-

tions were immunostained with an anti-proNGF antibody that

specifically recognizes the pro-domain [32], thereby excluding the

mature form of NGF from the analysis. Low levels of proNGF

Sortilin and Photoreceptor Degeneration
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protein were observed in the photoreceptor outer segment layer

(OSL) of control mice (Fig. 2A, right panel). This same pattern was

maintained after intense illumination, although the intensity of

labeling increased in the OSL and did not decrease at later time

points (Fig. 2B–D, right panels). Therefore, proNGF appears to be

stored/released in the region encompassing the photoreceptor

outer segments and subretinal space. In contrast to the observation

that intense light induces Ngf expression in the GCL and INL (see

Fig. 1B,C), proNGF protein could not be detected in these layers,

suggesting that translation of the Ngf transcript is prevented in

these retinal layers and/or that the mature form of NGF, also

encoded by the Ngf-specific mRNA, is preponderant in the GCL

and INL. In addition, proNGF expressed by the RGCs may be

transported to retinal target tissues.

Figure 1. Expression of Ngfr, Sort1 and Ngf, determined by in situ hybridization, in normal and intense light-treated retinas. Cryostat
sections of the retina of BALB/c mice (n = 3 per experimental point) maintained in darkness (A) or subjected to intense light for 7 h and then kept in
darkness for 6 (B) or 24 h (C) were processed for in situ hybridization with Ngfr (left column), Sort1 (middle column), or Ngf (right column) probes.
Specific labeling appears in dark brown. Representative images are shown. (B) Particular regions of the outer nuclear layer (ONL) were enriched in
these mRNAs 6 h after illumination. Observe that the staining is not uniform across the ONL and that some patches show the most intense labeling
(arrows). (C) Twenty-four h after light treatment, a clear decrease of the expression of all three transcripts is seen in the ONL, although some cells,
unevenly distributed throughout this layer (arrowheads), continue to show intense expression. V: vitreous body, PE: pigment epithelium, GCL:
ganglion cell layer, INL: inner nuclear layer. Lower panels represent higher magnification of boxed areas in upper panels. Bar: 100 mm (upper panels);
500 mm (lower panels).
doi:10.1371/journal.pone.0036243.g001
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Unlike p75NTR and sortilin, proNGF expression was restrict-

ed to a narrow retinal layer, allowing the use of total retinal

extracts to confirm the increase in proNGF post-illumination

without contamination from the INL and GCL. Western blot

analysis confirmed the presence in control retinas of specific

proNGF bands previously described in the human brain [32],

with apparent molecular weights of 53, 37, and 26 kDa (Fig. 3A).

Expression of these bands, normalized to bIII tubulin,

progressively increased with longer post-illumination time

(Fig. 3B–D).

Figure 2. Intense light induces the expression of p75NTR, sortilin, and proNGF proteins in the ONL. Cryostat sections of the retina of
BALB/c mice (n = 3 per experimental point) maintained in darkness (A) or subjected to intense light for 7 h and then kept in darkness for 6 (B), 12 (C),
or 24 h (D) were immunolabeled with specific antibodies for p75NTR (green, left column), sortilin (red, middle column), or proNGF (green, right
column). Representative images are shown. (A) Untreated retinas showed p75NTR immunostaining (left panel) in nearly all layers, although the
labeling was weak in the outer nuclear layer (ONL). The sortilin antibody bonded mainly to the ganglion cell layer (GCL) and inner plexiform layer but
was virtually absent from the ONL (A, middle panel). Finally, the proNGF antibody showed an immunoreactive band at the level of photoreceptor
outer segments (OSL). (B) Six hours after light treatment, the intensity of the immunolabeling was increased in all three cases. Most ONL cells were
strongly labeled with p75NTR antibody, although the predominant expression of p75NTR was detected in some patches within this layer (left panel).
Sortilin immunostaining (middle panel) was also increased within the ONL, although restricted to particular areas. Finally, proNGF antibody (right
panel) showed a similar distribution pattern to that described in untreated retinas, though the immunopositive band at the OSL was more intense.
Similar patterns of immunoreactivity were seen at 12 h (C) and 24 h (D) after light treatment. Arrows indicate areas showing specific immunostaining
within the ONL and OSL. V: vitreous body, PE: pigment epithelium, INL: inner nuclear layer. Bar: 50 mm.
doi:10.1371/journal.pone.0036243.g002
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661W Cells Express p75NTR, Sortilin and ProNGF in
Response to Intense Light

The above results suggest an auto/paracrine scenario for the

participation of proNGF in photoreceptor cell death. In response

to lighting, photoreceptors would produce and release proNGF,

which would interact with the proNGF sortilin/p75NTR receptor

complex that is also expressed by these cells, thereby facilitating

their death. The participation of proNGF and p75NTR/sortilin in

intense light-induced photoreceptor degeneration was further

analyzed by using the cone progenitor-derived 661W cell line as

a model system. These cells are optimal for this analysis because

they die in response to proNGF [30] and they are killed under

intense illumination via a p75NTR-dependent mechanism [27]. We

hypothesized that, in accordance with the in vivo data, intense

light would increase the expression of proNGF by 661W cells,

which would then be released into the culture medium and trigger

p75NTR/sortilin-dependent apoptosis.

The presence of the Ngf, Ngfr, and Sort1 specific mRNAs was

analyzed in 661W cells subjected to intense illumination for 3 h or

left untreated [27]. Two hours later, the mRNA from these cells

was extracted for reverse transcriptase polymerase chain reaction

(RT-PCR) analysis using specific primers, demonstrating that

661W cells constitutively express Ngf, Ngfr and Sort1. Lighting

enhanced the expression of Ngf and Ngfr, whereas Sort1 expression

was similar to that in controls (Fig. 4A). The increase in Ngfr after

lighting is consistent with a previous report of enhanced p75NTR

expression in illuminated 661W cells [27]. The release by 661W

cells of proNGF into the culture medium was analyzed by enzyme-

linked immunosorbent assay (ELISA), using the anti-NGF

mAb27/21, known to bind to the native form of mature NGF

[33], and an antiserum recognizing the pro-peptide. Control

661W cells and those subjected to intense light for 3 h were

incubated for a further 24 h, and the respective culture media

were used to measure relative levels of proNGF. This analysis

demonstrated that 661W cells release proNGF to the culture

medium even under control conditions, showing a significant

increase in ELISA signal in comparison to unconditioned media

(Fig. 4B). Interestingly, 3 h of treatment with intense light

produced a statistically significant increase in proNGF levels in

the culture medium (Fig. 4B), consistent with the observed increase

in Ngf mRNA levels (see Fig. 4A). Finally, western blot analysis

demonstrated that sortilin protein was increased in extracts from

661W cells subjected to intense light (Fig. 4C), suggesting its

participation in cell death. This increase in sortilin levels is likely to

derive from post-transcriptional mechanisms, given that Sort1

mRNA levels do not change in response to lighting (Fig. 4A).

Overall, these results demonstrate that 661W cells subjected to

intense light express p75NTR and sortilin and release proNGF into

the culture medium. Therefore, proNGF signaling via the

p75NTR/sortilin complex may be involved in the cell death of

661W cells induced by intense illumination.

Inhibition of Sortilin Prevents Degeneration of 661W
Cells

In order to test the hypothesis that proNGF participates in light-

dependent degeneration of 661W cells by activating the p75NTR/

sortilin complex, we prevented sortilin function in 661W cell

cultures by means of two known blocking agents. We first

employed neurotensin, a known sortilin ligand that competes with

proNGF for sortilin binding and is known to prevent p75NTR/

Figure 3. Expression of proNGF in the retina of albino mice subjected to intense illumination. (A) Total retinal extracts from BALB/c mice
subjected to intense light for 7 h and then kept in darkness for the indicated time points (6, 12 and 24 h) or those maintained in darkness without
previous lighting (Darkness), were subjected to western blot analysis using either an antibody specifically recognizing the pro domain of proNGF
(upper panel) or an anti-bIII tubulin antibody (bottom panel in A). This analysis revealed the presence in the extracts of the previously described
forms of proNGF with apparent molecular weights of 53, 37, and 26 kDa. Each lane represents a different retinal extract (n = 3 per treatment). Asterisk
marks an unspecific band. (B) Quantitative variations of the proNGF form of 53 kDa, normalized to bIII tubulin (mean 6 SEM). (C) Quantitative
variations of the proNGF form of 37 kDa, normalized to bIII tubulin (mean 6 SEM). (D) Quantitative variations of the proNGF form of 26 kDa,
normalized to bIII tubulin (mean 6 SEM). *p,0.05; **p,0.01; ***p,0.005 (n = 3; Student’s t test).
doi:10.1371/journal.pone.0036243.g003
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sortilin-dependent apoptosis when used at 10 mM concentration

[11,20]. 661W cells cultured in the presence or absence of 10 mM

neurotensin were subjected to intense light for 3 h and then

maintained in darkness for 24 h. Intense light reduced the survival

of 661W cells, as defined by the number of non-pyknotic nuclei

remaining in the culture (Fig. 5A,B). The presence of 10 mM

neurotensin significantly increased the proportion of cells contain-

ing non-pyknotic nuclei (Fig. 5A,B) but did not affect proNGF

release (Fig. 4B) or sortilin expression (Fig. 4C).

All of these observations suggest that proNGF, acting through

sortilin, participates in the induction of cell death in 661W cells

subjected to lighting. To confirm this result, 661W cells were

treated with glutathione S-transferase (GST)-pro, a fusion protein

containing a peptide mimicking the ‘‘pro’’ domain of proNGF and

GST [11]. This chimeric protein has been shown to block sortilin-

dependent cell death [11,34]. 661W cells cultured in the presence

of either 100 nM GST or 100 nM GST-pro were subjected to

intense light for 3 h and then maintained in darkness for 24 h. The

survival of 661W cells was higher in the presence of the GST-pro

fusion protein than in the presence of the GST (Fig. 5C,D).

Overall, these results indicate that endogenous proNGF released

to the culture medium facilitates the death of 661W cells subjected

to intense illumination, likely due to the known light-dependent

increase in their p75NTR expression at both mRNA (Fig. 4A) and

protein level [27], and the observed increase of sortilin expression

(Fig. 4C).

Inhibition of sortilin with GST-pro reduces light-
dependent photoreceptor degeneration in vivo

The participation of sortilin in photoreceptor degeneration in

vivo was tested in albino mice exposed to intense light [31] and

then intraocularly injected with sortilin blockers. After 24 h in

darkness, mice were sacrificed and cell death was measured in

retinal extracts as the amount of nucleosomes present in the

cytosol, as previously described [4,31]. Considering the volume of

vitreous humor in the mouse to be around 7 ml [35], the amount of

sortilin blockers injected was adjusted to obtain a similar final

concentration to that which shows inhibitory effects in vitro.

Hence, the experimental eye was injected with 1 ml of either

18 mM neurotensin or 1.5 mM GST-pro, whereas the contralateral

(control) eye was injected with 1 ml of either phosphate buffered

saline (PBS) or 1.5 mM GST, respectively.

The toxicity of the sortilin blockers at these concentrations was

tested by injecting them into the eye of non-illuminated albino

mice, finding a significant increase in apoptosis with neurotensin

versus PBS at 24 h after injection (Fig. 6A). In contrast, there was

no appreciable difference in retinal cell death between GST-pro-

and GST-injected (control) retinas (Fig. 6B) or between GST-

injected and PBS injected retinas (PBS: 100.0067.83 vs. GST:

107.5364.05; O.D./mg protein (mean) 6 SEM, n = 3, non-

significant, Student’s t test). We therefore concluded that GST-pro

delivery into the mouse retina represents a safe procedure to block

sortilin function in vivo and it was selected to test the effect of

sortilin in intense light-induced retinal cell death in vivo.

Albino mice were subjected to intense illumination for 7 h, and

their experimental and contralateral eyes were then injected with

1 ml of 1.5 mM GST-pro and 1 ml of 1.5 mM GST, respectively.

After 24 h in darkness, the mice were sacrificed and the amount of

nucleosomes was quantified in retinal cytosolic extracts, revealing

significantly reduced cell death in the experimental retina in

comparison to the control retina (Fig. 6B). Given that retinal cell

death in albino mice subjected to intense illumination is restricted

to the photoreceptor cell layer [31], these results demonstrate that

sortilin participates in the photoreceptor degeneration in this

model system and that its inhibition can reduce photic injury-

derived cell death in vivo.

Discussion

In this study, we show that intense lighting induces the

expression of sortilin, at both mRNA and protein levels, in cells

located within the ONL of albino mouse retinas, at the same time

that p75NTR and proNGF are expressed by these cells. A similar

situation is observed in 661W cells (this study; [27]). We also show

that sortilin is involved in light-induced photoreceptor degenera-

tion, finding that neurotensin and the pro-peptide, two known

sortilin ligands that compete with proNGF and prevent proNGF-

Figure 4. Expression of proNGF, sortilin, and p75NTR in 661W cells subjected to intense light. (A) Cultures of 661W cells grown to 80%
confluence were either illuminated for 3 h (Light) or maintained in darkness (Dark.) cDNAs prepared from these cells 2 h post-illumination were
amplified with primers specific for Ngf, Ngfr, Sort1, or b-actin. RT-PCR from control cDNAs lacking reverse transcriptase did not show specific
amplification (not shown). Note that all of these genes are expressed by the 661W cells, and lighting increases the expression of Ngf and Ngfr. (B)
661W cells grown to 80% confluence were cultured in the presence (NT) or absence (-) of 10 mM neurotensin and illuminated for 3 h (Light) or
maintained in darkness (Dark.). Conditioned media collected 24 h after treatment were subjected to ELISA using antibodies recognizing the mature
form of NGF and the pro-peptide of proNGF. The levels of released proNGF, normalized to non-conditioned (NC) medium, are shown. Note that
proNGF is constitutively produced by the 661W cells and that lighting induces a significant increase in the levels of released proNGF. *p,0.05 (n = 3;
Student’s t test). (C) 661W cells grown to 80% confluence were illuminated for 3 h (Light) or maintained in darkness (Dark.) in the presence (NT) or
absence (-) of 10 mM neurotensin. Total extracts from 661W cells at 3 h after treatment were studied by western blot using antibodies specific for
sortilin (Sortilin) or bIII tubulin (bIII-Tub). A representative western blot shows that the amount of sortilin protein is considerably increased after light
treatment and that the presence of neurotensin does not influence this increase.
doi:10.1371/journal.pone.0036243.g004
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induced apoptosis, significantly reduce the death of 661W cells

subjected to intense light. In vivo, the pro-peptide significantly

diminished cell death in the retina of albino mice subjected to

intense illumination. Proneurotrophins other than proNGF could

also participate in light-induced photoreceptor degeneration.

Actually, proBDNF and proNT3 may both trigger sortilin/

p75NTR-proapoptotic signals in a number of cell systems [36,37].

We found that Ngfr-specific transcripts encoding the p75NTR

protein can be detected in the retina, delineating most cell somas

present within the ONL, in both control and light-exposed albino

mice. This observation, along with the observed expression of

p75NTR in 661W cells subjected to lighting (this study, [27]),

demonstrates that photoreceptors can express p75NTR, as observed

for other retinal cell types, such as Müller glial cells [25,38].

The retina of albino mice expresses p75NTR before being

subjected to intense light, unlike findings for non-albino rodents

[26,27]. This suggests that albino retinas are already stressed

under normal levels of light, consistent with evidence that p75NTR

is a stress-responsive receptor [39]. Albino mouse retinas therefore

appear to be susceptible to degeneration even at low levels of

lighting, a situation resembling the increased light-sensitivity

observed in RP patients, in which light restriction might benefit

the course of disease [40].

Not only p75NTR but also sortilin showed increased expression

in photoreceptor cells at 6 h post-illumination, in agreement with

its capacity to be expressed in response to stress in the nervous

system [14,19,20]. As noted above, sortilin remains detectable by

immunohistochemistry in the ONL at 24 h post-illumination,

despite the scarce expression of the corresponding gene. This

suggests that the protein has a relatively long half-life, which would

explain the observation of the presence of sortilin in the GCL of

control retinas despite the absence of detectable Sort1 mRNA

expression in this retinal layer.

Enhanced sortilin and p75NTR protein expression in rat retina

was also reported after elevated intraocular pressure-induced

retinal ischemia leading to generalized retinal cell death [41].

However, these proteins were mainly expressed by Müller glial

cells in that situation [38], indicating that the p75NTR/sortilin

Figure 5. Sortilin inhibition partially prevents intense light-dependent degeneration of 661W cells. 661W cells grown to 80%
confluence were illuminated for 3 h (Light) or maintained in darkness (Darkness) in the presence (NT) or absence (PBS) of 10 mM neurotensin (A,B) or
in the presence of 100 nM GST-pro (GST-pro) or 100 nM GST (GST) (C,D). Cultures were then returned to the incubator and cultured for 24 h. Finally,
cell cultures were fixed and their nuclei were labeled with bisbenzimide to identify pyknotic nuclei. (A) Representative images of nuclei from 661W
cells subjected to the indicated treatments. Arrows: non pyknotic nuclei; arrowheads: pyknotic nuclei. (B) Quantification of 661W cell survival under
the conditions described in A, as defined by the percentage of cells lacking pyknotic nuclei. (C) Representative images of nuclei from 661W cells
subjected to the indicated treatments. Arrows: non-pyknotic nuclei; arrowheads: pyknotic nuclei. D. Quantification of 661W cell survival under the
conditions described in C, as defined by the percentage of non- pyknotic nuclei. ***p,0.005 (Student’s t test) with respect to PBS or GST light-
exposed cultures. Bar: 50 mm.
doi:10.1371/journal.pone.0036243.g005

Sortilin and Photoreceptor Degeneration

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e36243



receptor complex can be expressed by different retinal cell types

according to the cause of cell degeneration and the neuronal

phenotypes affected, resulting in diverse cellular mechanisms of

apoptosis [42].

Sortilin was found to facilitate signaling through the gp130/

Leukemia Inhibitor Factor Receptor b heterodimer [43], which is

known to enhance the survival of photoreptors in albino mice

subjected to photic injury [44,45]. The relatively modest effect

triggered by the pro-peptide in our in vivo experiments may be

explained by the opposed signaling pathways in which sortilin

appears to participate (i.e., death in response to proNGF and

survival in response gp130 activation). Nevertheless, sortilin

inhibition with the pro-peptide has a net positive effect. Further

studies are required to enhance the effect observed with the sortilin

blockers both in vitro and in vivo.

Sortilin activation is able to induce TNFa expression in microglial

cells [46], and TNFa participates in photoreceptor cell death in two

different animal models of RP [47], likely due to the capacity of

resident retinal glial cells to produce this cytokine [48]. 661W cells

can also express TNFa in response to medium conditioned by

activated microglial cells [49]. This suggests that sortilin-dependent

TNFa production might participate, along with the sortilin/p75NTR-

specific signaling, in proNGF-dependent apoptosis. The TNFa/

sortilin pathway might be exacerbated in the absence of p75NTR,

thus explaining the lack of protection to photoreceptor degeneration

observed in Ngfr2/2, but not in Ngfr+/2, albino mice subjected to

constant illumination [29].

Interestingly, the enhanced post-illumination expression of

Sort1, Ngf, and, to a lesser degree, Ngfr, in the ONL was in the

form of patches, indicating that luminic stress does not appear to

affect all photoreceptors in the same manner. This is consistent

with the observation that photoreceptor degeneration is not

homogeneous throughout the retina [31], supporting the two stage

model for the genesis of photoreceptor dystrophies [50].

It is noteworthy that, under control conditions, photoreceptors

and 661W cells were both observed to produce proNGF, although

in a lesser amount than after intense light treatment. Therefore,

proNGF does not induce the cell death of photoreceptors in the

absence of luminic stress but may rather have a neurotrophic

effect, as described in other systems [51]. The observed increase in

sortilin and/or p75NTR likely favors proNGF-dependent cell death

in photoreceptors.

In conclusion, our results point to an auto/paracrine mecha-

nism in the retina that favors the apoptotic response of

photoreceptors subjected to intense lighting (Fig. 7). The first

stage of this mechanism is the induction in the photoreceptors of

sortilin and p75NTR expression and the release into the

extracellular milieu of proNGF produced by the photoreceptors

themselves, although it may be potentiated by proNGF from other

sources such as microglial cells [30,52] and/or by changes in

growth factor expression [25]. The subsequent binding of proNGF

to the p75NTR and sortilin receptors would favor the death of

photoreceptors. A similar mechanism was also observed in 661W

cells, which release proNGF into the culture medium at the same

time as light treatment enhances the expression of p75NTR and

sortilin proteins. Inhibition of sortilin function in 661W cells and in

vivo was able to significantly rescue photoreceptors from intense

light-induced apoptosis, further supporting our hypothesis. We

therefore conclude that sortilin represents a putative target for

intervention in hereditary retinal dystrophies.

Materials and Methods

Ethics Statement
Experimental procedures were approved by the animal

experimentation ethics committee of the University of Granada

(Permit Number: 2011-357), following the guidelines of the

European Union Directive 2010/63/EU on the protection of

animals used for scientific purposes.

Mice
Adult female BALB/c albino mice (Harlan, Barcelona, Spain) of

60 days postnatal age were used in this study. They were

maintained in the animal house facility of the Cajal Institute under

a normal 12 h light/dark cycle before the start of experiments.

Mice were sacrificed by cervical dislocation.

Figure 6. Sortilin inhibition reduces intense light-dependent degeneration in vivo. (A) Eyes from albino mice (n = 3) maintained in
darkness (Darkness) were injected with 1 ml of either PBS (experimental eye, white bars) or 90 mM neurotensin (contralateral eye, grey bars). Cell
death was measured by ELISA 24 h later as a function of the levels of soluble nucleosomes present in cytoplasmic extracts with respect to the total
amount of protein (n = 3) (arbitrary units). The observed increase in soluble nucleosomes indicated that neurotensin have toxic activity. (B) Eyes from
albino mice maintained in darkness (Darkness, n = 3) or subjected to intense light for 7 h (Light, n = 4) were injected with 1 ml of either 1.5 mM GST
(experimental eye, white bars) or 1.5 mM GST-pro (contralateral eye, grey bars). Cell death was measured by ELISA (in triplicate) 24 h later as a
function of the level of soluble nucleosomes present in cytoplasmic extracts with respect to the total amount of protein (arbitrary units). **p,0.01,
***p,0.005 (Student’s t test).
doi:10.1371/journal.pone.0036243.g006
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Primary Antibodies
The mouse mAb 27/21 recognizing the native form of NGF

[33] was used for coating ELISA plate microwells at a

concentration of 440 ng/ml. Rabbit polyclonal antiserum

[9992] against the intracellular domain of human p75NTR, a

kind gift from Moses V. Chao (New York University), was diluted

1/1,000 for immunohistochemistry. Biotinylated goat anti-mouse

sortilin antibody (R&D Systems, Minneapolis, MN) was used at

1/700 dilution for immunohistochemistry [14] and 1/5,000

dilution for western blot. Rabbit antibody against the pro-

peptide, previously described by [32], was a generous gift from

Carme Espinet (University of Lleida, Spain). This antibody was

obtained by immunizing rabbits with a GST-fusion protein

containing the Asp23-Arg81 peptide from human pro-NGF.

Then, specific antiserum was purified by first incubating whole

serum with GST to adsorb GST-specific immunoreactivity,

followed by adsorption to, and elution from, a glutathione

column to which GST-pro-NGF was immobilized. The antibody

was observed to be specific as the immunoreactivity was

abolished by the immunogenic peptide [32]. This antibody was

used at 1/500 dilution for immunohistochemistry, 1/1,000

dilution for ELISA, and 1/10,000 dilution for western blot.

Mouse monoclonal antibody against neuron-specific bIII tubulin

(clone 5G8; Millipore, Billerica, MA) was used in western blot at

1/20,000 dilution.

Plasmids
pGEX4T-propepNGFb plasmid, which expresses the pro-

peptide (amino acids E19 to R121) as a GST-pro fusion protein

[11] was kindly provided by Anders Nykjaek (Aarhus Univer-

sity). pGEXKG plasmid, kindly provided by Mariano Carrión-

Vázquez (Cajal Institute), was used to express recombinant

GST.

Recombinant Proteins
GST-pro and GST were expressed in Escherichia coli and purified

on glutathione agarose beads (GSTrap FF columns, GE

Healthcare), as previously described by [11].

Cell Culture
661W cells [53] were a kind gift from Dr. Muayyad Al-Ubaidi

(University of Oklahoma Health Sciences Center, Oklahoma City,

OK). They were obtained from transgenic mouse retinas

expressing SV40 T antigen and found to maintain photoreceptor

phenotypes [53,54]. These cells express a number of cone-specific

markers such as cone blue and green opsins, transducin, and cone

arrestin, but not of rod-specific proteins (rod opsin and rod

arrestin), suggesting 661W cells arise from a cone photoreceptor

lineage [55]. 661W cells were maintained in Dulbecco’s Modified

Eagle’s Medium containing GlutaMAX-I and 4.5 mg/ml glucose

(Invitrogen), plus 50 U/ml penicillin/streptomycin (Invitrogen)

and 10% fetal bovine serum (Invitrogen).

Induction of Light Damage
Photic injury to albino mouse retinas was carried out as

described by [31] with some modifications. Briefly, animals were

dark-adapted for 24 h before exposure for 7 h to cool white light

(Master PL Electronic 23 W, 230–240 V Cool Daylight, Royal

Philips Electronics, Amsterdam, Holland) at a luminescence level

of 10,000 lux. The mice were then kept in complete darkness for

6, 12, or 24 h.

Light damage in 661W cells was induced as previously

described [27]. Briefly, cells were grown to 80% confluency in

growth medium and then transferred to serum free medium,

where they were cultured for 18 h before exposure for 3 h to cool

white light (Master PL Electronic 23 W, 230–240 V Cool

Daylight) at a luminescence of 15,000 lux. Cultures were then

returned to the incubator for a further 2 h (for RT-PCR), 3 h (for

western blot), or 24 h (for ELISA and cell survival). Cells

maintained under similar conditions but not exposed to illumina-

tion served as controls. This procedure has been shown to induce

p75NTR expression in light-damaged 661W cells [27].

Histology and Immunohistochemistry
Entire enucleated eyes from control and light-exposed animals

(three mice for each experimental point) were fixed in periodate

lysine paraformaldehyde [56] for 6 h at 4uC. The fixed material

was cryoprotected in PBS containing 30% sucrose, soaked in OCT

Figure 7. Scheme showing the proposed auto/paracrine mechanism regulating photoreceptor cell death in response to intense
light. In the non-illuminated retina (left) photoreceptors express low levels of p75NTR and undetectable levels of sortilin. Upon intense light exposure
(yellow arrow) photoreceptors express high levels of sortilin and p75NTR and they release proNGF into the extracellular milieu, an effect that can be
potentiated by the release of proNGF from other sources such as activated microglial cells (blue cell). The binding of proNGF to the p75NTR/sortilin co-
receptor complex (right) would lead to photoreceptor cell death.
doi:10.1371/journal.pone.0036243.g007
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compound (Sakura Finitek Europe, Zoeterwoude, The Nether-

lands), and frozen in liquid nitrogen. Blocks were stored at 240uC
until use. Transverse sections (20 mm) were obtained in a cryostat

(Leica, Wetzlar, Germany) and collected on SuperFrost slides

(Menzel-Glässer, Braunschweig, Germany).

Cryosections were permeabilized and blocked for 30 min at

room temperature in PBS containing 0.5% Triton X-100 (Sigma,

St. Louis, MO) and 10% fetal calf serum (FCS; Invitrogen, Paisley,

UK), and then incubated over night at 4uC with the primary

antibody diluted in PBS/0.1% Triton X-100 plus 1% FCS. After 5

washes with PBS/0.1% Triton X-100, the sections were incubated

for 1 h at room temperature with Cy2 conjugated anti-rabbit IgG

(H+L) antibody (Jackson Immunoresearch, Newmarket, UK) or

Alexa Fluor 594 donkey anti-goat IgG (H+L) antibody (Invitro-

gen), each diluted 1/1,000. Sections were finally washed 5 times in

PBS/0.1% Triton X-100 and mounted in glycerol/PBS (1:1).

Tissue and Cell Extracts
Retinas were dissected out from the pigment epithelium,

homogenized in Laemmli’s buffer, and boiled for 5 min. 661W

cell cultures were placed on ice, washed with ice cold PBS, and

incubated for 30 min with 700 ml lysis buffer containing 50 mM

Tris-HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, and 16
protease inhibitor cocktail (Roche Diagnostics, Mannheim,

Germany). Cell lysates were scraped with a rubber policeman

and centrifuged at 13,0006g for 10 min at 4uC. Supernatants

were 10 fold concentrated with centrifugal filter units (cut off:

3 kDa; Millipore), mixed with 1 volume of 26Laemli’s buffer, and

boiled for 5 min.

Western Blot
Cell or tissue extracts obtained as described in the Tissue and

Cell Extracts section were separated by sodium dodecyl sulfate

polyacrylamide gel electrophoresis on 13% polyacrylamide gels

and transferred to Immun-Blot PVDF membranes (BioRad,

Hercules, CA). Membranes were incubated for 1 h with 2%

enhanced chemiluminescence (ECL) Advance blocking agent

(ECL Advanced Western Blotting Detection Kit; GE Healthcare,

Munich, Germany) in PBS plus 0.1% Tween 20 (PBT), and

incubated for 2 h at room temperature with the appropriate

antisera in blocking buffer. The membranes were washed five

times in PBT, and then they were incubated for 1 h at room

temperature with a 1/1,660,000 dilution peroxidase AffiniPure

goat anti-rabbit IgG (H+L) antibody (Jackson Immunoresearch),

or 1/500,000 peroxidase-conjugated AffiniPure donkey anti-goat

IgG (H+L) antibody (Jackson Immunoresearch) in blocking buffer.

Finally, they were washed again as above, and the protein bands

were visualized using ECL Advanced Western Blotting Detection

Kit (GE Healthcare).

Cell Death/Survival Quantification
An ELISA, using a combination of antibodies recognizing

histones and DNA (Roche Diagnostics), was used to quantify cell

death in the retina in vivo. This method, previously described by

[4], quantifies cell death as the level of soluble nucleosomes present

in cytosolic retinal extracts. Briefly, retinas were homogenized in

200 ml containing 16 protease inhibitor (Roche Diagnostics) and

centrifuged at 20,0006g for 10 min. A portion of supernatant was

used to quantify proteins by standard methods (BioRad Protein

Assay), and the rest was diluted 1/15 (illuminated) or 1/10

(darkness) in the supplied buffer and processed as indicated by the

manufacturer. Results are shown as optical density (OD) per unit

of protein (mg) present in the extract.

To quantify cell survival in vitro, 661W cell cultures were fixed

with 4% paraformaldehyde (PFA) (Merck, Darmstadt, Germany)

for 15 min at room temperature, and the nuclei were stained with

1 mg/ml bisbenzimide (Sigma). The degree of cell survival was

determined by counting the number of non-pyknotic nuclei in the

cultures. Cells were counted by using a Leica DMI6000 B inverted

microscope (Leica) with phase contrast and epifluorescence

illumination. Randomly taken pictures were taken with a Leica

DFC350 FX digital camera (Leica), and subsequently analyzed

with ImageJ (NIH, Bethesda, MD) software using the particle

analysis (nucleus counter) plugin. On average, 8,000 nuclei were

analyzed per experimental point.

In Situ Hybridization
Digoxigenin labeled antisense riboprobes were synthesized as

described previously [57]. Partial sequences from the coding

region of p75ntr (currently known as Ngfr, bp 2,158–2,842;

accession number NM_033217), Sort1 (bp 5,792–6,411; accession

number NM_019972), and Ngf (bp 336–846; accession number

NM_013609) were obtained by RT-PCR using mRNA derived

from E15 mouse embryos (Quick-prep Micro mRNA Purification

Kit; GE Healthcare) and converted to cDNA with the First strand

cDNA synthesis kit (GE Healthcare). The cDNA fragments were

then cloned into the pGEM-T Easy vector (Promega, Madison,

WI). Digoxigenin-labeled antisense riboprobes were obtained from

linearized plasmid templates using T7 or Sp6 RNA polymerases as

appropriate (Promega), following the manufacturer’s instructions.

In situ hybridization was performed at 60uC in 12 mm cryosections

from different three mice for each experimental point following a

previously described protocol [57]. For each riboprobe, cryosec-

tions were processed in parallel and incubated with substrate for

identical time periods.

RT-PCR
mRNA from 661W cells was extracted by using the QuickPrep

Micro mRNA purification kit (GE Healthcare), from which cDNA

was prepared using the First-strand cDNA synthesis kit (GE

Healthcare). PCR amplification was performed using standard

protocols with the following oligonucleotides: bActin (bp 163–182

and complementary to bp 300–321, accession number

NM_007393), Ngfr (bp 2,158–2,177 and complementary to bp

2,823–2,842; accession number NM_033217), mouse Sort1 (bp

5,792–5,811 and complementary to bp 6,392–6,411; accession

number NM_019972), and Ngf (bp 336–355 and complementary

to bp 827–846; accession number NM_013609). bActin, Sort1, and

Ngf were amplified for 25–28 cycles, whereas Ngfr was amplified for

34–37 cycles. Under these conditions, amplification was linear.

ELISA
The presence of soluble proNGF in conditioned media was

detected by employing a modification of the ELISA protocol

described by [33]. Briefly, ELISA plate microwells were incubated

overnight at 4uC with 25 ml of anti-NGF mAb 27/21 (440 ng/ml

in PBS). Microwells were then washed twice with PBS, and the

remaining sites for protein binding were blocked for 2 h with

100 ml of 3% bovine serum albumin (Sigma) in PBS (PBSB). After

two additional washes with PBS, 90 ml of conditioned media were

incubated for 2 h in triplicate. Microwells were then washed four

times with PBS, followed by a 2 h incubation with 50 ml rabbit

anti-proNGF antibody (1/1,000 dilution in PBSB). The presence

of this latter antibody was revealed with anti-rabbit horseradish

peroxidase (1/5,000 dilution in PBSB), followed by incubation

with 2,29-azino-di-[3-ethyl-bezothiazoline-6 sulfonic acid] (ABTS;
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Roche Diagnostics) according to the manufacturer’s instructions.

The OD was then obtained at 405 nm.

Blockage of ProNGF Signaling
Neurotensin is a known sortilin ligand [58,59] that inhibits the

binding of proNGF to sortilin and therefore interferes with the

apoptotic effect of proNGF [11,20]. Blockade of sortilin-depen-

dent apoptosis can also be achieved by using the GST-pro fusion

protein [11]. GST-pro has been shown to prevent the binding of

proNGF to sortilin [11], consequently blocking the death signaling

of proNGF [11,34].

Neurotensin or GST-pro was injected into one eye of

illuminated or control mice to prevent proNGF signaling in vivo.

Eye injections were performed following the method described by

[60]. Briefly, mice were anesthetized with isoflurane. Then, 1 ml of

solution containing 90 mM neurotensin (Sigma) in PBS or 1.5 mM

GST-pro in PBS were injected just behind the limbus with a 33

gauge beveled needle (World Precision Instruments, Sarasota, FL)

using a NanoFil microsyringe (World Precision Instruments).

Contralateral eyes injected with 1 ml PBS or 1.5 mM GST in PBS

were used as controls. The mice were then maintained in complete

darkness for an additional 24 h period prior to analysis.

For in vitro experiments, 10 mM neurotensin (Sigma) or vehicle

(PBS) was added to the cultures at the beginning of intense light

treatments. Alternatively, GST-pro or GST (both at a final

concentration of 100 nM) were added to the culture medium at

the beginning of light treatment.
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