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Abstract  1 

Biogenic amines in food constitute a human health risk. We here report that tyramine 2 

producing Enterococcus durans IPLA655 (from cheese) was able to produce tyramine 3 

under conditions simulating transit through the gastrointestinal tract. Activation of the 4 

tyramine biosynthetic pathway contributed to binding and immunomodulation of 5 

enterocytes. 6 

 7 

 8 

Biogenic amines (BA) are formed by the decarboxylation of amino acids, and are 9 

involved in important biological functions in the human body, such as nervous 10 

transmission, gastric acid secretion, immune response, cell growth and differentiation. 11 

Alterations of physiological concentrations of BA have been correlated with several 12 

disorders such as allergy, Parkinson's syndrome and migraine (15). The levels of BA in 13 

the body are in most cases the sum of endogenous synthesis and exogenous 14 

contribution. However, in the case of tyramine the source is only exogenous, mainly by 15 

the ingestion of foodstuffs in which BA have accumulated by the action of 16 

decarboxylating bacteria, though the synthesis by the gastrointestinal tract (GIT) 17 

microbiota should not be dismissed. The consumption of food containing high 18 

concentrations of tyramine, can induce adverse reactions such as nausea, headaches, or 19 

blood pressure alterations, especially in combination with the use of monoamine 20 

oxidase inhibitors as antidepressants (8). The contribution of GIT microbiota to 21 

polyamine biosynthesis, a particular type of BA, has been quantified (13); however 22 

there is no information regarding the contribution of indogenous microbiota to the 23 

biosynthesis of tyramine, or the role of food-borne BA-producing microorganisms, once 24 

they reach the GIT. 25 
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Certain species of Enterococcus and Lactobacillus are the main organisms responsible 1 

for tyramine accumulation in fermented foods (10). Tyramine producing enterococci 2 

have been isolated from human faeces (7). In order to contribute to the BA pool a food-3 

borne tyramine producing strain must survive passing through the GIT and produce 4 

tyramine under such conditions. The contribution will be enhanced if the 5 

microorganism is able to persist in the intestine. In order to test these possibilities, 6 

Enterococcus durans IPLA655, a strain isolated from cheese that is able to synthesize 7 

tyramine via tyrosine decarboxylation (3), was selected for this study. 8 

To monitor its survival and tyramine production capability under GIT conditions, a 9 

model system, previously validated with lactic acid bacteria (LAB) and Bifidobacteria 10 

strains from food origin, was used (2, 4). This model simulates the normal physiological 11 

conditions of the GIT, including the presence of lysozyme (saliva) and gastric (G) stress 12 

provoked by pepsin at gradually lower pH values (pH from 5.0 to 1.8). After G stress at 13 

pH 5.0 or pH 4.1 the small intestine stress was also assayed (presence of bile salts and 14 

pancreatin at pH 6.5 (GI). Bacteria were grown to early stationary phase in ESTY 15 

medium (Pronadisa, Madrid, Spain) -which contains a tyrosine basal concentration of 16 

about 26 µM- supplemented with 0.5% glucose in the absence or presence of 10 mM 17 

tyrosine and after sedimentation and resuspension in fresh medium exposed to the 18 

various stresses. 19 

Tyramine production under these conditions was quantified by reverse phase-HPLC 20 

(RP-HPLC) (6), which revealed that the bacterium in the presence of 10 mM tyrosine, 21 

was able to produce tyramine under the assayed conditions (Fig. 1). Maximum 22 

production was observed after G stress at pHs 5.0 and 4.1, at which approximately 23 

2x10
8 

cfu ml
-1 

(viable plate counting on ESTY solid medium) were able to synthesize 24 

and release to the culture supernatant a high concentration of tyramine (729 + 25 µM) 25 
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during the 20 min incubation time. The higher production observed at pH 5.0 in E. 1 

durans could correlate with the detection at this pH of the maximum transcription levels 2 

of the tyrP and tdcA genes encoding respectively the tyrosine/tyramine antiporter and 3 

the tyrosine decarboxylase, which catalyzes the synthesis of tyramine from tyrosine (9); 4 

pH 5.0 is also close to the reported optimal pH (pH 5.4) of tyrosine decarboxylase (11). 5 

Interestingly, significant concentrations of tyramine (270 µM) were also observed in the 6 

samples exposed to pH 1.8, even though only 8.6x10
1
 cfu ml

-1
 were detected at the end 7 

of the assay, indicating that, under gastric conditions, the tyrosine decarboxylase could 8 

catalyze tyramine biosynthesis either in non-viable cells and/or in culture supernatants.  9 

In order to understand the role of tyramine biosynthesis in cell survival under GIT 10 

conditions, the assays were performed in the presence or absence of 10 mM tyrosine. In 11 

addition, a knock-out strain was constructed by replacing the tdcA gene by the 12 

chloramphenicol resistance gene using pMN20-CM, a suicide pUC19-derived plasmid 13 

harbouring the 5´and 3´ flanking regions of E. durans IPLA655 tdcA gene. This plasmid 14 

was introduced by electroporation and the double-crossover mutant genotype was 15 

confirmed by PCR and Southern hybridization (data not shown). The inability of E. 16 

durans ∆tdcA to produce tyramine was confirmed by RP-HPLC (data not shown). 17 

The survival of the wild-type and mutant strains under GIT stress conditions was 18 

assessed by viable plate counting (Fig. 2) after growth to early stationary phase in 19 

ESTY medium plus 0.5% glucose either in the presence or absence of tyrosine. 20 

Approximately 50% of both bacterial populations were able to survive under G stress at 21 

pH 3.0, either in the presence or absence of tyrosine; and in most of the analyzed 22 

conditions no differences were detected between the two strains. We detected a 23 

significant increase of cell survival only for the mutant strain under GI stress at pH 5.0. 24 

Possibly this was due to utilization of the tyrosine for protein synthesis, since we 25 
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detected a marked reduction of the tyrosine levels (from 10 mM to 306 µM) without 1 

concomitant tyramine production in supernatant samples of the mutant strain (data not 2 

shown). In addition, under G stress at pH 2.1 a marked increase of cell survival from 3 

6.46x10
4 

to 2.69x10
6
 cfu ml

-1 
was detected in presence of tyrosine in the wild-type and 4 

not in the mutant strain. This accords with the finding that the tyramine biosynthetic 5 

pathway conserves the cell viability of Enterococcus faecium E17 in a medium buffered 6 

at pH 2.5 (14). However, the GIT challenge involves not only acidic stress, but also 7 

exposure to lysozyme, proteolytic enzymes and bile salts and the Enterococcus genus 8 

seems to be well adapted to intestinal conditions (5). This could explain the lack of a 9 

clear effect of the tyrosine decarboxylation at other pHs, besides 2.1, for E. durans 10 

IPLA655. 11 

In any case, the results revealed that the tyramine producing E. durans IPLA655 is able 12 

to survive and to produce tyramine during the passage through the GIT and therefore 13 

may contribute to the tyramine content in the host. This contribution would be greater if 14 

such strains were able to colonize the gut and continue to synthesize tyramine. The 15 

ability for gut colonization is related to the capacity to adhere to the intestinal 16 

epithelium. The difficulty of studying bacterial adhesion in vivo, has led to the 17 

development of in vitro model systems that are based on adhesion to tissue culture cell 18 

lines such as Caco-2 cells, which, when differentiated, mimic small intestine mature 19 

enterocytes. Bacteria were exposed to the cells using the conditions previously 20 

described (4) and their adhesion was assessed by plate counting. In addition, interaction 21 

of the strains with the Caco-2 cells was visualized by phase-contrast and fluorescence 22 

microscopy (Supplemental material) since both the E. durans wild-type, and the mutant 23 

strains had been transformed with the plasmid pMV158GFP, which encodes the green 24 

fluorescence protein (GFP) (12). The ability to bind to Caco-2 cells was analyzed in the 25 
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presence or absence of 10 mM tyrosine. For the adhesion assay 1.25x10
5
 epithelial cells 1 

were exposed to 1.25x10
7 

bacteria in the presence of 1 ml of DMEM medium 2 

(Invitrogen, Barcelona, Spain) for 1 h at 37ºC under a 5% CO2 atmosphere as previously 3 

described (4). Interestingly, when tyrosine was present in the adhesion assay, a 4 

significant increase (approximately three-fold) in the adherence of E. durans IPLA655 5 

to Caco-2 cells was observed (Fig. 3). In contrast, the presence of tyrosine did not affect 6 

the binding of the mutant strain. RP-HPLC analysis of the supernatants from the 7 

adhesion samples revealed that in the presence of 10 mM tyrosine the dairy strain was 8 

able to synthesize tyramine (1.4+0.2x10
7
 bacteria produced 141+15 nmol of tyramine in 9 

one hour). Supplementing the assay with 140 µM tyramine did not affect the binding of 10 

either strain to Caco-2 cells (Fig. 3). These results suggest that activation of the 11 

tyramine biosynthetic pathway, rather than the actual production of tyramine, could be 12 

involved in this enhancement of the adhesion. 13 

The production of the pro-inflammatory TNF-α by Caco-2 cells (1.25x10
5 

cells) after 14 

eight hours exposure to the E. durans strains (1.25x10
8 

cfu) was quantified as 15 

previously described in sample supernatants (2) in the presence or absence of 10 mM 16 

tyrosine. In the absence of tyrosine the presence of either strain did not significantly 17 

affected the levels of the cytokine produced and secreted by the Caco-2 cells (Table 1). 18 

In the control samples lacking bacteria, the presence of tyrosine resulted in a two-fold 19 

decrease of the TNF-α levels, which was accompanied by a consumption of 83.5% of 20 

the tyrosine (Table 1). Significantly lower levels of this cytokine (8 % and 3.8 %) were 21 

detected in the presence of the wild-type strain compared with the mutant and the 22 

control, when tyrosine was included in the assay (Table 1). The production of tyramine 23 

was confirmed in the wild-type strain samples, reaching a concentration of 3.12 ±19 24 

mM, in the presence of 10 mM tyrosine. The lack of a cytotoxic effect due to tyramine 25 
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and bacteria was confirmed using the Cell proliferation kit XTT (Roche Diagnostic, 1 

Mannheim, Germany) (data not shown). Moreover, similar levels of tyrosine 2 

(approximately 4.3 mM) were detected in samples exposed to both strains indicating 3 

that difference in cytokine levels provoked by the bacteria were not due to differences in 4 

tyrosine availability for the Caco-2 cells. Therefore, the reduction in the synthesis of 5 

TNF-α by the wild-type strain could be associated with the tyramine biosynthetic 6 

pathway. 7 

The overall results indicate that E. durans IPLA655, a tyramine producing strain present 8 

in cheese, can survive in the intestinal environment and synthesize tyramine in the colon 9 

using this as a survival and colonization mechanism, by enhancing the adhesion to the 10 

intestinal epithelium and reducing the type Th1 activation of the immune system. 11 

Unfortunately for the host organism, these increased levels of tyramine could provoke 12 

adverse reactions, especially in those individuals with a reduced detoxification system 13 

(1). These results offer further evidence of the importance of eliminating the presence of 14 

BA producing strains in order to manufacture safer foods. 15 
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LEGEND TO THE FIGURES 1 

Figure 1. Tyramine produced (grey bars) by E. durans 655 under GIT stress. The 2 

number of cells in these cultures is expressed as log cfu ml
-1

 (white bars). Each value is 3 

the mean of three independent experiments. The experiments were performed in the 4 

presence of 10 mM tyrosine. 5 

 6 

Figure 2. Cell survival after gastric (G) and gastrointestinal (GI) stresses. E. durans 7 

IPLA655 and IPLA655 ∆tdcA strains were subjected to various G or GI stress as 8 

described in the text, in the presence (grey bars) or absence (white bars) of 10 mM 9 

tyrosine. Each value is the mean of three independent experiments. Differences of 10 

survival in the presence or absence of tyrosine was tested by two tail t-Student test. 11 

**P<0.01. 12 

 13 

Figure 3. Adhesion of E. durans IPLA655 and IPLA655 ∆tdcA strains to Caco-2 cells. 14 

Adhesion levels are expressed as percentages of the total number of bacteria (adhered 15 

plus unadhered) detected after exposure to Caco-2 cells for 1 h in the presence of either 16 

10 mM tyrosine (grey bars) or 140 µM tyramine (black bars) or in the absence of both 17 

compounds (white bars). Each adhesion assay was conducted in triplicate. Each value is 18 

the mean of three independent experiments for which three independent determinations 19 

were performed. Differences of adhesion in the presence or absence of tyrosine was 20 

tested by two tail t-Student test. **P<0.01. 21 
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Table 1. Immunomodulation of Caco-2 cells by E. durans strains 1 

Bacteria  TNF-α (pg ml
-1

) Tyrosine (µM) Tyramine (µM) 

wt without tyrosine 289.28 ±39.22 15.4± 0.5 10.1± 2.1 

wt with tyrosine  9.33 ±1.04 4,196± 78 3,116 ±189 

∆tdcA without tyrosine 558.5 ±83.75 20.03 ±1.3 < 0.05  

∆tdcA with tyrosine 116 ±13.75 4,512 ±365 < 0.05 

None without tyrosine 489.06 ±76.94 nd < 0.05 

None with tyrosine 247.25 ±54.17 1,654.13±87.12 < 0.05 

  2 

TNF-α produced by Caco-2 cells after 8 h incubation in response to wild-type or mutant 3 

strains in the presence or absence of tyrosine or tyramine. The tyramine and tyrosine 4 

concentrations in the cell supernatants were also quantified by RP-HPLC. Each 5 

determination was performed in triplicate and the mean value and standard deviation are 6 

indicated. 7 









 

 

 

Detection of binding of Enterococcus durans to Caco-2 cells by Confocal laser scanning 

microscopy. Caco-2 cells (b) were exposed to E. durans 655[pMV158GFP] (a) for 1 h at 

37ºC under CO2 atmosphere. After the incubation time unbound bacteria were removed by 

washing three times with PBS at pH 7.1. Samples were observed prior to (c) or after washing 

(d) by a confocal laser scanning microscope (CLSM), Leica TCS-SP2-AOBS model (Leica 

Microsystems GmbH, Wetzlar, Germany) with a x100 magnification objective and numerical 

aperture of 1.6. Confocal illumination was provided by Argon laser (488 nm laser excitation) 

and with a long pass 520– 565 nm filter (for green emission). Image analysis was performed 

using FRET and FRAP software (Leica Microsystems GmbH, Wetzlar, Germany). 
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