Flow cytometric detection of BCR-ABL fusion proteins in leukemia patients via an immunobead assay

F. Weerkamp^{1,2}, E. Dekking^{1,2}, V.H.J. van der Velden¹, S. Böttcher³, N. Boeckx⁴, E.R. van Wering⁵, J. Flores Montero⁶, P. Monteiro Lucio⁷, L. Sedek⁸, T. Kalina⁹, E. Macintyre¹⁰, F.J.T. Staal¹, and J.J.M. van Dongen¹ on behalf of the EuroFlow Consortium

Euro Flow

I, Erasmus MC, Rotterdam, NL; 2, Dynomics, Rotterdam, NL; 3, University Klinik Schleswig-Holstein, Kiel, DE; 4, Katholic University Leuven, BE; 5, Dutch Childhood Oncology Group, The Hague, NL; 6, University of Salamanca, ES; 7, Institute of Molecular Medicine, Lisbon, PT; 8, Selesian Academy of Medicine, Zabrze, PL; 9, Charles University, Prague, CZ; Hôpital Necker, Paris, FR.

INTRODUCTION

The BCR-ABL fusion gene results from the translocation t(9;22). It is the hallmark of chronic myeloid leukemia (CML) and is presen in a poor-risk subgroup of precursor B cell acute lymphoblastic leukemia (ALL), which represents 25-30% of adult ALL and 3-5% of childhood ALL. Consequently the detection of the BCR-ABL aberration is of utmost importance for diagnosis and classification of leukemia patients and can also be used as marker for monitorin of BCR-ABL⁺ leukemias to evaluate treatment effectiveness. So far, the BCR-ABL aberration has been detected by cytogenetics FISH or PCR, all techniques that are time consuming and require special facilities.

We developed a simple flow cytometric bead assay for detection of the BCR-ABL fusion protein in cell lysates, using a bead-bound catching antibody against one side of the fusion protein and a fluorochrome-conjugated detection antibody against the other side of the fusion protein (see Figure 1).

	RESULTS						
t	1. Detection of all variants of The anti-BCR antibody was de exon 1, which allowed us to de demonstrated by analysis of a sensitive to detect BCR-ABL p	of the BCR-A eveloped aga etect all know series of wel proteins in lys	BL fusion inst a non on BCR-AB II-defined of ates of let	n protein. -homologou 3L variants, cell lines. Th ukocyte sam	is regior includin ne assay ples of		
g	2. Protease inhibition neede Protein stability problems were myeloid cells with high levels of could be significantly reduced	d in cell sam e encountered of protease ad by adding pro	ples with d when ce ctivity, suc otease inh	n many mat all samples of th as CML controls to se	ure my containe ells and everal st		
s,	3. Development and testing of standardized Research Use Only (RU The immunobead assay was further developed and standardized by BD Array (CBA) assay (BCR-ABL Protein Kit; BD Biosciences, San Jose, CA BCR-ABL immunobead kit for BCR-ABL fusion protein detection was eva BCR-ABL transcipt in 9 diagnostic laboratories of the EuroFlow Consorti samples from newly diagnosed (n=134) or relapsed (n=11) leukemia pat B-ALL patients, 18 T-ALL patients, 27 acute myeloid leukemia (AML) pat hematological proliferations (see Table). In addition, 72 healthy controls						
	 4. High specificity of BCR-A High concordance (100%; 145 immunobead results: 17/78 precursor-B-ALL were 19/19 CML were BCR-ABL p 0/48 of other acute leukemia 	BL immuno 5/145) was ob BCR-ABL po bositive in bot as or prolifera	bead ass otained be ositive in b th assays tions were	ay. tween BCR- ooth assays (with very w e BCR-ABL	ABL PC (mainly eak imr		
Image: selection of the se	 5. Two subgroups of pateints According to the Mean Fluores samples were seen: high level but <1,000. Negative samples seen in precursor-B-ALL and C Precursor-B-ALL: 88% (1 CML: 84% (16/19) low level 	scence Intens l positivity wit were defined CML: 5/17) high let vel positivity	to levels sity (MFI) h MFI valu d as MFI v vel positiv (true low e	of BCR-AB values, two Jes 1,000 a alues <135	L expre main gre and low (see Fig		
B	Samples tested	BCR-ABI negative	L PCR a p190	assay p210	BCR nega		
	CML (n=19)	0	1	18			
B	Precursor-B-ALL - childhood (n=50) - adult (n=28)	49 12	1 13	0 3			
	T-ALL (n=18)	18	0	0			
	AML (n=27)	27	0	0	2		
etection. g	Other hematological proliferations (n=3)	3	0	0			
alea	Healthy controls (n=72)) NT			7		

* negative: MFI value <135; low positivity: MFI value 135 and <1,000; high positivity: 1,000

BCR-ABL RUO immunobead assay negative* low high							
	positivity^	positivity^					
0	16	3					
49	0	1					
12	2	14					
18	0	0					
27	0	0					
3	0	0					
72	0	0					

precursor-B-ALL

CONCLUSIONS

We conclude that the flow cytometric immunobead assay is a fast and easy technique for specific detection of BCR-ABL proteins in leukemic cells.

- not dependent of the breakpoint position in the BCR gene;
- does not need special laboratory facilities other then a routine flow cytometer;
- provides results within several hours;
- can be run in parallel to routine immunophenotyping (no extra technician time needed).
- category.

		 rependent of weight of weig	eated analysis for eak positivity ative 0 0) result of l	confirmation
			8	
hild- ood =50	T-ALL n=18	AML n=27	other hematological proliferations n=3	healthy controls n=72

Figure 2. Results of the flow cytometric BCR-ABL RUO immunobead assay.

1. The main advantages of the immunobead assay are:

2. Since differentially labeled beads allow multiplexing, it will be possible to develop single tube assays for combined evaluation of multiple different fusion proteins, e.g. per disease

3. Consequently, the flow cytometric immunobead assay can contribute to fast and easy diagnosis and classification of leukemias with fusion genes.

4. If sufficient sensitivity can be reached, also monitoring becomes possible.

n=78