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Abstract 

Coffee and its substitutes have been described as complex matrices for acrylamide (ACR) analysis due to 

both analytical interferences and ACR instability in the matrix. Melanoidins are multifunctional and 

biochemically active polymers which are formed in large extent during coffee roasting. Model systems 

composed of ACR (elimination studies) or glucose-asparagine (ACR formation/elimination studies) 

with/without melanoidins was heated at 180 _C. Washed sea sand and cellulose microcrystalline were used 

as matrix. Coffee melanoidins had a direct influence on the fate of ACR under heating, while the effect was 

not observed at room temperature. In addition, ACR decrease was also related to the reaction time and the 

initial amount of melanoidins in the media, where clearly a dose-response was observed. In contrast, pH 

(from 3.5 to 7.0) had no significant effect on ACR reactivity towards melanoidins. It is hypothesized that 

nucleophilic amino groups of amino acids from the proteinaceous backbone of melanoidins react via the 

Michael addition reaction with ACR, although the exact mechanism is unknown. Then, melanoidins could 

modulate the reaction pathways of ACR formation and elimination during coffee roasting and serve as 

acrylamide-mitigation substance. 

 

1. Introduction 

Melanoidins are brown anionic nitrogenous polymers formed during the final stage of the Maillard reaction 

(Borrelli, Visconti, Mennella, Anese, & Fogliano, 2002). Melanoidins formation is a direct consequence of the 

thermal process applied to food, such as roasting, baking or toasting. Although their chemical structure 

remains largely unknown, there is increasing evidence that arabinogalactan-like carbohydrates, proteins, 

phenols and Maillard reaction compounds are constituents of coffee melanoidins (Bekedam, Schols, van 

Boekel, & Smit, 2007). There is a growing interest in coffee melanoidins, since they are not biologically inert 

food constituent and may exert various technological, nutritional, biological and health effects (Rufián-

Henares & Morales, 2007; Somoza, 2005). In addition to their contribution to colour, texture (foam stability) 

and antioxidant capacity (Delgado-Andrade & Morales, 2005), melanoidins play an important role in the 

binding of nutritionally important metals (Morales, Fernandez-Fraguas, & Jiménez-Pérez, 2005), undesirable 

dietary compounds (Solyakov, Skog, & Jägerstad, 2002) and odourants (Hofmann & Schieberle, 2002). 

Moreover, their chelating properties towards metal ions further contribute to the antioxidant and 

antimicrobial properties of melanoidins in food (Rufián-Henares & De la Cueva, 2009). In summary, 

melanoidins reactivity is a relevant issue in food science from a technological (Petracco et al., 1999), safety 

(Jägerstad, Skog, & Solyakov, 2002), nutritional (O’Brien & Morrissey, 1997) and physiological (Somoza, 

2005) points of view. 

 

Acrylamide (ACR) is a processing contaminant with potential harmful consequences to humans (i.e. EFSA, 

2010). ACR is naturally formed during roasting of green coffee beans, and it is found at levels of 200 mg/kg 

(maximum 958 mg/kg) and 188 mg/kg (maximum 1047 mg/kg) in roasted and instant coffee, respectively 

(EFSA, 2010). The contribution of coffee to the dietary daily intake of ACR is significant in countries with 

high coffee consumption, thus, level of 30% is reached in Scandinavian countries (Dybing et al., 2005). Since 

the presence of naturally formed ACR in foods was detected, different mitigation strategies have been 
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attempted (CIAA, 2009). Nowadays, there is not an effective strategy of ACR mitigation or alternative 

process applicable for coffee and its derivatives (EFSA, 2010). In addition, there is some controversy 

regarding the measurement of ACR in coffee since values decrease with storage time and temperature 

(Delatour, Périsset, Goldmann, Riediker, & Stadler, 2004; Hoenicke & Gatermann, 2005; Wenzl, Klaffke, 

Mothar, Palavinkas, & Anklam, 2005). In this context, Baum et al. (2008) confirmed that close to 90% of ACR 

remained firmly bound to the coffee matrix and it was hypothesized that ACR might be integrated with 

material eluting into the brew together with colouring material. In view of their multifunctional properties, 

anionic behavior and high abundance in coffee, melanoidins could have a direct implication in the ACR 

formation and elimination during coffee roasting. This investigation examines the role of coffee melanoidins 

in the formation and elimination of ACR. 

 

 

2. Materials and methods 

2.1. Chemicals 

D-glucose, L-asparagine, acrylamide, and cellulose microcrystalline were purchased from SigmaeAldrich 

(Madrid, Spain). All other chemicals were purchased from Aldrich (Milwaukee, WI), or Merck (Darmstadt, 

Germany) and were of analytical grade. The water used was double-distilled (18.2 meqX/cm) using a Milli-Q 

System (Millipore Ibérica, Madrid, Spain). 

 

2.2. Isolation of coffee melanoidins 

Coffee melanoidins were prepared following the recommendation of the COST-919 group for coffee 

melanoidin analysis (COST-919, 1998) and as described elsewhere (Delgado-Andrade & Morales, 2005). 

Roasted coffee beans (Coffea arabica) were provided by a local factory; a moderate degree of roasting was 

applied, producing a weight loss of 16.2% (w/w) dry matter, in relation to green coffee weight. Ground 

coffee (100 g) was stirred in 300 mL of distilled water at 75 ºC for 5 min. The solution was filtered and an 

aliquot of filtrate was de-fatted with dichloromethane (2 x 200 mL). The coffee brew was then subjected to 

ultrafiltration (Amicon ultrafiltration cell model 8400, Amicon, Beverly, MA, USA) with a 10 kDa nominal 

molecular mass cut-off membrane. The retentate corresponding to melanoidins was completed to 200 mL 

with water and washed again at least three times, after which the high molecular weight fraction was freeze 

dried and stored. 

 

2.3. Preparation of model systems 

2.3.1. Study of acrylamide elimination (static system) 

Double-washed sea sand (30 mg _ 0.1 mg) was carefully placed at the bottom of a Pyrex test tube (100 x 15 

mm). Then, 50 mL of melanoidin solution (20 mg/mL) and 50 mL of ACR solution (corresponding to 10000, 

5000, 2000, 500 and 100 mg/L) were added. The melanoidin solution was replaced by buffer (0.2 M in 

phosphate buffer 0.1 M, pH 6.8) for control samples. In parallel, a model system with cellulose 

microcrystalline was designed as a polymer control instead of melanoidins. 

 

2.3.2. Study of formation/elimination of acrylamide (dynamic system) 

Double-washed sea sand (30 mg, _0.1 mg) was carefully placed at the bottom of a Pyrex test tube (100 x 15 

mm). Then, 20 mL of asparagine solution (0.2Min phosphate buffer 0.1 M, pH 6.8), 20 mL of glucose solution 

(0.2 M in phosphate buffer 0.1 M, pH 6.8) and 50 mL of coffee melanoidin solution (20 mg/mL) were added. 

The melanoidin solution was replaced by buffer for control samples. 

 

2.3.3. Effect of pH on acrylamide formation 
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Double-washed sea sand (30 mg, 0.1 mg) was carefully placed at the bottom of a Pyrex test tube (100 x 15 

mm). Then, 20 mL of asparagine solution (0.2 M), 20 mL of glucose solution (0.2 M) and 50 mL of coffee 

melanoidin solution (20 mg/mL) were added. Both asparagine and glucose were dissolved in phosphate 

buffer 0.1 M pH 7.0, distilledwater, sodium citrate 0.1MpH 5.5 or sodium citrate 0.1 M pH 3.5 as necessary. 

Each melanoidin solution was replaced by the corresponding buffer for control samples. 

 

2.3.4. Effect of staling on acrylamide elimination 

Double-washed sea sand (30 mg, _ 0.1 mg) was carefully placed at the bottom of a Pyrex test tube (100 x 15 

mm). Then, 50 mL of melanoidin solution (20 mg/mL) and 50 mL of ACR solution (500 mg/L) were added. 

The melanoidin solution was replaced by buffer for controls. After thermal treatment, the samples were 

rapidly reconstituted with 2 mL water, mixed and kept at room temperature. An aliquot (50 mL) was taken 

every 5 min for 60 min. 

 

2.4. Heat treatment 

The samples were heated in Pyrex test tubes (100 x 15 mm). Heat treatments were performed in a 

thermostated polyethylene glycol bath (GFL 1086, Großburgwede, Germany) equipped with an Omron E5J 

temperature controller (Omron Electronics, CA, USA) at 180 ºC for 2, 4, 6 and 12 min. After thermal 

treatment, the samples were immediately cooled in ice water. Thermal treatments were carried out in 

parallel in open and hermetically closed screwcapped tubes to minimize the effect of evaporation. 

 

2.5. Analysis of acrylamide 

The samples were reconstituted with 2 mL water and 200 mL were then ultrafiltrated using Vivaspin 500 

disposable units (Sartorius Stedim Biotech, Göttingen, Germany) in order to remove the melanoidins. 

Finally, 50 mL of the ultrafiltrated ACR solution was injected into an Accela 600 HPLC system (Thermo-

Fisher Scientific, Palo Alto, USA) and analyzed in accordance with Knol et al. (2005) and Barber, Hunt, 

LoPachin, and Ehrich (2001) with minor modifications. Such method consists in the use of a reversed-phase 

column specially designed for separation of small molecules in highly aqueous solutions and a mobile phase 

composed of water:methanol (99:1) with a counter ion (heptane sulphonic acid) in order to elute 

compounds like acrylamide or its metabolite glycidamide. In our study, the reversed-phase columnwas 

replaced by a gel-permeation column (Discovery Bio GPC 150, 30 cm x 4.6 mm, 150Å, Supelco, Madrid, 

Spain) thermostated at 25 ºC to avoid interference with the retained melanoidins. In addition, the mobile 

phase was water 100% delivered at 1 mL/min. ACRwas detected at 210 nm in a PDA detector equipped 

with a 5 cm flowcell, which also improve the detection limit compared with the former method. The 

method was linear between 50 and 5000 mg/L, presenting 3.1% precision and a detection limit of 20 mg/L. 

 

2.6. Statistical analysis 

Results are expressed as mean values _ standard deviation. All experiments were carried out in triplicate. 

Means were compared by one way analysis of variance (ANOVA) and Student’s t-test at a significance level 

of P-values < 0.05. All analyses were carried out with Microsoft Excel statistical software (Microsoft Office 

Excel 2003, Microsoft Corp., Redmond, WA). 

 

3. Results and discussion 

ACR content in roasted coffee decreases during storage following a temperature-dependent model 

(Hoenicke & Gatermann, 2005; Lantz et al., 2006), and its variability during storage is probably due to ACR 

instability in the matrix (Wenzl et al., 2005). Recently, Baum et al. (2008) stated that ACR may Therefore, 

melanoidins are proposed in the present investigation as a realistic candidate to modulate ACR levels in 
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coffee. In a preliminary step, different proportions of ACR/melanoidins (from 0.008 to 0.403 mass ratio) 

were incubated at room temperature and 30 ºC for up to 18 h in a semi-dry reaction media. 

 

ACR content decreased slightly in the presence of the highest concentration of melanoidins, but differences 

were not statistically significant in any case (data not shown). Accordingly, it was expected that the reactivity 

of ACR towards melanoidins could be mediated by thermal treatment. A static system to evaluate the 

decrease was designed with standard solutions of ACR and heated at 180 ºC in the presence or absence of 

water soluble coffee melanoidins. As expected, the ACR content in the controls (without melanoidins) 

progressively decreased with heating time. After 6 min of heating, initial levels of ACR decreased by 18.5% in 

control samples. Evaporation and/or polymerization are assumed to be the main causes of ACR decrease in 

the control as reported by others (i.e. Adams, Hamdani, Lancker, Méjri, & Kimpe, 2010; Claeys, de 

Vleeschouwer, & Hendrickx, 2005). 

 

In addition, presence of degradation products was not observed in the chromatograms in any experiment. 

Therefore, the effect of melanoidins on ACR content was double checked for evaporation by comparing the 

respective controls without melanoidins in both open and closed systems. ACR content decrease was 

related to the reaction time and the initial amount of ACR in the reaction media. Fig. 1 shows the 

percentage of ACR decrease in the presence of coffee melanoidins in open vials; this value increased linearly 

up to 6 min of heating, after which therewas no further increase, probably due to excessive loss due to 

evaporation/polymerization. Decrease of ACR was more effective at the lower mass ratio ACR:melanoidin 

although similar trend was observed in all the experiments. Temperature in the vial was monitored during 

the heating every 30 s and the lag time was nearly 2 min (Fig. 1). Cellulose microcrystalline was used as an 

additional polymer control. Table 1 summarised the effect of presence or absence of cellulose in the 

reaction media on the ACR decrease. The amount of ACR remained without significant changes at the 

different levels of ACR tested. 

 

The melanoidin:ACR ratio used in the model systems is in the range expected in roasted coffee. Literature 

describes that 100 g of classical roasted coffee contains about 7.2 g of melanoidins, being close to 1.8 mg/mL 

in filtered coffee (Fogliano & Morales, 2011). According to EFSA (2010), average content of acrylamide in 

roasted coffee is 200 mg/kg Alves, Soares, Casal, Fernandes, and Oliveira (2010) estimated that acrylamide 

content in serving coffee is 42.3 mg/L. Average melanoidin:ACR mass ratio in brewed coffee is expected to 

be between 9000:1 to 40000:1. For instance at the intermediate level of 2000 mg/L of ACR, the final 

melanoidin:ACR ratiowas 10000:1 (or 0.1 mg/g ACR:melanoidin), being in the range expected in brewed 

coffee. 

 

In the following experiments, reference time of heating was set at 6 min. It was observed that the initial 

concentration of ACR influenced the rate of disappearance, being more efficient at the lower 

ACR/melanoidin mass ratio (Fig. 2). ACR decrease of 49% was recorded at the 0.005 ACR/melanoidin mass 

ratio (mg/g). This ratio was determined by weight rather than on a molar basis because the molecular weight 

of melanoidin is still unknown. These experiments confirmed that coffee melanoidins mediated the ACR 

decrease in model systems heated at 180 ºC in a dose-response trend. 

 

ACR and melanoidins are not naturally present in green coffee beans. Both are concomitant consequences 

of roasting but formed at different stages of the process. Hence their concentration might vary during 

roasting. ACR is rapidly formed from its precursors but its content is a balance between formation and 

evaporation or degradation reactions. ACR losses are enhanced at more severe heating conditions (Lantz et 
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al., 2006), but melanoidins are end products of the Maillard reaction. Then, it is expected that the ability of 

melanoidins to react with ACR will also change during thermal treatment. 

 

Traditionally, researchers have used glucose-asparagine model systems to evaluate the kinetics of ACR 

formation/elimination under different conditions (Claeys et al., 2005; Knol et al., 2005). A dynamic system 

with ACR precursors (glucose þ asparagine) was designed, and formation and elimination of ACR took place 

simultaneously. In controls (without melanoidins), ACR was rapidly formed, reaching values of 339 +- 31, 

5342 +- 48, 8264 +- 124, and 7426 +- 111 mg/L for open tubes and 546 +- 65, 8326 +- 121, 12364 +- 132, 

and 10985 +- 109 mg/L for closed tubes at 2, 4, 6, and 12 min, respectively. A lag-phase was always 

observed, during which ACR was not formed since reaction intermediates were generated first. 

Subsequently, ACR content increased exponentially with time to a maximum concentration, after which 

ACR again decreased. In the presence of melanoidins (1 mg), the formation of ACR decreased to 28% in 

closed systems and to 41% in open ones, after 6 min of heating. ACR formation did not only depend on its 

reactivity towards melanoidins but also on the effect of melanoidins on the chemical pathway leading ACR. 

Intermediate precursors of the reaction might also interact with the multifunctional residues of melanoidins, 

then lowering the reaction rate. In addition, glucose could be consumed by reacting with amino residues in 

the proteinaceous complex of the melanoidins, through the formation of Maillard reaction products. On the 

other hand, asparagine could react with arabinosyl residues of the arabinogalactaneprotein complex 

(Bekedam, Schols, van Boekel, & Smit, 2006). The network of the potential reactions involved is rather 

complex. Nevertheless, the contribution of these two events cannot be evaluated at this point. 

 

Fig. 3 depicts the ACR decrease in the glucose/asparagine model system according to melanoidin 

concentration in the reaction media. A dose-response effect was again observed in the decrease of ACR, in 

line with the former results with a standard solution of ACR. The highest level of ACR decrease (55.6%) 

was in open systems at the highest concentration of melanoidins. Again, the reduction in ACR content 

mediated by melanoidins cannot be attributed solely to an addition effect; it would be caused by the 

participation of melanoidins in the chemical pathway of ACR formation. However, these mechanistic aspects 

are beyond the scope of the present study. 

 

The precision of the method was investigated in the asparagineglucose model system. Four samples 

containing 20 mg/mL of melanoidins were heated to 180 ºC for 6 min, extracted and analyzed. ACR content 

ranged from 4798 to 4932 mg/L. The RSD ranged from 2.0 to 3.8%, reflecting the good precision of the 

method. 

 

Table 2 summarized the effect of pH on the decrease of ACR mediated by melanoidins. As expected, ACR 

formation is reduced at low pH and enhanced at higher pH levels (De Vleeschouwer, van der Plancken, van 

Loey, & Hendrickx, 2006). Increased proton concentration at lower pH will results in a higher amount of 

protonated amino groups of asparagine. Because the nucleophilic unprotonated amino group of asparagine is 

required in the first step of ACR formation through the Maillard reaction, the formation reaction will be 

blocked. Final pH levels did not change significantly after 6 min of heating. This finding is in line with those of 

previous studies (Knol et al., 2005). ACR decrease was relevant in the presence of melanoidins, compared 

with controls, at all the pH values assayed. ACR decrease in the presence of melanoidins was regardless to 

the pH levels. 

 

To gain more insight into the stability of ACR in the presence of coffee melanoidins, an experiment was 

designed to resemble the staling of the coffee brew. After heating, water is rapidly added, kept open and 
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cooled down at ambient temperature for 1 h Fig. 4 depicted the ACR profile during the staling of the 

solution and the temperature decay. In closed vials, differences between initial and final ACR content were 

not statistically significant (P < 0.05). However, in samples heated in the open system, ACR decreased 

slightly during the first 20 min and no further differences were observed at more prolonged times. Likely in 

the closed system, the interaction between ACR and active residues of melanoidins reached a steady state 

more rapidly than with open vials. In the open system, ACR concentration also varied during staling likely 

due to evaporation. 

 

4. Conclusions 

ACR reacts with coffee melanoidins during heating at 180 ºC of a low-moisture model system, and 

consequently a net decrease in ACR content is clearly observed. Then, melanoidins contribute to the 

instability of ACR in the matrix ACR is an electrophilic a,b unsaturated carbonyl and can react with 

nucleophilic groups such as amino-, hydroxyl- and sulfhydryl- groups via Michael addition reactions 

(Friedman, 2003). Coffee melanoidin is a negatively charged polymer constituted by carbohydrates, protein 

and polyphenols (Bekedam et al., 2007) and its polarity and number of reactive residues decrease with 

increasing thermal treatment (Morales, 2002). Then, nucleophilic amino groups arising from the 

proteinaceous residue of the melanoidin skeleton are probably involved in the elimination of ACR during 

coffee roasting. This hypothesis is supported by earlier studies, in which amino acids with nucleophilic side 

chains considerably decrease levels of the free ACR, due to Michael-type addition reactions producing the 

corresponding 3-(alkylamino)-propionamide (Adams et al., 2010; Koutsidis et al., 2009; Zamora, Delgado, & 

Hidalgo, 2010). In addition, it is known that the addition of free amino acids other than the ACR precursor 

asparagine, such as glycine, lysine and cysteine, can reduce ACR concentrations in thermally treated foods 

(Brathen, Kita, Knutsen, & Wicklund, 2005; Rydberg et al., 2003). But the exact mechanisms of ACR 

degradation and adduct-formation in food products remain unknown (Adams et al., 2010). 

 

Our results are also in accordance with those observed for the interaction of coffee melanoidins with odour 

active compounds, such as thiols (Hofmann & Schieberle, 2002), harmful heterocyclic amines (Solyakov et al., 

2002) and other low molecular weight compounds of technological interest such as saccharine 

(Chockchaisawasdee & Ames, 2001). In consequence, it is plausible to conclude the existing chemical 

interaction between coffee melanoidins and ACR but the binding site is only active under heating, and thus 

additional energy is needed to complete the reaction. Although it is known that asparagine is the limiting 

factor for ACR formation during coffee roasting (Bagdonaite, Derler, & Murkovic, 2008), our results show 

that the effect of soluble coffee melanoidins in modulating ACR content in the coffee brew should be 

considered. Further research is underway to identify the specific contribution and mechanisms of low and 

high molecular weight populations of melanoidins in reactivity towards ACR. 
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FIGURES AN TABLES 

 
 

Table 1 
Percentage of acrylamide decrease in the closed reaction media (180 _C) heated for 2, 4, 6, and 12 min with 

or without presence of cellulose microcrystalline at different levels of acrylamide (10000, 5000, 2000, 500, 

100). 

 

 

 
 

 

 

Table 2 

Acrylamide formation in asparagine-glucose model (dynamic system) with or without the presence of 

melanoidins (20 mg/mL) and heated to 180 ºC for 6 min at different pH levels. 
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FIGURE 1. Time course of acrylamide decrease during heating of an acrylamide/melanoidin model system 

at 180 ºC. Acrylamide:melanoidin ratio (mg/g) of 0.5 (B), 0.25 (C), 0.1 (,), 0.025 (-), and 0.005 (A). Dashed 

line denoted temperature profile in vials. 

 

 

FIGURE. 2. Dose-response decrease of acrylamide in presence of melanoidins in a static system 

(acrylamide standard solution) heated to 180 ºC for 6 min. 
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FIGURE 3. Decrease of acrylamide in presence of melanoidins in a dynamic system (glucose-asparagine 

model) heated to 180 ºC for 6 min. Solid bar (closed vials), open bar (open vials). 

 

 

FIGURE. 4. Evolution of acrylamide content during staling at room temperature. Samples containing 500 

mg/L and 10 mg melanoidins were previously heated in open (,) and closed (-) vials at 180 ºC for 6 min. Bars 

indicate error in two independent experiments. Dotted line denotes temperature decay. 

 


