Deformation of the $N = Z$ Nucleus 76Sr using β-Decay Studies

E. Nácher, A. Algora, B. Rubio, J. L. Taín, and D. Cano-Ott
Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain

S. Courtin, Ph. Dessagne, F. Maréchal, Ch. Miehé, and E. Poirier
Institut de Recherches Subatomiques, INP-CNRS, F-67037 Strasbourg CEDEX 2, France

M. J. G. Borge, D. Escrig, A. Jungclaus, P. Sarraiguren, and O. Tengblad
Instituto de Estructura de la Materia, CSIC, E-28040 Madrid, Spain

W. Gelletly
Department of Physics, University of Surrey, Guildford, GU2 5XH, United Kingdom

L. M. Fraile and G. Le Scornet
ISOLDE, EP Division, CERN, CH-1211 Geneva, Switzerland
(Received 4 March 2004; published 9 June 2004)

A novel method of deducing the deformation of the $N = Z$ nucleus 76Sr is presented. It is based on the comparison of the experimental Gamow-Teller strength distribution $B(GT)$ from its β decay with the results of quasi-random-phase approximation calculations. This method confirms previous indications of the strong prolate deformation of this nucleus in a totally independent way. The measurement has been carried out with a large total absorption gamma spectrometer, “Lucrecia,” newly installed at CERN-ISOLDE.

The shape of the atomic nucleus is conceptually one of the simplest of its macroscopic properties to visualize. However, it turns out to be one of the more difficult properties to measure. In general terms, we now have a picture of how the nuclear shape varies across the Segrè Chart. Nuclei near the closed shells are spherical. In contrast, nuclei with valence nucleons in between two shells have deformed shapes with axial symmetry, and the extent of the quadrupole deformation is quite well described as being proportional to the product N_pN_n of the numbers of pairs of valence protons (N_p) and neutrons (N_n) [1]. This picture is underpinned by both the shell and mean field models of nuclear structure. Experiment and theory concur that, as the N_pN_n parametrization would suggest, nuclei rapidly deform as we add only a small number of valence nucleons to the magic numbers. Thus, nuclei in the middle of the $f_{7/2}$ shell turn out to be deformed even though the numbers of valence nucleons are relatively small.

Experimentally, this picture is supported by a mass of independent observations: the strongly enhanced quadrupole transition rates between low-lying states, the strongly developed rotational bands built on low-lying states, and measurements of ground state quadrupole moments. Where we have evidence of the shapes of ground and excited states in the same nucleus they are, in general but not always, the same. It turns out that in some cases nuclear states with different shapes coexist in the same nucleus [2].

The nuclei with $N = Z$ and $A = 70$–80 are of particular interest in this context. Such nuclei enjoy a particular symmetry since the neutrons and protons are filling the same orbits. This, and the low single-particle level density, lead to rapid changes in deformation with the addition or subtraction of only a few nucleons. In terms of mean field models, these rapid changes arise because of the proximity in energy of large energy gaps for protons and neutrons at $Z = 34$ and $N = 36$ on the oblate side and $Z = 38$ on the oblate side of the Nilsson diagram. As a result, mean field calculations predict the existence of several energy minima with quite different shapes in some of these nuclei [3,4]. Evidence of this coexistence has been found, for instance, in Se and Kr nuclei [5,6], and it is also predicted for the lightest Sr isotopes [7]. Thus, it is of considerable interest to map out the deformation of the ground and excited states of nuclei in this region. This is easier said than done, however. There are a number of methods to measure the deformation of the ground state in unstable nuclei based on the interaction of the electric quadrupole moment of the nucleus with an external electric field gradient [8,9]. These techniques are not applicable to nuclei with $J = 0$ or $1/2$; moreover, they very seldom give the sign of the quadrupole moment and, hence, cannot distinguish between oblate and prolate shapes.

Here we present an alternative method to deduce whether the ground state shape of an unstable nucleus is oblate or prolate, and apply it to the $N = Z = 38$ nucleus.
^{76}Sr, the most deformed nucleus in the region according to mean field calculations [4] and previous in-beam experiments [10]. The method is based on an accurate measurement of the Gamow-Teller strength distribution, $B(\text{GT})$, as a function of excitation energy in the daughter nucleus, and relies on the technique of total absorption gamma spectroscopy (TAGS) which will be explained later. The theoretical idea was suggested by Hamamoto et al. [11] and pursued by Sarriguren et al. [12]. According to them, one can study the deformation of the ground state of a particular nucleus by measuring the $B(\text{GT})$ distribution of its β decay. In these references, the authors calculate the $B(\text{GT})$ distributions for various nuclei in the region for the deformations minimizing the ground state energy. In some cases, the results differ markedly with the shape of the ground state of the parent, especially for the light Kr and Sr isotopes.

A precise determination of the $B(\text{GT})$ distribution is required for such studies and this is far from trivial. Traditional high resolution techniques, based on the use of high purity germanium (HPGe) detectors to measure the γ rays emitted after the β decay, often fail to detect significant but very fragmented strength at high excitation energy in the daughter nucleus. This is mainly due to three factors: the low photopeak efficiency of HPGe detectors for high energy γ rays, the high fragmentation of the $B(\text{GT})$ at high excitation energy, and the fragmentation of the gamma deexcitation of the levels in the daughter through many different gamma cascades. Together they cause the so-called Pandemonium effect [13]: Many weak cascades deexciting levels at high energy can remain undetected leading to large systematic errors in the determination of the $B(\text{GT})$. This is the reason why, even although Refs. [14,15] give the first indication of the prolate character of the ^{76}Sr ground state, one must determine the $B(\text{GT})$ distribution more accurately over the whole Q_{EC} window to provide conclusive proof.

The alternative, the TAGS technique, avoids these systematic uncertainties. The basis of this method is the detection of the entire energy of the gamma cascades rather than individual γ rays. For this purpose, one needs a high efficiency detector with acceptable resolution for gammas such as the inorganic scintillators NaI(Tl) or BaF$_2$. Furthermore, this detector must have a geometry as close as possible to 4π to absorb the complete cascade energy. If this is achieved, one can measure directly the β intensity $I_\beta(E)$ as a function of the excitation energy in the daughter nucleus, and from this one can extract the $B(\text{GT})$ distribution.

In this Letter, we present the results of TAGS measurements on the decay of the $N = Z$ nucleus ^{76}Sr. A comparison of the results of this measurement with the calculations of Ref. [12] allows us to establish the prolate character of the ground state of ^{76}Sr without ambiguity.

With the aim of measuring the β decay of nuclei far away from the stability line with the total absorption technique, a spectrometer called “Lucrecia” has been installed at the ISOLDE mass separator at CERN. It consists of a large NaI(Tl) crystal of cylindrical shape ($L = 38$ cm) with a cylindrical hole ($\varnothing = 7.5$ cm) at right angles to the symmetry axis. The purpose of the hole is twofold: On the one hand, it allows the beam pipe (coming from the separator) to enter up to the center of the crystal, thus allowing on-line activity of a very short half-life (>5 ms) to be deposited here and measured. On the other hand, it allows us to place ancillary detectors inside for the detection of the positrons ($\beta^+\text{ decay}$), electrons ($\beta^-\text{ decay}$), or x rays (EC process) produced in the decay. Surrounding the whole setup, there is a shielding box 19 cm thick made of four layers: polyethylene-lead-copper aluminum (see Ref. [16] for further details).

In order to produce the nucleus of interest (^{76}Sr), a 52 g/cm2 Nb target was bombarded with a 1.4 GeV proton beam. The intensity was chosen to produce a counting rate of $= 3.5$ kHz in the NaI crystal. In order to separate Sr selectively, a fluorination technique was used [17]. The radioactive beam was steered to the detector setup and implanted in an aluminized Mylar tape which was moved every 15 s to transport the source to the middle of the crystal and to avoid the buildup of the daughter activity ($T_{1/2}^{^{76}\text{Sr}} = 8.9$ s, $T_{1/2}^{^{76}\text{Rb}} = 36.8$ s). During this 15 s cycle, the decay of the implanted radioactive source was measured. The γ rays following the decay (either by β^+ or by EC) were measured by the NaI(Tl) crystal and analyzed without any condition on the ancillary detectors. However, these detectors were very useful for the on-line control of the measurement.

In ideal conditions, if the TAGS had 100% peak efficiency over the whole energy range, the experimental spectrum measured in the NaI(Tl) cylinder would be the β intensity distribution $I_\beta(E)$ convoluted with the energy resolution of the crystal and the response of the detector to the positron when applicable. In reality, the detector does not have 100% peak efficiency because of the dead material inside the spectrometer (the ancillary detectors) and the transverse hole. Consequently, the spectrum is modified by the response function of the detector. In other words, the relationship between the quantity of interest, $I_\beta(E)$, and the experimental data $d(i)$ is

$$d(i) = \sum_{j=1}^{i_{\text{max}}} R(i, j) I_\beta(j) \quad \left(i \equiv \text{channel} \quad j \equiv \text{energy bin}\right).$$

In order to obtain $I_\beta(E)$ from our data, we should solve Eq. (1). This is not a trivial task because the response matrix $R(i, j)$ cannot be inverted due to the fact that it is quasisingular in the sense that two neighboring columns are very similar. However, there is a set of algorithms that has been developed to solve this kind of “ill posed” problem. In Ref. [18], there is a systematic study of three of these methods applied to the specific problem of the
TAgS data. Here we have used the expectation maximization algorithm [19] to obtain the \(I_\beta(E) \) by unfolding the experimental data. To calculate the response matrix \(R(i, j) \), which is needed by the algorithm, we have used the levels and branching ratios given in Ref. [15], and the GEANT4 simulation code. The analysis has been performed taking into account both the EC and \(\beta^+ \) components of the decay. A more detailed explanation of the procedure to calculate \(R(i, j) \) and to analyze the data will be given in a forthcoming article.

The best check one can perform to validate the result of the analysis is to recalculate the experimental spectrum by multiplying the response function of the detector \([R(i, j)] \) in Eq. (1) by the resulting beta intensity \(I_\beta \). If the analysis is properly done, this recalculated spectrum should be very similar to the real experimental spectrum. The upper part of Fig. 1 shows the experimental spectrum (shade without line) overlaid with the recalculated one (dashed line). The agreement between the two spectra is very good.

The \(I_\beta(E) \) is the experimental result of this work; however, the physical information is carried by the reduced transition probability \(B(GT) \), which can be extracted from the \(I_\beta(E) \) using the expression

\[
B(GT) = \frac{I_\beta(E)}{f(Q_{EC} - E)T_{1/2}} \times 6147\left(\frac{g_V}{g_A}\right)^2, \tag{2}
\]

where the \(B(GT) \) is averaged inside the 40 keV energy bin, and \(f(Q_{EC} - E) \) is the Fermi integral which carries the information on both the phase space available in the final state and the Coulomb interaction. For the calculation of the \(B(GT) \), we have used the \(Q_{EC} \) value from Refs. [20,21], the \(T_{1/2} \) from [15], and the tabulated Fermi integral from [22].

In the lower panel of Fig. 1, the resulting \(B(GT) \) distribution is presented. The analysis gives a total \(B(GT) \) of \(3.8(6)g_V^2/4\pi \) up to 5.6 MeV of which 57\% is located in the resonance between 4 and 5 MeV. This resonance is weakly visible in the almost structureless TAgS spectrum of the upper panel. Its large \(B(GT) \) value is a consequence of the strong dependence of the Fermi integral with the energy. At lower energy, the marked \(B(GT) \) to levels at 0.5, 1.0, and 2.1 MeV were already observed in [15], although the \(B(GT) \) values are in disagreement with our results due to the already mentioned Pandemonium effect. It should be noted that the \(\beta^- \)-delayed proton emission \((S_p = 3.5 \text{ MeV}) \) in this decay has been observed at excitation energies from 4.8 to 5.8 MeV [14,15]. However, the contribution of this component is very small, of the order of 2\% in \(B(GT) \), compared to the decay through the \(\beta^- \)-delayed \(\gamma \) rays studied here.

One way to compare the results with the theory is to accumulate in each energy bin the sum of the \(B(GT) \) measured up to that particular energy. Figure 2 shows this plot in which the experimental result is compared with the theoretical calculations of Ref. [12] for both pure prolate and oblate shapes for the ground state of \(^{76}\text{Sr} \). The generally accepted quenching factor of 0.6 has been applied to the calculations.

In Ref. [12], the authors first construct the quasiparticle basis self-consistently from a deformed Hartree-Fock (HF) calculation with density-dependent Skyrme forces

![FIG. 1. Upper panel: Experimental total absorption spectrum of the \(\beta \) decay of \(^{76}\text{Sr}\) overlaid with the recalculated spectrum after the analysis (see text). Lower panel: \(B(GT) \) distribution derived from the experimental data shown above. The shading represents the experimental uncertainty.](image1)

![FIG. 2 (color online). Accumulated \(B(GT) \) as a function of the excitation energy in the daughter nucleus. The experimental results from this work (squares) are compared with the theoretical calculations [12] assuming prolate (solid line) and oblate (dashed line) shapes for the \(^{76}\text{Sr} \) ground state. The shading indicates the experimental uncertainty.](image2)
and pairing correlations in the BCS framework. The minima in the total HF energy versus deformation parameter plot give the possible deformations of the ground state. For the case of 76Sr two minima are found, one prolate with $\beta_2 = 0.41$ and the other oblate with $\beta_2 = -0.13$. Finally, the quasi-random-phase approximation (QRPA) equations are solved with a separable residual interaction derived from the same Skyrme force used in the HF calculation. For the $B(GT)$ calculation, the same deformation is assumed for the ground state of the parent and for the levels populated in the daughter nucleus. Figure 2 shows the results using the residual interaction for the levels populated in the daughter nucleus.

The authors feel especially grateful to J.C. Caspar, J. Devin, G. Heitz, and C. Weber for all their invaluable work on the mechanical mounting of the spectrometer and the setup of the data acquisition system. This work has been partially supported by the IN2P3/CNRS (France), CICYT-MCYT (Spain), EPSRC (U.K.), the European Commission, and the DFG (Germany).