MIXING ANALYSIS OF NUTRIENTS, OXYGEN AND INORGANIC CARBON
IN THE CANARY ISLANDS REGION

*Instituto de Investigaciones Mariñas de Vigo (CSIC), Eduardo Cabello, 6, 36208 Vigo (SPAIN)
+Abteilung Meereschemie, Institut für Meereskunde an der Universität Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
§Instituto Canario de Ciencias Marinas, Aptdo 56, 35200 TELDE Gran Canaria (SPAIN)
¶Departamento de Química, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas, Spain

email: fiz@iim.csic.es
ABSTRACT

We show the distribution of nutrients, oxygen, total dissolved inorganic carbon (C_T) and total alkalinity (A_T) along three sections close to the Canary Islands, between 18°W and the African coast during the Meteor 37/2 cruise (January 1997). From thermohaline properties of North Atlantic Central Water, Mediterranean Water, Antarctic Intermediate Water (AAIW) and North Atlantic Deep Water- a mixing model has been established that is based on the water mass description. It can explain most of the variability found in the distribution of the chemical variables, including the carbon system, and it is validated through the use of conservative chemical variables like ‘NO’. From nutrients, oxygen, A_T and C_T, the chemical characterisation of the water masses was performed calculating the concentration of these variables in the previously defined end-members. The relative variation of nutrient concentrations, resulting from the regeneration of organic matter, was estimated. Close to the African shelf-break, a poleward undercurrent with an AAIW signal was observed only in the southern section (28.5°N). From the chemical and thermohaline properties of the end-members a comparison with data from other oceanic regions was made in respect to conservative chemical variables (‘NO’). In addition, from the residuals of the model, a north-south gradient in the ventilation pattern of water masses is observed.
INTRODUCTION

The Meteor 37/2 cruise was performed within a multidisciplinary European project. CANIGO (Canary Islands Azores Gibraltar Observations) is a multinational project funded by the European Union to investigate the circulation of watermasses in the subtropical eastern North Atlantic by field experiments and modelling and to determine the distribution and the fluxes of a diversity of parameters in this region. The area north of the Canary Islands and south of the latitude of Madeira Island in the upper layers is characterised by recirculating branches of the North Atlantic’s subtropical gyre that feed the Canary Current and that are influenced by upwelling events off the African coast (Stramma and Müller, 1989). The region encompasses the eastern boundary current system. The flow field, the water mass transports and the associated biogeochemical fluxes in the region are strongly influenced by both, the recirculation of the subtropical gyre that feeds the Canary Current and the seasonally varying trade wind field with its impact on the upwelling system and the eastern boundary current system off North West Africa.

The thermohaline properties of water masses involved in the water column in the Eastern North Atlantic had been extensively described in previous studies (Harvey, 1982; McCartney and Talley, 1982; Fiuza, 1984; Käse et al., 1986; Pollard and Pu, 1985, Ríos et al. 1992, Arhan et al.,1994). In the upper ocean of the Azores region, the two varieties of the Eastern North Atlantic Central Water (ENACW) (Harvey, 1982; McCartney and Talley, 1982; Ríos et al., 1992): ENACWt (Eastern North Atlantic Water of subtropical origin) and ENACWp (Eastern North Atlantic Water of subpolar origin) are involved at different isopycnal levels. At deeper levels, the characteristic salinity minimum of AAIW formed at the Subantarctic Front in the South Atlantic Ocean, was detected northward up to 20°N (Reid, 1994). The salinity minimum (S<35.4) detected by Ríos et al. (1992) at 24°N and 22°W can be ascribed to the influence of AAIW according to Willenbrink (1982). Further northward penetration of AAIW (Tsuchiya, 1989) up to 47°N in the western basin could be traced from the silicate maximum only, this, however, could also be due to biogeochemical processes in the water column.
Enhanced productivity and organic regeneration in the coastal upwelling off North Africa both play a part in creating the tropical nutrients and AOU maximum of the eastern North Atlantic (Kawase and Sarmiento, 1986) above the salinity minimum of AAIW. Below the ENACW, the penetration and influence of Mediterranean Water (MW) is prevalent down to 2000m in the North Atlantic (Reid, 1994). Below the MW, Käse et al. (1986) reported the influence of the colder Labrador Sea Water (LSW). The LSW reaches the African coast after a long excursion along a cyclonic gyre (33-47°N) and a substantial mixing with MW (Reid, 1994; Paillet et al., 1998). Below the LSW, the presence of North Atlantic Deep Water (NADW) is detected by the small variability and the linearity in the thermohaline structure and the high silicate content (Arhan et al. 1994, Castro et al. 1998). The strong vertical gradient in the silicate concentration is due to the downward increase of the influence from Antarctic Bottom Water compared to the NADW (Stoll et al. 1996). Harvey and Arhan (1988) and Rhein and Hinrichsen (1993) suggest the mixing of NADW and MW. Broecker and Takahashi (1980), Le Tourbillon group (1983) and Kawase and Sarmiento (1986) also point out the possibility of enhanced mixing by a salt finger mechanism.

Here we combined the thermohaline and chemical properties to study the chemical variability of these water masses in this region of the Subtropical Eastern North Atlantic, with specially emphasis on the ventilation and ageing pattern of the water masses. From the water masses variability followed from the thermohaline distribution, several mixing models can been used to quantify the variability of both nutrients and oxygen. One of the most widely used techniques is that of working along isopycnic layers assuming only the existence of lateral mixing (Takahashi et al., 1985; Kawase and Sarmiento, 1986). However, in areas of subduction or upwelling, the vertical advection excludes to allow for any restriction in the modelling of nutrients (Broenkow, 1965; Minas et al., 1982). Tomczak (1981) developed the analysis of sea water from mixing triangles without assumption of isopycnal mixing. This kind of analysis can only resolve mixing from three end members, considering that only salinity and temperature will be used as conservative variables, as has been recently shown for the North Atlantic (Pérez
et al. 1993; Castro et al. 1998; Pérez et al. 1998). Each of the three water end-member is defined by a single and fixed temperature and salinity, while a water mass is conventionally characterised by the mixing of only two end members, therefore showing a rather fixed TS relationship.

In general, dissolved oxygen and nutrient distributions do not behave in a conservative way, due to biological activity. However, it is possible to remove the effect of this processes by knowing the average chemical relations. Broecker (1974) brought forward the concept of ‘NO’ (‘NO’=RN·NO3+ O2), a conservative tracer which balances the effect of nutrient regeneration by the associated consumption of oxygen. The \(R_N = -\Delta O_2 : \Delta NO_3 \) factor he proposed was 9, but a set of different values has been proposed by others, varying between 9 and 10.5 (Redfield et al., 1963; Takahashi et al., 1985; Minster and Boulahdid, 1987; Ríos et al., 1989, Pérez et al. 1993). However, 9.33 was the value more frequently derived by different procedures and from various data sets (Minster and Boulahdid, 1987; Anderson 1995; Fraga et al. 1999) and is in agreement with the average chemical composition of phytoplankton (Fraga and Pérez, 1990; Laws, 1991).

The nutrient regeneration increases also the total inorganic carbon (\(C_T \)), and a similar conservative tracer thus can be defined (‘CO’) using the stoichiometric ratio \(R_C = -\Delta O_2 : \Delta C_T \) which varies in a range from 1.05 to 1.66 (Fraga et al. 1999).

Several multiparametrical models, assuming a conservative behaviour for nutrient, were used to resolve mixing of more than three end members (Mackas et al., 1987, Tomczak and Large, 1989). In multivariate analyses, where both, conservative (S, T, ‘NO’) and non conservative variables (nutrients, oxygen, \(C_T \) and \(A_T \)) are handled in the same way, it cannot be discerned which part of the nutrient content is due to remineralization or to ventilation processes. In this sense, any variability in the non-conservative tracer could led to an incorrect definition of new water masses in areas of very intense biological activity. Alternatively, if the profile of water masses is completely well defined by the thermohaline variability, it is possible to define a mixing model that is based on a set of vertically ordered mixing triangles. This mixing model then can be tested with other conservative tracer as ‘NO’. Using the observed
non-conservative chemical variables, this model allows the chemical characterisation of the water masses involved and the description of the ventilation and remineralization patterns (Pérez et al. 1993, Castro et al. 1998, Pérez et al. 1998).

In this work, a mixing model was developed based on different watermasses and their temperature and salinity distribution. The model explains most of chemical variability (nutrient, oxygen, alkalinity and \(C_T \)) of the water masses. This was tested by application of the conservative chemical tracers. The model residuals allow us to describe the ventilation/ageing pattern of the water masses in the study area. The chemical characterisation, including the carbon system, of the water masses will be done and an extensive comparison with other chemical characterisation of the same water masses made previously in the European basin of the North Atlantic will be shown. Special emphasis will be paid in the spreading of AAIW, in order to quantify and clarify the actual importance of the AAIW in the basin.

MATERIAL AND METHODS

During F.S. METEOR cruise 37, leg 2a (January 7 to 20,1997), a hydrographic box (CANIGO box) was sampled north-west of the African coast. The box basically consists of three CTD/rosette sections: the first ran almost zonally from the African coast to a position north of La Palma Island at 29°10'N, 18°00'W, the second went meridionally towards Madeira Island until 32°15'N, the third then zonally towards the shelf until the 100m bottom line was reached(Fig 1). A total of 26 biogeochemical stations were completed on these three sections. On the third of these sections a Meddy was detected by CTD measurements at station 63 (32°15'N, 12°10.1'W). Each station consisted of a bottom deep CTD/rosette cast with discrete sampling for dissolved oxygen, nutrients, chlorophyll, pH and several samples for the alkalinity and \(C_T \) at selected depths: 10, 25, 50, 75, 100, 125, 300, 1000, 1250, 1500 meters depth, and 20 meters above the seafloor.

A Neil Brown MKIIIIB CTD was used to obtain continuous profiles of temperature and salinity. The CTD’s pressure and temperature sensors were calibrated in the laboratory against WOCE standards (better 2 mK, 3 dbar at 6000 dbar). The conductivity sensor was calibrated by
comparison with the in-situ conductivity of bottle samples taken during the upward profile with the rosette. CTD data processing and removal of typical non-linear effects in sensor responses was performed following Müller et al. (1995). The salinity samples were analysed with a Guideline AUTOSAL salinometer with a accuracy better than 0.002 for single samples.

Dissolved oxygen was measured using an automated potentiometric modification of the original Winkler method following WOCE standards (WOCE, 1994). The standard error for five replicates was less than 2 µmol·kg⁻¹ (Llinás et al., 1997). The Apparent Oxygen Utilisation (AOU) defined as the deficit of oxygen concentration relative to the atmospheric saturation (UNESCO, 1986) is used to describe the oxygen distribution. Samples for nutrient analysis were frozen at -20°C and then analysed at the ICCM also following WOCE standards (WOCE, 1994). Nutrients were determined by colorimetric methods, using a Technicon AutoAnalyzer AAII. For silicates, a modified Hansen and Grasshoff (1983) method was used, in which ß-silicomolybdenic acid is reduced with ascorbic acid. Nitrate was determined after reduction to nitrite in a Cd-Cu column. The standard deviation for duplicates was 0.07µmol·kg⁻¹ for silicate, 0.06 µmol·kg⁻¹ for nitrate and 0.01 µmol·kg⁻¹ for phosphate. This is equivalent to 0.3%, 0.5% and 0.8% at full scale, respectively.

A coulometric titration technique was used for determining C_T (SOMMA-system, Johnson et al., 1993; DOE, 1994). The coulometric system was calibrated with pure CO₂ and tested by running different batches of Certified Reference Material (CRM, provided by A. Dickson, SIO, La Jolla, CA, U.S.A.). The precision (between-bottle reproducibility) as judged from regular measurements of duplicate samples was 0.5 µmol·kg⁻¹. Accuracy of the data has been estimated to be about 1.5 µmol·kg⁻¹.

A Ross Orion 81-04 electrode (Orion Research Inc., Boston, Massachusetts, USA) calibrated with 7.413 NBS buffer, was used to determine pH (NBS-scale). The temperature was measured by a Pt-100 probe. All pH values refer to 15°C to avoid the temperature effect of pH (Pérez and Fraga, 1987a). The same CRMs used for C_T determinations were also used to monitor pH measurements. Parallel measurements of pH_{SWS} at 25°C yielded very good
agreement with an average deviation of (0.002±0.007) and a high correlation ($r^2=0.99$). All pH data was transformed into the SWS scale (pH_{SW}).

The determination of alkalinity by closed cell titration was performed with two separate potentiometric systems in parallel. The titration systems consist of two titrator type Titrino 702SM and 719S (Metrohm, Herisau, Switzerland), respectively: The electrodes used were a Ross glass pH electrode and a double junction silver/silver chloride reference electrode (Orion Research Inc., Boston, Massachusetts, USA). The acid in a water-jacketed burette and the seawater sample in a water-jacketed cell were maintained at 25±0.1°C using a constant temperature bath. The titration was performed by stepwise adding HCl to the seawater past the carbonic acid end point. A full titration takes about 20 minutes. The HCl solution (25 L, 0.25 M) was made up from concentrated analytical grade HCl (Merck, Darmstadt, Germany) in 0.45 M NaCl, in order to yield an ionic strength similar to open ocean seawater. The acid was standardized by titrating weighed amounts of Na$_2$CO$_3$ dissolved in 0.7 M NaCl solutions. The acid factor was also determined by coulometry with an agreement of ±0.0001M. The precision is better than 0.4 μmol.kg$^{-1}$. The performance has been checked by titrating different batches of CRMs (#32, #34, #35). An adjustment of the acid factor from 0.2504 M to 0.2505 M gave a better agreement with the certified values and was used in the computation of AT.

RESULTS AND DISCUSSION

Distribution of nutrients and water masses.

A composite section, instead of three separate sections, here is used to resume the thermohaline and chemical distribution in the three sampled transects (Fig. 2). The African coast therefore is at both ends of the plot, and the 18ºW section is then situated at about the centre. The depth axis was modified in order to better resolved the upper 2000m. The upper salinity minimum centred at about 750m depth is the lower end of the ENACW, which is characterised by a steady and strong gradient in salinity and temperature in the main thermocline. The isohaline of 35.66 defines the limit that separates the saline ENACWt from the fresher
ENACWp (Harvey, 1982; Pollard et Pu, 1985). This isohaline follows very closely the 12°C isotherm. So the ENACWt layer extends from the bottom of the surface layer down to 500m. Below it, down to the salinity minimum of ENACW, there is a relatively narrow ENACWp layer. The minimum of salinity is lower than 35.4 in the south-east corner, between Lanzarote and the African shelf, tracing the northward advection of AAIW (Willenbrink, 1982) as a poleward undercurrent of the Canary current but this cannot be traced with salinity further north than 32°N. The MW identified from the salinity maximum from 1100m to 1200m is most pronounced in the Meddy ‘Jani’ observed on the 32°N section. Outside this Meddy, the salinity maximum generally decreases towards south and west. The Meddy is also discerned by its temperature maximum at 1200m within a rather steady vertical gradient. Below the MW a continuous decrease of salinity and temperature denotes the presence of LSW and NADW. In the northern section, the salinity and temperature are slightly higher than at the southern section, probably related to the influence of MW (Arhan and King, 1995).

To remove the saline effect over A_T and C_T, normalised A_T ($NA_T = A_T/S·35$) and normalised C_T ($NC_T = C_T/S·35$) are shown. A steeper vertical gradient of NA_T was observed below the main thermocline in all sections and slightly higher values were found in the southern section. The silicate distribution showed also a pattern similar to that of NA_T (correlation between both variables is $r^2=0.96$ with $n=403$ and a NA_T/SiO_2 ratio of 1.88 ± 0.02). Furthermore we can observe a minimum of silicate and NA_T at the salinity maximum of MW. Between Lanzarote and the African coast close to the bottom, there is also a relative maximum of silicate associated to the AAIW signal.

On the other hand, NC_T, NO_3 and AOU distributions, affected by the regeneration of organic matter, show similar patterns and present high correlation ($r^2>0.77$) among each other (Fig. 2). NC_T distribution is also affected by redissolution of CaCO$_3$. Phosphate distribution (not shown) is very similar to that of nitrate, with a high correlation between the two ($r^2= 0.98$, $N:P=15.4 \pm 0.1$ $n=472$). The domain of NACW is characterised by an increasing gradient of NC_T, NO_3 and AOU from the surface down to 800m. The degree of ventilation of this water mass as
deducted from the AOU distribution, does not show significant differences in the upper
thermocline. Below, the signal of the Meddy is clearly discerned by its moderate AOU values, a
product of its low oxygen content and its warm temperature. However, the low nitrate levels and
high pH$_{SWS}$ of the Meddy suggest a relative low age. In the southeast, the influence of AAIW is
manifested by its low AOU and pH$_{SWS}$ values, and by an absolute nitrate maximum of 27
µmol·kg$^{-1}$ at stn. 35, close to the shelf break. Below the MW core and the poleward intrusion of
AAIW, there is a relatively homogenous layer of nutrients, pH$_{SWS}$ and AOU in relation to the
layer immediately above. Below, the influence of LSW was only apparent in the north-western
part of the box by the AOU minimum (AOU <80 µmol·kg$^{-1}$) around 1800m. Finally, deep
waters presented high nutrient values, and consequently low AOU and pH$_{SWS}$, in the southern
section more pronounced than in the northern one.

Mixing Model

Following the water masses description given above, we define a set of end members in
order to describe the thermohaline variability due to mixing. It is not necessary to assume either
isopycnal or diapycnal mixing. Fig. 3 shows a θ-S diagram with the whole set of samples. The
high correlation between θ and S below 2.50$^\circ$C yielded a linear relationship for NADW of
θ=(11.1±0.2)\cdotS–(385.0±0.2) with $r^2=0.987$, which is similar to earlier observations (Saunders,
1986; Castro et al. 1998). So we chose the lowest θ-S pairs for the lower end-member of
NADW (NADWl). For the upper limit of NADW (NADWu) we have used the same point θ-S
as suggested by Castro et al. (1998) based on the lower limit of MW influence (Harvey, 1982).
Regarding the LSW end-member we have adopted the one given by Talley and McCartney
(1982) when the LSW crosses the Mid Atlantic Ridge (3.40$^\circ$C and 34.89). We have selected the
thermohaline characteristics of MW (11.74$^\circ$C and 36.5) from Wüst and Defant (1936) near Cape
St. Vicente (Rhein and Hinrichsen, 1993). Finally, taking into account that ENACW is
composed of two different sets of mode waters, the typical line defining ENACW (Sverdrup et
al., 1942) has been divided in two segments corresponding to these two varieties; subtropical
(ENACWt) and subpolar (ENACWp) mode water (Harvey, 1982; McCartney and Talley, 1982; Rios et al. 1992). We keep the same acronyms for the shallow and deep end members of ENACWt and ENACWp, respectively. The area studied during the Meteor 37/2 cruise is close to the region of formation of the Madeira Mode Water (Siedler et al., 1987). According to these authors, this water mass corresponds to the mode water with the highest volumetric census in the Eastern Subtropical Atlantic, and consequently we have considered its \(\theta \)-S properties for the ENACWt end member (18.5\(^\circ\)C, 36.675). On the other hand, we have chosen 12.2\(^\circ\)C and 35.66 as the lower limit of ENACWt and, consequently, the upper limit of ENACWp following Harvey (1982). Thus, the latter \(\theta \)-S pair, represented by H (Fig.3), has been selected to separate ENACWt from ENACWp. The ENACWp end member has a temperature of 8.56\(^\circ\)C and salinity of 35.23, so establishing the triangle of mixing between ENACWp and MW without LSW contribution (Fig. 3), since the mixing with LSW occurs below the salinity maximum of MW. The mixing below the core of MW is quantified from the triangle ENACWp, MW and LSW. Thus the ENACWp-MW line joins the MW maximum in each profile.

South of 31\(^\circ\)N (stn. 35), the AAIW influence is evident, at least for salinities below 35.5. In order to evaluate the influence of AAIW in this region, the ENACWp point is replaced by the AA end member (Fig. 3), whose thermohaline characteristics (6.5\(^\circ\)C and 34.9) have been defined by Fraga et al. (1985) off Cape Blanc (~20\(^\circ\)N) and are similar to those measured by Tsuchiya et al. (1992) at 20\(^\circ\)N and 20\(^\circ\)W. The term AAIW must only be used for the water mass of 4\(^\circ\)C and salinity 34.2 formed in the sub-Antarctic front at about 45\(^\circ\)S (Reid, 1994).

Taking into account that the distributions of thermohaline and chemical parameters are strongly influenced by the spreading of MW and the influence of AAIW in the studied area, we employ this triangular mixing approach to estimate the contribution from each source. The triangles are established in a way, that one side of the triangle corresponds to a layer of mixing between maximum and minimum of salinity and, consequently, samples above this layer do not mix with samples below it and belong to another triangle. The two upper triangles represent the mixing of ENACWp with MW below the first salinity minimum. Samples outside the triangles
belong to the surface layer and are excluded from the analysis because their thermohaline properties are altered by atmospheric conditions and do not follow a conservative behaviour.

The contribution of the water masses considered \((M_{k,i})\) to a given sample “i” can be calculated solving the following determined system of three linear equations:

\[
\begin{align*}
1 &= \sum M_{k,i} \\
S_i &= \sum M_{k,i} \cdot S_k \\
\theta_i &= \sum M_{k,i} \cdot \theta_k
\end{align*}
\]

where \(k\) is the water mass (ENACWt, H, ENACWp, MW, AA, LSW, NADWu, NADWl) and ‘i’ is the sample number (from 1 to 408). \(S_k\) and \(\theta_k\) are the thermohaline characteristics of the \(k\)-water mass endmember. As every sample is comprised within the limits of an unique triangle, \(M_{k,i}\) must be set to zero for the other four water masses. Once \(M_{k,i}\) has been calculated for the 408 samples, the expected concentration of any chemical variable for the six end-members in the study area \((C_k)\) was obtained solving the corresponding 408 equations by a least-squares approach (Castro et al. 1998; Pérez et al., 1998):

\[
C_i = \sum M_{k,i} \cdot C_k
\]

As any multilinear fitting, this procedure also provides the theoretical values of the variable \(C_k\) and the residual or anomaly for every sample.

Validation by conservative tracers

In order to support the proposed mixing model, we have applied the equation system (2) to two conservative tracers. Following Broecker (1974), we have used the tracer ‘NO’ with an \(R_N\) of 9.33 (Anderson, 1995; Fraga et al. 1999) to eliminate the effect of remineralization of organic matter (ROM) on the nitrate and oxygen variability. The mixing model explains \(98.6\%\) of ‘NO’ variability (Table 1). The standard deviation of ‘NO’ residuals \((9 \text{ µmol·kg}^{-1})\) is half of the one expected from the combination of the residuals of nitrate and oxygen \((1.2 \cdot 9.33 + 7.2 = 18.4 \text{ µmol·kg}^{-1})\). Ríos et al. (1998) introduced a new combined chemical tracer
‘NCO’ which improves the conservative behaviour of ‘NO’. In nutrient-depleted waters or in damaged phytoplankton cells, the synthesis of organic matter does not always follow the stoichiometric ratio of average phytoplankton composition, due to the synthesis of an excess of carbohydrates (Cullen et al., 1985; Villareal et al., 1999). Ríos et al. (1998) combined the synthesis of carbohydrates and the typical composition of phytoplankton to define:

\[‘NCO’ = O_2 + CO_2 + NO_3 - RN \cdot (1 - 1/RC) = ‘NO’ + (CO_2 - NO_3 \cdot RN/RC) \]

The second summand of the last term accounts for the synthesis or mineralization of the carbohydrate excess over the typical organic matter synthesis of phytoplankton (Fraga et Pérez, 1990; Laws, 1991, Ríos et al. 1998). RN of 9.33 and RC of 1.41 are the stoichiometric ratios of this average synthesis. The mixing model explains 99.1% of ‘NCO’ variability which is higher than that of ‘NO’ (Table 1 and Fig. 4a). The standard deviation of ‘NCO’ residuals (5.6 µmol·kg⁻¹) is three times lower than the one expected from the combination of the residuals of ‘NO’, nitrate and CO₂ (Table 1). The distribution of ‘NCO’ residuals (Fig. 4b) is very patchy and does not present clear relation with the distribution of ‘NCO’ or any other biogeochemical variable. So, the high variability of ‘NO’ and ‘NCO’ predicted by the mixing model supports the quality of the model.

In contrary to ‘NO’, nitrate, oxygen and CT in subsurface waters are affected by ROM. Therefore, they do not completely behave as conservative variables. However, in this sense, we shall nevertheless apply the model to these variables, assuming a conservative behaviour (Pérez et al., 1993; Castro et al. 1998; Pérez et al. 1998). Thus, we should expect a less percentage of explained variance for these chemical properties due to ROM. The studied area is not very large as to expect important changes in the ROM patterns. As ROM covaries vertically with the gradient of the thermohaline properties, part of the NO₃, CT and AT, SiO₂ and O₂ variability caused by the ROM will be included by the mixing model in the nutrient concentrations of the end-members. The mixing model splits their variability in two parts, one is included in the nutrient concentrations predicted by the model derived end members and the other part is
included in the residuals and mainly related to the ROM produced in the studied area. This partition depends on the average residence time of the water masses in the study area. As the residuals vary independently from θ and S, their distributions can be related with the variability of the ROM within the area; this will be commented on the next section.

Output of mixing model: Chemical characterisation of the water masses

In table 1 we show the nutrient end-members obtained after applying the mixing model. The variance explained by the application of the model for the distribution of nitrate, silicate, C_T and A_T is greater than 96.7%, while the variance explained for oxygen is slightly lower (93%). This difference in the proportion of not-explained variability is related to the magnitude of the total natural variance of each chemical tracer. The range of variation in the oxygen end-members is lower than the one of nitrate, if the stoichiometric ratios ($\Delta P: \Delta N: \Delta C: \Delta O_2 \equiv 1:16:106:149$) of ROM are taken into account (Anderson, 1995; Fraga et al., 1998). The ratios of variance not explained by the model are $\Delta P: \Delta N: \Delta C: \Delta O_2 \equiv 1:14:79:83$ (Table 1), being of the same order than the stoichiometric ratios. In addition, the combined variables ‘NO’ and ‘NCO’ defined in order to remove the effects of ROM, are much better fitted than O_2 and nutrients. Silicate is less affected by redissolution than the other nutrients and presents a slightly better fit. The model defines very well the alkalinity end-members and its natural variability. Errors of both alkalinity end-members and residuals are close to the analytical errors.

The nutrient end-members obtained summarise the chemical variability of the water masses. The AOU end-members show low values (young waters) only in the upper ocean. The subtropical region is far from the outcropping region of most water masses involved in the sampled area. Deep waters, including LSW, show similar AOU values and rather similar nutrients concentrations and pH_{SWS}. The AA end-member is the oldest, probably due the influence of AAIW, which takes a long time to travel from its formation area and passes upwelling areas with strong biological activity. Although its nitrate, phosphate and AOU levels are very high, its silicate content is not as high compared to the one observed in the equatorial
region (about 30-35 µmol.kg⁻¹). When the AAIW cross the North Equatorial Current, it suffers a strong dilution with the waters present north of the subtropical gyre, mainly, ENACW and MW. With similar temperature, the upper limit of the subpolar ENACW (H) and the MW present similar levels of AOU, pH_SWS and nutrients, though they are probably younger than the AA and ENACWp end-members. The high nutrient content (low pH_SWS) in AA contrasts with that of ENACWp for similar temperatures revealing their different hemispheric origin.

Remineralisation of organic matter and distributions of residuals.

The distribution of residuals (measured minus modelled values) shows a defined, non-randomised behaviour and a similarity between nutrients, pH_SWS, oxygen and C_T (Fig. 4). Once the variability caused by mixing is removed through the mixing model, the residual variability can be mainly ascribed to either ROM or dissolution of hard parts of biogenic matter. ROM affects mainly oxygen, pH_SWS, nitrate and C_T, and redissolution increases silicate, C_T and A_T. White areas in Fig. 4c-4i, indicate regions where both processes increase the levels of nitrate, silicate, AOU, NC_T, NA_T and decrease pH_SWS, while shaded areas are related to recent advection of seawater from different origin into the area. The spatial distribution of white and shaded areas is rather coincident in the whole set of residual maps. Phosphate anomalies (not shown) present a rather similar pattern. The correlation between phosphate and nitrate residuals is $r^2=0.49$ with a N:P ratio of 13.8±0.7. The AOU and nitrate residuals also show a significant correlation ($r^2=0.41$) with a R_N of 6.1±0.3 which is somewhat lower than expected from ROM. The AOU and C_T residuals present a better correlation ($r^2=0.48$), with R_C of 1.1±0.06 which is also lower than expected by ROM (Takahashi et al., 1985, Minster and Boulahdid, 1987; Anderson, 1995, Rios et al., 1998). The small extension of the study area, and the good fit of the model yields low variances of the residuals and therefore, no high correlation between them should be expected. The analytical error is also included in the residual distribution thus reducing the correlation and estimated ratios. The best correlation between residuals was obtained between pH_SWS and AOU ($r^2=0.66$) with a ratio ΔAOU:ΔPH_SWS of 729±26. If the
oxygen data are included to calculate the pH\textsubscript{SWS} values, the correlation between real and modelled data rise from $r^2=0.989$ to 0.995 decreasing the standard deviation of residuals from 0.0099 to 0.0061, slightly higher than the expected analytical error (0.004).

Spencer (1975) reported ratios of ΔSi/ΔN between 0.5 to 1.2, which implies a ratio $R_{Si} (=\Delta O_2/\Delta Si)$ from 9 to 20. We found here low and significant covariation between silicate and oxygen residuals ($r^2=0.14$, n=403) with R_{Si} of 10±3, similar to the one calculate previously in the Eastern North Atlantic (Pérez et al. 1993; Castro et al., 1998, Pérez et al., 1998). However, in deep waters (depth>1500) the correlation is higher ($r^2=0.49$, n=150) with R_{Si} of 2.7±0.1, in agreement with that estimated by Castro et al. (1998) in deep waters between 39º and 48ºN.

The similarity between the ratios calculated here and those reported in the literature supports the idea that the residuals of the mixing model are mainly due to ROM or redissolution of hard structures, which are strongly dependent on the residence time of the watermasses in the area. Taking into account that the geographical distributions of the anomalies (Fig. 4) of the different variables show a very similar behaviour, the results of nutrients and oxygen anomaly can be described in terms of ageing or ventilation. Generally, the northern section shows clearly lower nutrients, C_T, A_T and AOU (higher pH\textsubscript{SWS}) than the southern one with the 18ºW meridional section as a transition between the two zonal sections. The north-north-east to south-south-west advection of water masses in practically all levels (Reid, 1994; Paillet and Mercier, 1997) introduces relatively younger water from the north and the effect of the high productivity upwelling area close to the African coast could contribute to the increase of nutrients in the southern section. The poleward intrusion of waters with AAIW characteristics between the island of Lanzarote and the African coast (stns. 33 and 35) creates a maximum of ROM (negative pH\textsubscript{SWS} and positive C_T, AOU and nitrate anomalies) between 500m and the salinity minimum at 800m depth. Below, there exists a bottom layer with relatively low ROM. Also, the deep Meddy seems to introduce a mesoscale structure in the ROM pattern.

Comparison with data outside the study area.
A similar mixing analysis has been made in other areas of the Eastern North Atlantic Basin. Pérez et al. (1993), used data from several cruises between 40 to 47°N and 8 to 11°W and provided the chemical characterisation of the water masses close to the Iberian Peninsula from 100 to 2500m depth and made a comparison with data from other areas of the North Atlantic using chemical conservative tracers. Castro et al. (1998) used data from the Vivaldi cruise (39-48°N and 9 to 24°W) to resolve the chemical characterisation of the same water masses as in the present study and validate their results using the data from TTO. Data from two sections along 22°W and 41°N resulting from the ANA cruise (Ríos et al. 1992) allowed to fit the chemical variability of the water masses in the upper 1100m (Pérez et al., 1998) including the influence of AAIW and resulted in a good comparability with data from TTO and from the area of the Mauritania upwelling. Taking into account data from several cruises in the European Basin from 31 to 53°N, van Aken (1999a) has recently made the chemical characterisation of water masses using isopycnal analysis. The chemical characterisation from the latter work is included in the Table 2, together with the results obtained here.

a) Central Waters

The ENACW is composed from several source water (subtropical and subpolar) and is affected by the northward spreading of AAIW. In addition, the salinity maximum of ENACW varies latitudinally, thus introducing different ENACW end-members. To study the agreement between different data bases, Fig. 5 shows the main covariation between conservative and non-conservative variables. The spatial variability in the ventilation of ENACW results in different values for the non-conservative chemical tracer for a given end-member. However, this behaviour is constrained by the ratios of variability of the ROM. The nitrate and phosphate values of ENACW end-members present a very high correlation ($r^2=0.995$, NO$_3=15.15\cdot$PO$_4 +1.25$). Also the C$_T$/A$_T$ ratio (=Xca), which has a very strong relation with pH$_{SWS}$, shows a high linear correlation (Fig. 5a). Although the recycling of silicate and nitrate follows different pathways, the values of the end-members show a very high non-linear correlation, which reveals increase of SiO$_2$:NO$_3$ ratio with depth due to the increase of redissolution of opal skeletons and
decrease of ROM. Also, the AOU and nitrate end-member values showed high correlation \((r^2=0.94)\), resulting in a very linear behaviour of the conservative tracer ‘NO’ (Fig 5b) and ‘PO’. A simple and conservative chemical variable, \(C_{T*}\), could be defined from \(C_T\) in similar way as ‘NO’, if the \(C_T\) values are corrected for ROM using AOU and \(R_C=1.41\),

\[
C_{T*} = N_{CT} + \frac{\text{AOU}}{R_C}
\]

The \(C_{T*}\) values for the end-members of ENACW show a very good correlation with temperature and are also in agreement for the different data bases. However, the \(C_T\) value for the AA end-member observed during the ANA cruise gave lower values for \(X_{ca}\) and \(C_{T*}\) compared to those observed here. The ANA cruise went south of 20ºN, where the influence of AAIW is higher. Given the anthropogenic influence on \(C_T\), \(X_{ca}\) and \(C_{T*}\), the \(C_T\) of AA is lower by about 10 to 20 \(\mu\)mol.kg\(^{-1}\) compared to ENACW (Pérez et al. 1998).

b) How is the actual advection of AAIW along the eastern boundary?

Assuming a conservative behaviour of silicate, Tsuchiya (1989) extended the intrusion of AAIW beyond 45ºN. The physical and chemical characteristics of the AAIW end-member used by van Aken (1999a) are very similar to those of the ENACWp end-member proposed in this work and previous works for the European basin (Willenbrink, 1982; Harvey, 1982; McCartney and Talley; 1982; Arhan et al. 1994; Castro et al. 1998). van Aken (1999a) considered that the salinity minimum of ENACWp indicates the presence of AAIW. However, several authors (Harvey, 1982; McCartney and Talley; 1982; Arhan et al. 1994) described the formation of subpolar mode water in the European Basin with salinities from 35.40 to 35.66 and its southward spreading from 43-48ºN to the subtropical gyre. Käse et al. (1986) described the spreading of this subpolar mode water throughout in the Canary basin. This spreading was also described by Paillet and Mercier (1997) using an inverse model. The potential vorticity, a tracer of water masses, shows also a continuum in the spreading of the minimum associated to the subpolar mode water from 44 to 25ºN (Paillet and Mercier, 1997). On the other hand, ROM caused by the North African upwelling could create an increase of nutrients, AOU and \(C_T\) and thus exaggerate the real influence of AAIW northward of 24ºN (Willenbrink, 1982) if it is traced
using chemical data (Tsuchiya, 1989). In the upwelling area, from the depth of ENACW to the bottom, Reid (1994) described a maximum of AOU at 24ºN and its northward spreading making up a steep north-south gradient of AOU and nutrients north of the Canary Islands, similar to the one described here. The most striking feature showed by Reid (1994) at $\sigma_{1000}=32$ is a strong silicate increase along the NW coast of Africa, suggesting the strong effect of the productive upwelling water on the biogeochemical behaviour of deep waters. Enhanced productivity and consequently ROM in the coastal upwelling off North Africa both play a significant part in creating the tropical oxygen minimum in the eastern North Atlantic (Kawase and Sarmiento, 1986). The oxygen minimum must be also physically isolated from direct ventilation with the atmosphere (Doney and Bullister, 1992). So, these combined biogeochemical processes and its north-south gradient could tend to an incorrect description of the presence of AAIW at latitudes north of 24ºN.

The use of conservative chemical tracers can give information about the real water masses contribution in the layer between 500 to 1000m. The ‘NO’ and C_T^* values of AAIW (3.9ºC and salinity of 34.2) in its formation area at the SAF (Sub Antarctic Front) are 518 and 2165 µmol·kg$^{-1}$ (Le Groupe CITHER-3, 1998). During spreading northward, when reaching 10ºS, AAIW has partially mixed with South Atlantic Central Water and NADWu thus increasing salinity and temperature (34.5 and 4.67ºC) and decreasing ‘NO’ and C_T^* values (472 and 2135 µmol.kg$^{-1}$). At this latitude the nutrients reach maximum values (Reid, 1994) due to ROM. Nitrate and silicate concentrations rise to 35.6 and 32.9 µmol·kg$^{-1}$, respectively (Le Groupe CITHER-3, 1998). At 10ºN, the minimum of salinity, that is a typical indicator for the spreading of AAIW, is higher than 34.9, and its ‘NO’ and C_T^* values decrease to 459 and 2095 µmol·kg$^{-1}$, respectively. Data from the ATLOR cruise, at 20ºN close to the African coast, yielded ‘NO’ values of 420 µmol·kg$^{-1}$ for AAIW with 6.5ºC (Manriquez and Fraga, 1974). The chemical characterisation of the end-member AA by using data from ANA cruise (24-28ºN and 22ºW) yielded similar results for ‘NO’ (429 µmol.kg$^{-1}$) and C_T^* (2088 µmol.kg$^{-1}$). The presence of AAIW decreases, from 100 % in the SAF, to 75% at 20ºS and to 45% at 24ºN, if linear
mixing is assumed with a northern component of thermohaline (9.4°C and salinity of 35.3) and chemical (371 and 2089 µmol.kg⁻¹ for ‘NO’ and Cr*, respectively) characteristics similar to the subpolar mode water described by Pérez et al. (1993) and van Aken (1999a) north of 40°N. During the MET37/2 cruise the minimum in salinity caused by the influence of AAIW was about 35.3 (resolved by the mixing model as 69% of AA and 29% of MW). The ‘NO’ of the AA end-member is 396 µmol.kg⁻¹, the content of 17% of pure AAIW. So the maximum percentage of AAIW was about 11% in the poleward undercurrent between Lanzarote and the African Coast. From thermohaline data, several authors had previously reported (Willenbrink, 1982; Käse et al., 1986; Reid, 1994), that AAIW is quickly diluted with ENACWp north of 20°N. So, the increase of nutrients and AOU along the African Coast is due to the remineralization processes linked to the upwelling system (Kawase and Sarmiento, 1986; Reid, 1994; Doney and Bullister, 1992). In addition, the chemical characterisation proposed by van Aken (1999a) for AAIW corresponds closely to the one for ENACWp associated with a salinity minimum located above the MW in the European Basin. (Pérez et al., 1993; Pérez et al., 1998, Castro et al. 1998).

In the Canary Basin at 34°N, Käse et al. (1986) also ascribed the salinity minimum and O₂ maximum above MW to ENACWp.

Östlung and Rooth (1990) noted a decrease with time of the northward spreading of AAIW between 20° and 30°N and the southward penetration of LSW between 40° and 30°N when they compared the radiocarbon distribution from GEOSECS and TTO data. Recently Lavin et al. (1998) have calculated the meridional transport and heat flux using three set of hydrographic data from October 1957, August 1981 and July 1992 along 24.5°N. Their results show a progressive decrease of northward transport of AAIW from 1957 to 1992. The transport of water with temperatures between 6 and 9°C was 3.2 Sv in 1957, 2.1 Sv in 1981 and only 0.6 Sv in 1992, even showing a reversed evolution of transport at the 7°C level. These authors showed also a parallel decrease of southward transport of LSW along 24.5°N. All these independent calculations and measurements agree towards a progressive decrease of the northward spreading AAIW during the last decades and may explain the contradiction in the physical and chemical characterisation of AAIW as observed by Tchusiya (1989) using
GEOSECS data, and the other recent descriptions (Willenbrink, 1982; Käse et al., 1986; Pérez et al., 1993; Pérez et al., 1998, Castro et al. 1998).

c) Deep waters

The agreement among cruises for the chemical characterisation of MW is fairly good, especially using conservative tracers as ‘NO’, ‘PO’ and C_T*. However, the C_T* value obtained from MET37/2 is rather high, about 0.6%, relative to the other three cruises. A part of this difference could be due to the anthropogenic CO₂ input. AOU and nutrient values of the MW end-members suggest a higher ventilation of MW during the MET37/2 than during the IBERIA and ANA cruises. On the other hand, MW in the VIVALDI cruise showed lower ventilation with high AOU and nutrients compare to the other cruises. The biogeochemical relations are quite consistent. Silicate concentrations in the MW end-members show lower values when sampled near the Gibraltar Strait (van Aken, 1999a) and/or within a strong Meddy (MET37/2). The A_T values for MW are coherent (2413±3 µmol·kg⁻¹).

At 25°N, Doney and Bullister (1992) had dated the age of a Meddy (about 12 to 20 years) during the Oceanus 202 cruise using CFC analysis. These authors also found that the CFC values are lower in the salinity maximum of MW and higher in the salinity minimum above it. From 5° to 20°N, Doney and Bullister (1992) reported CFC concentrations in the AAIW (S<35) at or below the blank levels. So, the seawater above the MW must have been recently ventilated and therefore is ENACWp and not AAIW.

The same coherence in the chemical characterisation of LSW was found, however with the opposite spatial variation of ventilation than for MW. The conservative tracers ‘NO’, ‘PO’ and C_T* show good agreement. Probably, the slightly high ‘NO’ value calculated for MET37/2 can be ascribed to a higher influence of Southern Atlantic waters. The AOU and nutrients are high in the MET37/2 area due to a lower ventilation of LSW in this region compared to results from areas located northwards (VIVALDI and Iceland Basin). Only a small amount of LSW arrives at the African coast after a long way in a cyclonic eddy (33°-43°N) and also affected by
lateral mixing with the core of MW (Reid, 1994). At the depth level of LSW (1800m), MW spreads southwards to the Canary Islands, generating a north-south gradient of AOU and nutrients. In the Canary Basin, Käse et al. (1986) described a MW tongue separating ENACWp and LSW (NW) from AAIW (SE).

The chemical characterisation of both NADW end-members is fairly good. ‘NO’, ‘PO’ and C\textsubscript{1*} obtained from the MET37/2 and the IBERIA cruises are very similar, this is also true for AOU and nutrients. The characterisation derived from the VIVALDI data set is very similar to that given by van Aken (1999b) using data from a cruise in the Iceland Basin. However, between both pairs of data sets there are small differences, in the way that the AOU and nutrients of the NADW\textsubscript{u} sampled in the MET37/2 cruise are higher than those sampled north of 42ºN. Southwards, Reid (1994) showed a pronounced change of nutrients between the Canary Islands and the Gibraltar Strait, related to the downward intrusion of MW. This spatial variability in NADW practically disappears at the NADW\textsubscript{l} level. Its chemical characterisation is in agreement for all variables and for all cruises, except for the low (by 5%) silicate values measured during MET37/2. A deep silica tongue along 24ºN, with a maximum close to the African coast, and a steep northward decreasing gradient introduces variability in the silicate distribution between the levels of the 2º to 3ºC isotherms in the Canary Basin (Speer, 1993; Reid, 1994).

Normalised alkalinity shows a very close relation to silicate (Ríos et al., 1995). The direct correlation of these two from all end-members (shown in table 2) gives a high correlation (NTA= 2289±2 +1.5±0.1*SiO\textsubscript{2}, r2=0.91, n=24) with an average error of 6 µmol.kg-1. The similar time-scale for the dissolution of hard biogenic structures (opal and CaCO\textsubscript{3}) probably leads to this good correlation (Broecker and Peng, 1982).

CONCLUSIONS

Application of our simple mixing model for the water masses found in Subtropical Eastern North Atlantic in January 1997 can explain more than 93% of the chemical variability.
The percentage of explained variance is higher for the chemical conservative parameters “NO”, “NCO” and C_T^*, as the effect of remineralization of organic matter is removed.

The geographical distributions of model residuals clearly discern a region of relatively more ventilated waters, associated with the core of the Azores Current.

From the comparison of the modeled nutrient distribution with data obtained from similar mixing analysis in other regions of the Eastern North Atlantic, we can conclude: (1) the limit of the northward advection of AAIW was localized at 28.5°N in the study region being strongly diluted (to <11% of pure AAIW) by MW and by ENACWp (2) MW seemed to be more ventilated in the Meteor 37/2 region probably related to the presence of a Meddy (3) modeled nutrients in the core of LSW were higher than the modeled nutrients for regions further north, as expected if considering the southward advection of this water mass. Furthermore, the upwelling system off Northwest Africa is the main responsible factor for the southward increase of nutrients, AOU and NCT_T.

ACKNOWLEDGEMENTS

The authors thank the participants in the MET37/2b cruise and the crew of F.S. METEOR for their valuable help. Processing and the modelling work was supported by the MAS3-CT96-60 project of EU.
REFERENCES

FIGURE CAPTIONS

Fig. 1. Location of stations of the MET37/2 cruise

Fig. 2. Distributions along the ship-track (composite of the meridional (18°W) and the two zonal (29 and 32°N) sections) of salinity (S), potential temperature (θ), normalised total inorganic carbon (NC_T), normalised total alkalinity (NA_T), silicate (SiO_2), nitrate (NO_3), pH_WS, and apparent oxygen utilization (AOU). The units are in µmol.kg^-1 except for salinity and pH. Station 49 and 55 are located at the corners on the 18°W meridian section (Fig. 1). Shaded area corresponds to the 18°W meridional section.

Fig. 3. θ-S diagram of the samples (surface samples excluded) of the MET37/2 cruise with the applied mixing triangles indicated. (The thermohaline properties of the water types are shown in Table 1).

Fig. 4. Distribution along the ship-track track (composite of the meridional (18°W) and the two zonal (29 and 32°N) sections) for ‘NO’, ‘NCO’, A_T, C_T, silicate, nitrate, pH_WS, and AOU anomalies. Except for pH, all units are in µmol.kg^-1.

Fig. 5. Chemical characterisation of ENACW (ENACW_t: squares, H: triangles, ENACW_p: circles, AA: diamond) from different authors and data sets (MET37/2: black, IBERIA: cross inside black symbol, ANA: open symbol, VIVALDI: circle inside open symbol, van Aken (1999a): little cross inside diamond). Upper panel: Covariation between silicate and Xca(C_T/A_T) versus nitrate. Lower panel: Variation between conservative tracers ‘NO’ and C*T versus potential temperature.
Table 1.- The definition of the eight water types and their chemical characterisation obtained from the mixing model using 408 water samples.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>T</th>
<th>O₂</th>
<th>AOU</th>
<th>NO₃</th>
<th>SiO₂</th>
<th>PO₄H₂</th>
<th>C_T</th>
<th>A_T</th>
<th>pH</th>
<th>HSWS</th>
<th>‘NO’</th>
<th>‘NCO’</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENACWt</td>
<td>36.675</td>
<td>18.50</td>
<td>229±1</td>
<td>-1</td>
<td>0.4±0.2</td>
<td>0.3±0.2</td>
<td>0.01±0.01</td>
<td>2090±1</td>
<td>2397±0.5</td>
<td>8.004±0.002</td>
<td>233±2</td>
<td>2320±1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>35.660</td>
<td>12.20</td>
<td>194±1</td>
<td>67</td>
<td>13.7±0.2</td>
<td>4.9±0.2</td>
<td>0.79±0.01</td>
<td>2148±1</td>
<td>2336±0.5</td>
<td>7.808±0.002</td>
<td>322±2</td>
<td>2379±1</td>
<td></td>
</tr>
<tr>
<td>ENACWp</td>
<td>35.230</td>
<td>8.56</td>
<td>157±2</td>
<td>125</td>
<td>24.5±0.3</td>
<td>14.5±0.4</td>
<td>1.55±0.02</td>
<td>2189±2</td>
<td>2321±1.0</td>
<td>7.685±0.003</td>
<td>386±3</td>
<td>2412±2</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>34.900</td>
<td>6.50</td>
<td>119±4</td>
<td>177</td>
<td>29.7±0.6</td>
<td>19.9±0.7</td>
<td>1.92±0.04</td>
<td>2218±3</td>
<td>2312±1.7</td>
<td>7.582±0.005</td>
<td>396±4</td>
<td>2417±3</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>36.500</td>
<td>11.74</td>
<td>192±4</td>
<td>68</td>
<td>11.9±0.6</td>
<td>7.2±0.7</td>
<td>0.67±0.04</td>
<td>2205±3</td>
<td>2414±1.7</td>
<td>7.831±0.005</td>
<td>304±4</td>
<td>2430±3</td>
<td></td>
</tr>
<tr>
<td>LSW</td>
<td>34.890</td>
<td>3.40</td>
<td>237±2</td>
<td>80</td>
<td>22.5±0.4</td>
<td>19.5±0.4</td>
<td>1.46±0.03</td>
<td>2172±2</td>
<td>2316±1.1</td>
<td>7.704±0.005</td>
<td>446±3</td>
<td>2470±2</td>
<td></td>
</tr>
<tr>
<td>NADWu</td>
<td>34.940</td>
<td>2.50</td>
<td>248±1</td>
<td>79</td>
<td>21.4±0.2</td>
<td>34.8±0.3</td>
<td>1.40±0.02</td>
<td>2191±1</td>
<td>2344±0.7</td>
<td>7.728±0.002</td>
<td>447±2</td>
<td>2497±1</td>
<td></td>
</tr>
<tr>
<td>NADWI</td>
<td>34.884</td>
<td>1.98</td>
<td>245±2</td>
<td>86</td>
<td>23.2±0.3</td>
<td>44.4±0.3</td>
<td>1.50±0.02</td>
<td>2204±2</td>
<td>2353±0.8</td>
<td>7.722±0.002</td>
<td>462±2</td>
<td>2513±1</td>
<td></td>
</tr>
</tbody>
</table>

R² | 0.93 | 0.97 | 0.986 | 0.970 | 0.967 | 0.967 | 0.989 | 0.987 | 0.992 |
STD | 7.2 | 1.2 | 1.4 | 0.086 | 6.7 | 3.3 | 0.010 | 8.3 | 5.6 |
Table 2.- Comparison of the calculated chemical properties of the water masses of Eastern North Atlantic of among several papers. ANA, IBERIA, VIVALDI, van Aken refers to the papers: Pérez et al. (1998), Pérez et al. (1993), Castro et al. (1998) and van Aken (1999 a and b) respectively.

ENACW

<table>
<thead>
<tr>
<th>Reference</th>
<th>S</th>
<th>T</th>
<th>σ-500</th>
<th>‘NO’*</th>
<th>‘PO’*</th>
<th>C₅*</th>
<th>O₂</th>
<th>AOU</th>
<th>NO₃</th>
<th>PO₄</th>
<th>C₇</th>
<th>A₇</th>
<th>SiO₂</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET37/2</td>
<td>36.672</td>
<td>18.50</td>
<td>28.607</td>
<td>233</td>
<td>231</td>
<td>1994</td>
<td>229</td>
<td>0</td>
<td>0.4</td>
<td>0.01</td>
<td>2090</td>
<td>2397</td>
<td>0.3</td>
<td>ENACWt</td>
</tr>
<tr>
<td>IBERIA</td>
<td>35.815</td>
<td>13.71</td>
<td>29.094</td>
<td>285</td>
<td>279</td>
<td>2045</td>
<td>233</td>
<td>20</td>
<td>5.6</td>
<td>0.32</td>
<td>2107</td>
<td>2347</td>
<td>1.6</td>
<td>ENACWt</td>
</tr>
<tr>
<td>ANA</td>
<td>36.500</td>
<td>18.00</td>
<td>29.604</td>
<td>229</td>
<td>1989</td>
<td>195</td>
<td>37</td>
<td>3.6</td>
<td>2100</td>
<td>2380</td>
<td>2.0</td>
<td>ENACWt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIVALDI</td>
<td>36.120</td>
<td>14.86</td>
<td>29.073</td>
<td>277</td>
<td>264</td>
<td>2022</td>
<td>228</td>
<td>19</td>
<td>5.2</td>
<td>0.25</td>
<td>2100</td>
<td>2355</td>
<td>2.0</td>
<td>ENACWt</td>
</tr>
<tr>
<td>MET37/2</td>
<td>35.660</td>
<td>12.20</td>
<td>29.292</td>
<td>322</td>
<td>307</td>
<td>2061</td>
<td>194</td>
<td>67</td>
<td>13.7</td>
<td>0.79</td>
<td>2148</td>
<td>2336</td>
<td>4.8</td>
<td>ENACWt</td>
</tr>
<tr>
<td>IBERIA</td>
<td>35.815</td>
<td>13.71</td>
<td>29.094</td>
<td>285</td>
<td>279</td>
<td>2045</td>
<td>233</td>
<td>20</td>
<td>5.6</td>
<td>0.32</td>
<td>2107</td>
<td>2347</td>
<td>1.6</td>
<td>ENACWt</td>
</tr>
<tr>
<td>ANA</td>
<td>36.500</td>
<td>18.00</td>
<td>29.604</td>
<td>229</td>
<td>1989</td>
<td>195</td>
<td>37</td>
<td>3.6</td>
<td>2100</td>
<td>2380</td>
<td>2.0</td>
<td>ENACWt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIVALDI</td>
<td>36.120</td>
<td>14.86</td>
<td>29.073</td>
<td>277</td>
<td>264</td>
<td>2022</td>
<td>228</td>
<td>19</td>
<td>5.2</td>
<td>0.25</td>
<td>2100</td>
<td>2355</td>
<td>2.0</td>
<td>ENACWt</td>
</tr>
</tbody>
</table>

MW

<table>
<thead>
<tr>
<th>Reference</th>
<th>S</th>
<th>T</th>
<th>σ-2000</th>
<th>‘NO’*</th>
<th>‘PO’*</th>
<th>C₅*</th>
<th>O₂</th>
<th>AOU</th>
<th>NO₃</th>
<th>PO₄</th>
<th>C₇</th>
<th>A₇</th>
<th>SiO₂</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET37/2</td>
<td>35.600</td>
<td>11.74</td>
<td>31.589</td>
<td>304</td>
<td>289</td>
<td>307</td>
<td>207</td>
<td>193</td>
<td>69</td>
<td>11.9</td>
<td>0.67</td>
<td>2205</td>
<td>2414</td>
<td>7.2</td>
</tr>
<tr>
<td>IBERIA</td>
<td>35.600</td>
<td>11.74</td>
<td>31.589</td>
<td>307</td>
<td>294</td>
<td>2053</td>
<td>166</td>
<td>96</td>
<td>15.1</td>
<td>0.89</td>
<td>2209</td>
<td>2417</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>ANA</td>
<td>35.600</td>
<td>11.76</td>
<td>31.584</td>
<td>308</td>
<td>296</td>
<td>2052</td>
<td>163</td>
<td>99</td>
<td>15.5</td>
<td>2.22</td>
<td>2212</td>
<td>2413</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>VIVALDI</td>
<td>35.600</td>
<td>11.74</td>
<td>31.589</td>
<td>305</td>
<td>295</td>
<td>2054</td>
<td>145</td>
<td>117</td>
<td>17.1</td>
<td>1.04</td>
<td>2225</td>
<td>2409</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>van Aken⁹</td>
<td>35.420</td>
<td>9.43</td>
<td>29.632</td>
<td>360</td>
<td>357</td>
<td>170</td>
<td>107</td>
<td>20.4</td>
<td>1.3</td>
<td>11.5</td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LSW

<table>
<thead>
<tr>
<th>Reference</th>
<th>S</th>
<th>T</th>
<th>σ-2000</th>
<th>‘NO’*</th>
<th>‘PO’*</th>
<th>C₅*</th>
<th>O₂</th>
<th>AOU</th>
<th>NO₃</th>
<th>PO₄</th>
<th>C₇</th>
<th>A₇</th>
<th>SiO₂</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET37/2</td>
<td>34.890</td>
<td>3.400</td>
<td>31.907</td>
<td>447</td>
<td>448</td>
<td>2120</td>
<td>237</td>
<td>83</td>
<td>22.5</td>
<td>1.47</td>
<td>2172</td>
<td>2316</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>IBERIA</td>
<td>34.890</td>
<td>3.400</td>
<td>31.907</td>
<td>434</td>
<td>441</td>
<td>2122</td>
<td>261</td>
<td>59</td>
<td>18.5</td>
<td>1.25</td>
<td>2157</td>
<td>2307</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>VIVALDI</td>
<td>34.890</td>
<td>3.400</td>
<td>31.907</td>
<td>435</td>
<td>423</td>
<td>2125</td>
<td>270</td>
<td>50</td>
<td>17.7</td>
<td>1.06</td>
<td>2154</td>
<td>2295</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>van Aken⁹</td>
<td>34.890</td>
<td>3.428</td>
<td>31.903</td>
<td>437</td>
<td>440</td>
<td>279</td>
<td>40</td>
<td>16.9</td>
<td>1.12</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NADW-upper

<table>
<thead>
<tr>
<th>Reference</th>
<th>S</th>
<th>T</th>
<th>σ-2000</th>
<th>‘NO’*</th>
<th>‘PO’*</th>
<th>C₅*</th>
<th>O₂</th>
<th>AOU</th>
<th>NO₃</th>
<th>PO₄</th>
<th>C₇</th>
<th>A₇</th>
<th>SiO₂</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET37/2</td>
<td>34.940</td>
<td>2.500</td>
<td>32.073</td>
<td>448</td>
<td>450</td>
<td>2138</td>
<td>248</td>
<td>79</td>
<td>21.4</td>
<td>1.40</td>
<td>2191</td>
<td>2344</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td>IBERIA</td>
<td>34.925</td>
<td>2.400</td>
<td>32.075</td>
<td>445</td>
<td>450</td>
<td>2136</td>
<td>248</td>
<td>80</td>
<td>21.1</td>
<td>1.40</td>
<td>2188</td>
<td>2337</td>
<td>37.4</td>
<td></td>
</tr>
<tr>
<td>VIVALDI</td>
<td>34.940</td>
<td>2.500</td>
<td>32.073</td>
<td>439</td>
<td>438</td>
<td>2131</td>
<td>253</td>
<td>74</td>
<td>19.9</td>
<td>1.28</td>
<td>2180</td>
<td>2326</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td>van Aken⁹</td>
<td>34.936</td>
<td>2.500</td>
<td>32.070</td>
<td>440</td>
<td>447</td>
<td>249</td>
<td>71</td>
<td>20.5</td>
<td>1.38</td>
<td>33.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NADW-lower

<table>
<thead>
<tr>
<th>Reference</th>
<th>S</th>
<th>T</th>
<th>σ-2000</th>
<th>‘NO’*</th>
<th>‘PO’*</th>
<th>C₅*</th>
<th>O₂</th>
<th>AOU</th>
<th>NO₃</th>
<th>PO₄</th>
<th>C₇</th>
<th>A₇</th>
<th>SiO₂</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET37/2</td>
<td>34.884</td>
<td>1.980</td>
<td>32.099</td>
<td>462</td>
<td>462</td>
<td>2150</td>
<td>245</td>
<td>86</td>
<td>23.2</td>
<td>1.51</td>
<td>2204</td>
<td>2353</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td>VIVALDI</td>
<td>34.890</td>
<td>2.030</td>
<td>32.097</td>
<td>452</td>
<td>469</td>
<td>2152</td>
<td>238</td>
<td>93</td>
<td>22.9</td>
<td>1.60</td>
<td>2211</td>
<td>2354</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>van Aken⁹</td>
<td>34.889</td>
<td>1.984</td>
<td>32.102</td>
<td>452</td>
<td>462</td>
<td>245</td>
<td>86</td>
<td>22.2</td>
<td>1.50</td>
<td>46.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>