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Abstract 

A series of alkylammonium-imidazolium chloride salts [RImH(CH2)nNMe2]Cl·HCl (R = Me, t-Bu, 

Mes, n = 2, 3) have been prepared by alkylation of 1-substituted imidazole compounds with the 

corresponding chloro-alkyl-dimethylamine hydrochloride. These salts are precursors for the synthesis of 

a library of rhodium (I) complexes containing amino-alkyl functionalized N-heterocyclic carbene 

(NHC) ligands with hemilabile character by varying the substituent on the heterocyclic ring and the 

length of the linker with the dimethylamino moiety. The monodeprotonation of alkylammonium-

imidazolium salts with NaH in the presence of [{Rh(µ-Cl)(cod)}2] gave the amino-imidazolium salts 

[RImH(CH2)nNMe2][RhCl2(cod)]. Further deprotonation with NaH under non anhydrous conditions 

gave the neutral complexes [RhCl(cod)(RIm(CH2)nNMe2)] in good yields. The abstraction of the chloro 

ligand by silver salts rendered the cationic complexes [Rh(cod)(κ2C,N-RIm(CH2)3NMe2)][BF4] (R = 

Me, Mes) by coordination of the NMe2 fragment of the sidearm of the functionalized NHC ligands. The 

catalytic activity of the rhodium complexes in the hydrosilylation of terminal alkynes using HSiMe2Ph 

has been investigated with Ph-C≡CH, t-Bu-C≡CH, n-Bu-C≡CH, and Et3Si-C≡CH as substrates. Higher 

activities were achieved using neutral complexes having small substituents at the heterocyclic ring (R = 

Me). Excellent selectivities in the β-(Z)-vinylsilane isomer were found in the hydrosilylation of 1-

hexyne and predominantly the β-(E) and α-bis(silyl)alkene isomers were obtained in the hydrosilylation 

of triethylsilylacetylene. 
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Introduction 

N-Heterocyclic carbenes (NHC) have attracted considerable attention as a new class of ligands over 

the last few years.1 Their bonding characteristics are comparable to the well studied tertiary phosphines, 

which are ubiquitous in their role as ligands in transition metal catalyzed processes. Nevertheless, it has 

become apparent that there are substantial differences between the two families of ligands: NHC are 

more electron donating and sterically more demanding than the most basic/bulky phosphane ligands.2 

NHC ligands have found widespread application in homogenous catalysis for processes as diverse as C-

C coupling, olefin metathesis, hydrosilylation, or carbon monoxide/ethylene copolymerization.3 

Ligand lability is a feature of many efficient catalysts, however this lability can also provide a route 

for the catalyst decomposition. In order to have easily accessible coordination sites and to protect the 

active catalytic site a number of hybrid hemilabile ligands, which can potentially provide a dynamic “on 

and off” chelating effect for the metal complex during catalysis, have been designed.4 Hybrid P,O-5 and 

P,N-based ligands6 have been the most intensively studied since P usually binds strongly to the metal 

center whereas the other donor atom (O or N) is generally only weakly bonded.  

On the other hand, there is an increasing interest in the chemistry of functionalized NHC carbenes7 in 

which a donating group is attached to a strongly bonded imidazolyl ring. In this context, a variety of 

heteroatom-functionalized carbene ligands containing phosphine,8 pyridine,1a,9 amido,10 ester, keto or 

ether11 and oxazoline12 donor functions have been synthesized and, in some cases, used as catalysts for a 

number of catalytic transformations.13 The combination of a strongly bonded carbene moiety with the 

appropiate donor function should allow for potential hemilability. In fact, the hemilabile character of 

several alkenyl-,14 thioether-,15  alkoxide,16 and pyrazolylmethyl17 functionalized-imidazolylidene 

ligands, and of the terdentate 1,3-bis(2-pyridyl)imidazol-2-ylidene ligand18 have been demonstrated. 

Hydrosilylation of carbon-carbon multiple bonds has been one of the most important laboratory and 

industrial methods of forming silicon-carbon bonds and to functionalize organic molecules.19 The 

hydrosilylation of alkynes represents the most straightforward and atom-economical access to 
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vinylsilanes which are useful intermediates for cross-linked silicones as well as reagents in organic 

synthesis and as nucleophilic partners in Pd-catalyzed cross-coupling reactions. 20 The hydrosilylation of 

alkynes can be promoted by a variety of catalysts including radical initiators, chloroplatinic acid and 

Wilkinson’s type rhodium complexes.19,21 More recently some nickel,22 ruthenium,23 platinum,24 rhodium 

and iridium25 complexes containing NHC carbenes have been used as hydrosilylation catalysts. Most of 

the recent efforts in the study of catalytic hydrosilylation concern the design of efficient catalysts which 

enable the stereodivergent preparation of both (Z)- and (E)-alkenylsilanes independently.  

Our interest is focused in the synthesis of transition metal complexes containing heteroditopic ligands 

of hemilabile character that incorporate strong electron donors, such as tertiary phosphines and 

carbenes. The design of ligands that combine weak donor functions, as the -NMe2 group, and a flexible 

backbone should allow for the potential of a dynamic interaction with the metal center and/or 

stabilization of polar intermediates in catalytic applications exerting some directing effect. In this work 

we describe the synthesis and characterization of a series of new rhodium(I) complexes with 

alkylamino-functionalized NHC ligands of the type 1-dimethylaminoalkyl-3-R-imidazol-2-ylidene that 

are efficient catalysts for the hydrosilylation of 1-alkynes.  

 

Results and Discussion 

Synthesis of Precursors for Hemilabile NHC Ligands. The imidazolium salts used as precursors for 

the new hemilabile N-heterocyclic carbene ligands were prepared by direct alkylation of several 1-

substituted imidazole compounds. The reaction of chloro-alkyl-dimethylamine hydrochloride 

derivatives, Cl(CH2)nNMe2·HCl (n = 2, 3), with the stoichiometric amounts of several 1-substituted 

imidazole compounds, RImH (R = Me, t-Bu, Mes), in refluxing acetonitrile for several days afforded 

the corresponding alkylammonium imidazolium chloride salts [RImH(CH2)nNMe2]Cl·HCl (1-5) 

(Scheme 1). The salts were isolated as white hygroscopic solids in good yields, and characterized by 

elemental analysis, mass spectrometry (ES-MS) and 1H and 13C{1H} NMR spectroscopy. The 1H NMR 
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spectra of 1–5 in CDCl3 or CD3OD showed a highly downfield shifted resonance in the range δ 12.0 - 

9.0 ppm that is characteristic of the NCHN imidazolium proton. The methyl groups of the dimethylalkyl 

ammonium fragment were observed as a single resonance between δ 3.5-2.8 ppm and around 43 ppm in 

the 1H and 13C{1H} NMR spectra, respectively. The NH was observed as a broad resonance only in 

compounds 1 (δ 4.02 ppm) and 2 (δ 3.55 ppm) although the methylenic groups of the side arms, triplet 

(N-CH2-) or multiplet (-CH2-), have been clearly identified in the 1H NMR spectra of all 

alkylammonium imidazolium salts. The remaining resonances of the imidazolium fragment were 

observed at chemical shifts typical for imidazolium salts.26 

Synthesis of Rhodium(I) Salts Containing Dimethylalkylamino Imidazolium as Cations. The 

ammonium-imidazolium salts may be sequentially deprotonated to give different rhodium(I) 

compounds. The reaction of 1-5 with one molar-equiv of sodium hydride in tetrahydrofurane followed 

of half-equiv of [{Rh(µ-Cl)(cod)}2] afforded cyclooctadienedichlororhodate(I) salts 

[RImH(CH2)nNMe2][RhCl2(cod)] that contain the amine-imidazolium cation (R = Me, n = 2, 6, n = 3, 7; 

R = t-Bu, n = 2, 8, n = 3, 9; R = Mes, n = 3, 10) (Scheme 2). The salts containing the 3-methyl 

imidazolium, 6 and 7, have been isolated in the solid state and fully characterized by analytical and 

spectroscopic means. In addition, the molecular structure of 6 has been determined by X-ray diffraction 

methods. The salts 8-10 have been characterized in solution as they are actually generated in situ and 

used as intermediates in the synthesis of rhodium(I) containing N-heterocyclic carbene ligands (see 

below). 

The 1H NMR spectra of compounds 6-10 showed a resonance around δ 10.5 ppm, diagnostic of the 

presence of a NCHN imidazolium proton, and the absence of any resonance attributable to NH in 

agreement with the deprotonation of the ammonium fragment. The amino-imidazolium cations were 

observed in the ES-MS+ of compounds 6 and 7 at m/z 154.1 [MeImH(CH2)2NMe2]+, and 168.3 

[MeImH(CH2)3NMe2]+, respectively. Furthermore, the anion [RhCl2(cod)]- was identified in the 1H 
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NMR spectra of the compounds as three resonances in a 1:1:1 ratio (4 protons each) corresponding to 

the =CH, and >CH2 protons (exo and endo protons) of the 1,5-cyclooctadiene ligand. According to the 

C2v symmetry of the anion, the 13C{1H} NMR displayed two resonances at δ 77.70 (d, JC-Rh = 11.1 Hz) 

and 31.09 ppm. 

The molecular structure of compound [(MeImH(CH2)2NMe2)][RhCl2(cod)] (6) is shown in Figure 1 

and selected bond lengths and angles are listed in Table 1. The crystal structure shows the presence of 

both ions: the amino-imidazolium cation and the dichlorocyclooctadienerhodate(I) anion. The unique 

connection between both entities involves a clear hydrogen bond between the H(1) proton of the 

imidazolium cation and one of the chloro ligands of the metal complex (Cl(1)…C(1) 3.468(3), 

Cl(1)…H(1) 2.56(3) Å and C(1)-H(1)…Cl(1) 168(2) o). The internal bond distances and angles in the 

imidazolium ring lie within the range observed for other imidazolium salts.27 In particular, the C-N 

distances at the C(1) atom are 1.374(3) and 1.378(3) Å, and the N-C-N angle is 108.3(2)o. On the other 

hand, the structural parameters of the [RhCl2(cod)]- anion are very similar to those reported in other ion-

pair compounds including this specific anionic metal complex.28 

Synthesis of Neutral and Cationic Rhodium(I) Complexes Containing Hemilabile NHC Ligands. 

We envisaged that the double deprotonation of the ammonium-imidazolium salts 

[RImH(CH2)nNMe2]Cl·HCl with a strong base should produce the free carbene ligands that could be 

trapped by [{Rh(µ-Cl)(cod)}2] to give rhodium(I) complexes containing the hemilabile NHC ligands. 

However, the reaction of the ammonium-imidazolium salts with 2.2 mol-equiv of NaH in THF, 

followed of addition of half mol-equiv of [{Rh(µ-Cl)(cod)}2], unexpectedly afforded the amino-

imidazolium salts [RImH(CH2)nNMe2][RhCl2(cod)] (6-10). Interestingly, we have discovered that the 

reaction of these salts with NaH under non strictly anhydrous conditions resulted in the formation of the 

expected complexes. Thus, when water was deliberately added to yellow suspensions of compounds 6-

10 and NaH in THF, darker suspensions were immediately formed and the neutral mononuclear 
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complexes [RhCl(cod)(RIm(CH2)nNMe2)] (11-15) were isolated as yellow microcrystalline solids in 60-

70% yield after the convenient work-up. It is evident that the NaOH formed in the reaction of NaH and 

water was responsible for the acid-base reaction resulting in the effective deprotonation of the 

imidazolium fragment. In agreement with this proposal, complexes 11-15 can be prepared directly from 

the ammonium-imidazolium salts in THF using a KOH aqueous solution (2 mol-equiv) as base; most 

probably, side-reactions account for the lower yields obtained following this synthetic path. The more 

efficient one-pot synthesis of complexes 11-15 from the ammonium-imidazolium salts 

[RImH(CH2)nNMe2]Cl·HCl requires the in situ generation of the intermediate amino-imidazolium salts 

[RImH(CH2)nNMe2][RhCl2(cod)] and their deprotonation using NaH/H2O. 

The mononuclear neutral complexes containing the 1-(dimethylaminoalkyl)-3-R-imidazol-2-ylidene 

ligands [RhCl(cod)(RIm(CH2)nNMe2)] (11-15, scheme 2) have been fully characterized by elemental 

analysis, mass spectrometry and multinuclear NMR spectroscopy. In particular, the full assignment of 

the resonances is based on the 1H-1H COSY NMR spectra of the complexes. Although the MALDI-TOF 

mass spectra showed peaks at m/z corresponding to the cations [Rh(cod)(RIm(CH2)nNMe2)]+, the 

complexes are neutral as was evidenced by the conductivity measurements in acetone. The mononuclear 

complexes are moderately stable in solid state or in solution under an inert atmosphere. However, 

solutions of compounds 11 and 13 in chlorinated solvents (CH2Cl2 or CHCl3) slowly decompose at room 

temperature to unidentified products as observed in related products.29,30  

The 1H NMR spectra of compounds 11-15 showed no resonances attributable to the NCHN proton, 

that confirms the deprotonation of the imidazolium fragment. In addition, the coordination of the 

carbene to the rhodium center becomes evident as a doublet resonance in the range δ 182-180 ppm (JC-Rh 

≈ 50 Hz)is observed in the 13C{1H} NMR spectra. These chemical shifts and coupling constant values 

lie in the usual range for related Rh(I)-NHC complexes.25 The olefinic carbons of the 1,5-cyclooctadiene 

ligand features four resonances (JC-Rh ≈ 8 and 15 Hz) in the 13C{1H} NMR spectra of the complexes. This 

observation is indicative of the lack of an effective symmetry plane in the molecules probably as a result 
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of the hindered rotation31 about the carbene-rhodium bond due to the presence of the sidearm in the 

hemilabile NHC ligands. As a consequence, the methylenic protons of the 2-dimethylaminoethyl and 3-

dimethylaminopropyl sidearms are diastereotopic. 

Although no direct evidence of the coordination of the dimethylamino fragment to the rhodium center 

was obtained from the observed NMR chemical shifts, the 1H NMR spectra showed sharp resonances at 

room temperature excluding a potential penta-coordinated structure. This fact has been further 

corroborated by the single-crystal X-ray diffraction analysis carried out on complex 

[RhCl(cod)(MeIm(CH2)2NMe2)] (11). The molecular structure of compound 11 is shown in Figure 2 and 

the more significant bond distances and angles are collected in Table 1. The coordination geometry at 

the rhodium center is slightly-distorted square-planar formed by coordination to the metal of the two 

olefinic bonds of a 1,5-cyclooctadiene molecule, the carbene atom of the 1-(2-dimethylaminoethyl)-3-

methyl-imidazol-2-ylidene group and the chloro ligand. The sum of the four cis intraligand angles at the 

metal environment is equal to 360o within experimental uncertainty, but the individual angles are 

distorted from ideal values due to the steric influence of the bulky 1,5-cyclooctadiene ligand. Thus, the 

largest bond angles, 92.25(7)o and 92.01(5)o, are M(1)-Rh-C(1) and M(2)-Rh-Cl (M(1) and M(2) 

represent the midpoints of the coordinated olefinic bonds). In contrast, the smallest angle, 88.15(5)o, is 

observed between the chloro (Cl(1)) and carbene (C(1)) ligands. A remarkable feature of molecular 

structure is the location of the NMe2 fragment of the functionalized 1-N substituent (2-

dimethylaminoethyl) oriented clearly away from the metal center.  

The rhodium-carbene bond distance, 2.0292(17) Å, is within the range reported for Rh(I)-carbene 

complexes (mean 2.026 Å, CSD search on complexes of the type [RhCl(cod)(imidazol-2-ylidene)]). 

This carbene ligand exerts a high trans influence, producing a significant elongation of the Rh-C bonds 

situated in relative trans position (mean Rh-C 2.2031(12)Å)  if compared to those trans to the chloride 

ligand (mean Rh-C 2.1058(13)Å). The imidazol-2-ylidene ring is placed almost perpendicular to the 

coordination plane of the rhodium center (dihedral angle 84.62(5)º). A comparison of the molecular 
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structures of the functionalized imidazolium cation 6 and the imidazol-2-ylidene complex 11 shows the 

typical increase in the C-N bond distances (1.328(3) and 1.326(3) Å in 6, 1.356(2) and 1.355(2) Å in 11) 

and the decrease in NCN angle (108.2(2) in 6 and 104.37(15)o in 11) upon deprotonation and 

coordination to the rhodium center, reflecting the enhanced s character of the in-plane carbene lone pair 

σ-bonded to metal in the metal NHC  complexes.32 

The coordination of the dimethylamino fragment of the hemilabile NHC’s in the complexes 11-15 

could be induced by abstraction of the chloro ligand. Thus, the reaction of complexes 12 and 15 with 

one molar-equiv of silver tetrafluoroborate in CH3CN/acetone at 0º C resulted in the precipitation of 

AgCl and the formation of yellow solutions from which the cationic complexes 

[Rh(cod)(RIm(CH2)3NMe2)][BF4] (R = Me, 16; Mes, 17) were isolated as microcrystalline yellow solids 

in good yield. The MALDI-TOF mass spectra gave a peak at m/z 378.1 (16) and 482.2 (17) that 

correspond to the cations [Rh(cod)(RIm(CH2)3NMe2)]+. The IR spectra of the complexes showed the 

presence a broad band at 1071 cm-1 corresponding to uncoordinated BF4
- anions. In addition, the 

conductivity measurements in acetone solutions were in agreement with a formulation of the complexes 

as 1:1 electrolytes. Further support of the coordination of the dimethylamino group to the rhodium 

center comes from the 1H NMR as no coordinated solvent was detected when the reaction was 

conducted in the presence of diverse coordinating solvents as acetone or acetonitrile. The 1H and 

13C{1H} NMR spectra of both compounds are consistent with a chelating coordination mode (κ2C,N) of 

the NHC ligands that results in the formation of a seven-membered metallacycle (Scheme 3). The most 

relevant features of the NMR spectra are the significant reduction in the magnitude of the JC-Rh of the 

carbenic atom, only observed for compound 16 at δ 179.63 ppm (JC-Rh ≈ 28 Hz), and the downfield 

shifting of ca. 1 ppm of the methylenic -CH2-NMe2 resonance relative to the related neutral complex, 

which is observed as a broad triplet and could be a diagnostic for the coordination of the -NMe2 

fragment. 

Unfortunately, the chloro abstraction by silver salts in the neutral complexes containing the ligands 
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1-(2-dimethylaminoethyl)-3-R-imidazol-2-ylidene (R = Me, 11; t-Bu, 13) resulted in decomposition 

products even when the reaction was performed in coordinating solvents (acetone or acetonitrile) and/or 

in the presence of coordinating anions (triflate). Although the chelating coordination mode (κ2C,N) of 

the 2-dimethylaminoethyl sidearm with a perpendicular disposition of the imidazol-2-ylidene fragment 

relative to the rhodium coordination plane produce a constrained six-membered metallacycle, the twist 

of the NHC diazole ring plane could relief strain and should allow the coordination of labile -NMe2 

fragment. In this context, it has been demonstrated that the dihedral angle between both planes in N-

heterocyclic (CH2)n-linked bis-NHC complexes is strongly dependent on the length of the linker.33b 

Thus, several methylene-linked (n = 1) bis-NHC square planar rhodium (I) complexes with a six-

membered metallacycle ring having a rather small dihedral angle have been structurally characterized.33 

For comparative purposes, the cationic bis-carbene rhodium(I) complex 

[Rh(cod)(MeIm(CH2)3ImMe)][BF4] (18) was prepared from the bis-imidazolium 

[MeImH(CH2)3ImHMe]Br2
34 salt following a procedure similar to that used by Crabtree33 in the 

synthesis of the related compound [Rh(cod)(n-BuIm(CH2)3Imn-Bu)][PF6]. As expected, the 

spectroscopic properties of compound 18 matches with those reported for the related PF6
-
 salt described 

independently by Peris35 and Raubenheimer.36  

Hydrosilylation of 1-Alkynes. The neutral [RhCl(cod)(RIm(CH2)nNMe2)] (11-15) and cationic 

[Rh(cod)(RIm(CH2)nNMe2)][BF4] (16-18) complexes were found to be active catalyst precursors for the 

hydrosilylation of terminal alkynes. The catalytic reactions were carried out in CDCl3 at 60 ºC using 

HSiMe2Ph and were routinely monitored by 1H NMR spectroscopy. The influence of the 1-alkyne has 

been studied using phenylacetylene, 3,3-dimethyl-but-1-yne, 1-hexyne, and triethylethynylsilane as 

substracts and the results are summarized in Table 2.  

Transition metal-catalyzed hydrosilylation of 1-alkynes often gives a mixture of the three possible 

isomeric vinylsilane derivatives: (Z)- or (E)-1-silyl-1-alkenes, products from the anti-Markovnikov 

addition (β-(Z) and β-(E) isomers, respectively), and 2-silyl-1-alkene from the Markovnikov addition (α 
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isomer).19a,21,37 In addition, the formation of dehydrogenative silylation products, alkynylsilane and the 

corresponding alkene, have been sometimes observed in the case of sterically demanding substituents on 

the alkyne and/or the hydrosilane (Scheme 4).37,38  

When the hydrosilylation of phenylacetylene was preformed in the presence of the catalyst precursors 

11, 13-14, and 16 (entries 1, 3, 4, 6) the massive formation of poly-phenylacetylene was observed even 

at room temperature.39,21 However, the polymerization was considerably reduced for the cationic 

complexes 17 (entry 7) and 18 (entry 8), and was marginally observed for the neutral catalysts 

precursors 12 (entry 2) and 15 (entry 5). The major isomer formed was the β-(E) vinylsilane, 

particularly for 12, 15 and 17. In general, the dehydrogenative silylation product, styrene, was not 

detected or it is negligible when the polymerization process is operative. In these cases, considerable 

amounts of the α and β-(Z) vinylsilanes were also formed except for 17 that gave only the β-(E) and α 

isomers. The lack of selectivity in hydrosilylation of phenylacetylene has also been observed with 

cationic rhodium(I) precursors containing diphosphine as ancillary ligands.40 

The hydrosilylation of tert-butylacetylene at room temperature is quite slow and even at 60 oC long 

reaction times are generally required. Under these experimental conditions the reactions are unselective 

since although the β-(E) vinylsilane is the major product (50-75%), variable amounts of the β-(Z) (5-

12%) and α (8-35%) isomers were also formed. In addition, the dehydrogenative silylation process is 

operative as significant percentages of 3,3-dimethyl-but-1-ene (5-20%) were observed and t-Bu-C≡C-

SiMe2Ph was detected by GC-MS. Interestingly, the less active catalyst precursors were 15 and 17, 

which have the bulky mesityl substituent in imidazol-2-ylidene ligand, probably as a consequence of the 

steric interference with the bulky substrate. As expected, complexes containing the less sterically 

demanding methyl-substituted NHC ligands (12, 16 and 18) were the most active in the series although 

the regio- and stereoselectivities attained with the bis-carbene complex 18 were lower.  

Higher regio- and stereoselectivities were obtained in the hydrosilylation of 1-hexyne (entries 17-24, 
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Table 2). In general, an opposite stereoselectivity towards the β-(Z) vinylsilane was observed in all 

cases, in clear contrast to the catalytic processes involving the precedent substrates. The activities and 

selectivities are comparable or slightly higher than the previously reported for other rhodium-catalyzed 

1-hexyne hydrosilylation reactions.19a,25h Outstandingly, the catalyst precursor 

[RhCl(cod)(MeIm(CH2)2N(CH3)2)] (11) gave a 96% of conversion in 1.5h with complete selectivity in β 

vinylsilanes, a Z/E ratio of 49, and a TOF of 64 turnover/h (entry 17, Table 2). The reaction profile, 

conversion vs time, for the hydrosilylation of 1-hexyne catalyzed by complexes 11-18 is shown in 

Figure 3. The neutral complexes [RhCl(cod)(RIm(CH2)nN(CH3)2)], (11-13) are, in general, far more 

active and selective than the cationic counterparts or complexes containing the bulky mesityl-substituted 

NHC ligand. Interestingly, the hydrosilylation reaction can be carried out on a preparative scale as has 

been demonstrated for the synthesis of β-hexen-1-enyl-methyl-diphenyl-silane using compound 12 as 

catalyst precursor (see Experimental Section). 

Compound [Rh(cod)(MeIm(CH2)3N(CH3)2)][BF4] (16) is the most active and selective in the cationic 

series (16-18). Interestingly, complexes 16 and 17 are more selective than the biscarbene catalyst 18 

(entries 22-24). The effect of the length of the linker become important in complexes 

[RhCl(cod)(RIm(CH2)nN(CH3)2)] (R = t-Bu, 13, 14) being compound 13 (n = 2) considerably more 

active and selective than compound 14 (n = 3). However, this effect is not so significant in complexes 

11 and 12 (R = Me) (entries 17 and 18). The influence of the size of the R substituent on the 

heterocyclic ring became evident along the series [RhCl(cod)(RIm(CH2)3N(CH3)2)] (R = Me, 12; t-Bu, 

14; Mes, 15). Thus, the excellent activity observed for complex 12 contrasts with that of the catalyst 

precursors 14 and 15 (Figure 3). As far as the selectivitity is concerned, the regioselectivity remains 

constant but bulky substituents drops off the stereoselectivity as was evidenced by a significant 

reduction of the Z/E ratio (19, R = Me; 12.6, R = t-Bu and 9.4, R = Mes) (entries 18, 20 and 21) that is 

more pronounced in the Mes complex.  

We have checked the E/Z ratio dependence versus time in the hydrosilylation of 1-hexyne 
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using the catalyst precursor [RhCl(cod)(t-BuIm(CH2)3N(CH3)2)] (13). As it can be seen in Figure 4, the 

E/Z ratio remained approximately constant (0.05) during the catalytic process, however, after the 

complete consumption of 1-hexyne (t = 120 min), the E/Z ratio increases owing to the isomerization of 

the β-(Z)-vinylsilane into the thermodynamically favored β-(E)-vinylsilane isomer. Thus, the stability of 

the E/Z ratio during the catalysis suggests the kinetic control of the product distribution. The 

isomerization activity has been observed in all the catalytic systems under investigation (Table 3) and is 

particularly important for compounds [RhCl(cod)(t-BuIm(CH2)nN(CH3)2)] (13, 14) (entries 6 and 8, 

Table 3). Taken into account that the catalytic reactions were conducted with 10% excess of hydrosilane 

in order to avoid the polymerization process, the responsible species for the isomerization should be 

generated by mediation of hydrosilane. In fact, the isomerization of (Z)-alkenylsilanes to (E)-

alkenylsilanes catalyzed by rhodium(I) complexes in the presence of hydrosilanes has already been 

observed.37a Also in some systems the heating of the catalytic solutions resulted in the formation of 

minor amounts of n-hexenes. More important, in the catalytic systems based on precursors 13, 14 and 

16 significant amounts of hex-2-enyl-dimethyl-phenyl-silane were formed (entries 6, 8 and 12, Table 3). 

The slow rearrangement of vinylsilanes to allylsilane has been reported by Crabtree et al in the 

hydrosilylation of 1-hexyne with HSiMePh2 catalyzed by [RhCl(PPh3)3].37a Interestingly, Doyle et al 

have also found that dinuclear rhodium(II) perfluorobutyrate-bridged complexes catalyze the 

hydrosilylation of 1-octyne to allylsilanes by precise adjustment of the reaction conditions.41  

The hydrosilylation of alkynylsilanes has been scarcely studied.42 In order to evaluate the electronic 

effects introduced by the silyl group on the selectivity, the hydrosylilation of Et3SiC≡CH has also been 

investigated (Table 2). Surprisingly, in almost all cases the reaction gave exclusively the β-(Z) and α 

bis(silyl)alkenes but not β-(E)-vinylsilane. Again the less active catalyst precursors were 15 and 17, 

which have the bulky mesityl substituent on the imidazol-2-ylidene ligand. Interestingly, the cationic 

compounds 16 and the neutral 11 are the more selective catalyst precursors in α-vinylsilane with α/β 
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ratios of 1.60 and 1.15, respectively. Nevertheless, it is difficult to establish a clear correlation with 

neither the length of the linker nor the steric effect of the substituents. 

It has been reported that cationic rhodium(I) complexes catalyze the hydrosilylation of 1-alkynes to 

give preferentially the β-(E)-vinylsilane isomer while neutral analogs show the opposite 

stereoselectivity, as they are highly selective for the β-(Z)-vinylsilane. 37b,39,43 In contrast, the above 

described results indicate that this trend should not be considered a general rule as it is not applicable to 

NHC carbene containing complexes25b,44 since in these cases the selectivity is essentially determined by 

the alkyne substitution.  

Mechanistic considerations. The strong influence of the 1-alkyne structure on the selectivity can be 

rationalized in the frame of the widely accepted mechanism for the metal-catalyzed hydrosilylation, that 

is, the modified Chalk-Harrod mechanism that accounts for the unusual β-(Z)-vinylsilane isomer 

resulting from a formal trans addition. The mechanism starts with Si-H oxidative addition to the metal 

and invoke the insertion of a coordinated alkyne into the Rh-Si bond to form the alkenyl-Rh 

intermediate (A), instead of the insertion into the Rh-H bond. Direct reductive elimination from A 

would give the β-(E)-vinylsilane isomer. Alternatively, this intermediate could undergo a metal assisted 

isomerization to alkenyl-Rh (B) via a zwitterionic carbene-like intermediate (i)19a, or a η2-vinyl complex 

(ii)19b (Scheme 5). The driving force for this isomerization, which leads to the thermodynamically less 

stable β-(Z)-vinylsilane, is the relief of steric strain between the metal and the adjacent silane. However, 

the direct trans addition, without cis-trans isomerization, resulting in the formation of the Markovnikov 

product has been observed in cationic ruthenium complexes45and sustained by DFT calculations.46 In the 

same way, we have proposed that the involvement of dinuclear ruthenium complexes could also explain 

the formal trans addition.47 Additionally, an alternative reaction mechanism that accounts for the 

observed trans addition in the intramolecular alkyne hydrosilylation catalyzed by ruthenium complexes 

have been also described.48,49  
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When the R group in R-C≡C-H is not sterically demanding, as is the case of 1-hexyne (R = n-C4H9), 

the β-(Z)-vinylsilane isomer is selectively formed because the position of the equilibrium is shifted 

towards B. However, when the R group is very bulky, as is the case of tert-butylacetylene (R = t-C4H9), 

the reactions used to be unselective.37  Probably the introduction of additional steric congestion results in 

a equilibration between A and B that is expected to be translated to a mixture of β-(E)-vinylsilane and 

β-(Z)-vinylsilane isomers after reductive elimination.19b Besides, the bulkiness of R produces an 

additional steric repulsion with the metal center that makes the alkenyl-Rh intermediate C less sterically 

demanding resulting in the formation of the α-vinylsilane isomer.50 However, an alternative pathway for 

the formation of the α regioisomer could be the 1,2-silyl shift in the η2-vinyl intermediate (ii).49,51,52 In 

addition, the dehydrogenative silylation products, that also are frequently formed in catalytic systems 

using alkynes and/or hydrosilane with sterically demanding substituents, can be formed by β-reductive 

elimination from B.37 

In the particular case of Et3SiC≡CH, the no formation of the β-(Z)-vinylsilane isomer strongly suggest 

that the isomerization of the alkenylrhodium intermediate A does not take place and, in consequence, 

only the β-(E) and the α-vinylsilane isomers are formed from A and C. Although the steric influence of 

the -SiEt3 moiety could completely inhibit the ADB equilibrium, probably the electronic effects are 

even more important. Although the silyl group at the β carbon stabilizes the adjacent carbanion through 

a pπ-dπ interaction in the zwitterionic intermediate i,19a the silyl group at the α carbon should 

destabilizes the carbenic fragment in both intermediates (i and ii). In addition, the (Z)-silylalkenyl 

catalytic intermediate A should be stabilized by the hyperconjugative interaction between low-lying 

silicon-substitutent-based unoccupied molecular orbitals and occupied π-type orbitals.53 This effect is 

further reinforced by the presence of two silyl groups in trans position in A. Thus, the interplay between 

steric and electronic effects, based on the stabilization of the silylalkenyl catalytic intermediate A and 

the destabilization of the probable intermediates i or ii, could give full account of the experimental 
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observations.  

It is worth to mention that some methods for the regioselective production of 1,1-disubstituted vinyl-

silanes (α isomer) by direct trans addition have been recently described.45,46 Interestingly, 1,1-

bis(silyl)alkenes have been obtained by cis addition of hydrosilanes to alkyl-silyl acetylenes.42  

 

Conclusions 

We have described the synthesis of several ammonium-imidazolium chloride salts that are precursor 

for the synthesis of a range of rhodium (I) complexes containing amino-alkyl functionalized NHC 

ligands with hemilabile character of the type 1-dimethyl-amino-alkyl-3-R-imidazol-2-ylidene. The 

sequential deprotonation of the ammonium-imidazolium salts allowed the preparation of amine-

imidazolium cyclooctadienedichlororhodate(I) salts and neutral mononuclear complexes 

[RhCl(cod)(RIm(CH2)nNMe2)]. When the length of the linker is appropriate (n = 3) chloride abstraction 

by silver salts resulted in the formation of cationic mononuclear complexes by coordination of the 

dimethylamino fragment to the rhodium center. 

The rhodium complexes are efficient catalyst precursors for the hydrosilylation of terminal alkynes. It 

has been found that the stero- and regioselectivity of the reactions is mainly determined by the 

substitution of the 1-alkyne whereas the charge of the complexes, the length of the side arm and the 3-R 

substituents on the heterocyclic ring strongly influence the activity and, in some extent, the selectivity. 

Neutral complexes having amino-functionalized NHC ligands with a small substituent at the heterocycle 

are generally the most active and selective catalysts. Good selectivities in the β-(Z)-vinylsilane isomer 

were found in the hydrosilylation of 1-hexyne. However, moderate selectivities in the opposite β-(E)-

vinylsilane stereoisomer where obtained in the hydrosilylation of tert-butyl-acetylene. Unexpectedly, 

only the β-(E) and α bis(silyl)alkenes isomers where observed in the hydrosilylation of 

triethylsilylacetylene. 
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Experimental Section 

Scientific Equipment. C, H and N analyses were carried out in a Perkin-Elmer 2400 CHNS/O 

analyzer. Infrared spectra were recorded on a FT-Perkin-Elmer Spectrum One spectrophotometer using 

Nujol mulls between polyethylene sheets. NMR spectra were recorded on a Bruker Avance 300 MHz, 

and a Bruker Avance 400 MHz spectrometers. 1H (300.1276 MHz, 400.1625 MHz) and 13C (75.4792 

MHz, 100.6127 MHz) NMR chemical shifts are reported in ppm relative to tetramethylsilane and 

referenced to partially deuterated solvent resonances. Coupling constants (J) are given in Hertz. Spectral 

assignments were achieved by combination of 1H-1H COSY, NOESY, 13C DEPT and 1H-13C HMQC 

experiments. MALDI-TOF mass spectra were obtained on a Bruker MICROFLEX spectrometer using 

DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as matrix.54 

Electrospray mass spectra (ESI-MS) were recorded on a Bruker MicroTof-Q using sodium formiate as 

reference. Conductivities were measured in ca. 5 10-4 M acetone solutions of the complexes using a 

Philips PW 9501/01 conductimeter. 

Synthesis. All experiments were carried out under an atmosphere of argon using Schlenk techniques, 

and the solvents were distilled immediately prior to use from the appropriate drying agents. Oxygen-free 

solvents were employed throughout. CDCl3 was dried using activated molecular sieves, methanol-d4 

(<0.02% D2O) was purchased from Euriso-top and used as received. The compounds t-BuImH,55 

MesImH,56 MeImH(CH2)3ImHMe33 were prepared by the reported methods. MeImH was obtained from 

Sigma-Aldrich and distilled prior to use. The alkynes, HSiMe2Ph and chloro-alkyl-dimethylamine 

hydrochloride compounds were obtained from common commercial sources and, unless otherwise 

stated, were used as received. [{Rh(µ-Cl)(cod)}2] was prepared following the published method.57  

General Procedure for the Preparation of [RImH(CH2)nNMe2]Cl·HCl (1-5). The alkylammonium 

imidazolium chloride salts were synthesized through the following procedure. A mixture of 2-chloro-

N,N-dimethylalkylamine hydrochloride, Cl(CH2)nNMe2·HCl, and imidazole, RImH, in deoxygenated 
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CH3CN (10 mL) was refluxed for several days until reaction was completed. The white solid formed 

was filtered, washed with a CH3CN/diethyl ether mixture, and vacuum dried. 

 [MeImH(CH2)2NMe2]Cl·HCl (1). Cl(CH2)2NMe2·HCl (3.16 g, 21.93 mol) and MeImH (1.75 mL, 

21.93 mmol), reflux for 5 days, yield: 82%. Anal. Calcd for C8H17Cl2N3: C, 42.49; H, 7.58; N, 18.58. 

Found: C, 42.72; H, 7.45; N, 18.68. 1H NMR (298 K, CDCl3): δ 9.15 (s, CHNCHN), 7.8 (s, 1H, CH), 7.65 

(s, 1H, CH), 4.75 (t, JH-H = 6.5 Hz, 2H, NCH2), 4.02 (br s, 1H, NH), 3.97 (s, 3H, NMe), 3.76 (t, JH-H = 6.5 

Hz, 1H, NCH2), 2.99 (s, NMe2). 13C{1H} NMR (298 K, CD3OD): δ 124.25, 122.35 (CH), 55.62, 55.30 

(NCH2), 42.91 (NMe), 35.43 (s, NMe2). ESI-MS (CH3OH) m/z = 154.1 [M-2Cl-H]+. 

[MeImH(CH2)3NMe2]Cl·HCl (2). Cl(CH2)3NMe2·HCl (0.79 g, 5.01 mol) and MeImH (0.40 mL, 5.01 

mol), reflux for 5 days, yield: 75 %. Anal. Calcd for C9H19Cl2N3: C, 45.01; H, 7.97; N, 17.49. Found: C, 

44.92; H, 7.54; N, 16.99. 1H NMR (298 K, CD3OD): δ 9.03 (s, 1H, CHNCHN), 7.70 (s, 1H, CH), 7.61 (s, 

1H, CH), 4.36 (t, JH-H = 7.2 Hz, 2H, NCH2), 3.94 (s, 3H, NMe), 3.55 (br s, 1H, NH), 3.19 (m, 2H, 

NCH2), 2.89 (s, 6H, NMe2), 2.34 (m, 2H, CH2). 13C{1H} NMR (298 K, CD3OD): δ 125.43, 123.86 (CH), 

55.57, 47.81 (NCH2), 43.77 (NMe), 36.82 (NMe2), 26.52 (CH2). ESI-MS (CH3OH) m/z = 168.1 [M-2Cl-

H]+. 

 [t-BuImH(CH2)2NMe2]Cl·HCl (3). Cl(CH2)2NMe2·HCl (1.48 g, 10.28 mol) and t-BuImH (1.28 g, 

10.28 mol), reflux for 4 days, yield: 82 %. Anal. Calcd for C11H23Cl2N3: C, 49.26; H, 8.64; N, 15.66. 

Found: C, 49.20; H, 8.40; N, 15.90. 1H NMR (298 K, CD3OD): δ 9.35 (s, 1H, CHNCHN), 7.95 (s, 1H, 

CH), 7.81 (s, 1H, CH), 4.73 (t, JH-H = 6.3, 2H, NCH2), 3.78 (t, JH-H = 6.6, 2H, NCH2), 3.42 (s, 6H, 

NMe2), 1.71 (s, 9H, t-Bu). 13C{1H} NMR (298 K, CD3OD): δ 141.35 (CNCHN), 124.15, 122.37 (CH), 

57.18 (C, t-Bu), 56.87, 45.39 (NCH2), 44.18 (NMe2), 29.87 (CH3, t-Bu). ESI-MS (CH3OH) m/z = 196.6 

[M-2Cl-H]+. 

 [t-BuImH(CH2)3NMe2]Cl·HCl (4). Cl(CH2)3NMe2·HCl (1.28 g, 8.08 mol) and t-BuImH (1.00 g, 

8.08 mol), reflux for 4 days, yield: 73 %. Anal. Calcd for C12H25Cl2N3: C, 51.06; H, 8.93; N, 14.81. 

Found: C, 51.22; H, 8.33; N, 14.72. 1H NMR (298 K, CD3OD): δ 10.47 (s, 1H, CHNCHN), 8.04 (s, 1H, 
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CH), 7.40 (s, 1H, CH), 4.69 (t, JH-H = 12.3, 2H, NCH2), 3.32 (t, JH-H = 6.9, 2H, NCH2), 2.87 (s, 6H, 

NMe2), 2.67 (m, 2H, CH2), 1.66 (s, 9H, CH3, t-Bu). 13C{1H} NMR (298 K, CDCl3): δ 123.56, 119.03 

(CH), 60.45 (C, t-Bu), 54.12, 46.83 (NCH2), 43.07 (NMe2), 30.06 (CH3, t-Bu), 25.63 (CH2). ESI-MS 

(CH3OH) m/z = 210.2 [M-2Cl-H]+. 

 [MesImH(CH2)3NMe2]Cl·HCl (5). Cl(CH2)3NMe2·HCl (0.85 g, 5.37 mol) and MesImH (1.00 g, 5.37 

mmol), reflux for 7 days, yield: 78 %. Anal. Calcd for C17H27Cl2N3: C, 59.30; H, 7.90; N, 12.20. Found: 

C, 59.28; H, 7.41; N, 12.63. 1H NMR (298 K, CDCl3): δ 11.84 (br s, 1H, NH), 10.31 (s, 1H, CHNCHN), 

8.57 (s, 1H, CH), 7.15 (s, 1H, CH), 7.89 (s, 2H, CH Mes), 4.98 (t, JH-H = 10.0, 2H, NCH2), 3.45 (t, JH-H = 

10.0, 2H, NCH2), 2.93 (s, 6H, NMe2), 2.83 (m, 2H, CH2), 2.32 (s, 3H, CH3 Mes), 2.05 (s, 6H, CH3 Mes). 

13C{1H}NMR (298 K, CDCl3): δ 141.37 (s, CNCHN), 134.08, 130.67 (Mes), 129.87 (CH Mes), 124.26, 

123.04 (CH Im), 54.10, 47.17 (NCH2), 43.07 (NMe2), 25.92 (CH2), 21.03, 17.57 (CH3 Mes). ESI-MS 

(CH3OH) m/z = 272.1 [M-2Cl-H]+. 

General Procedure for the Preparation of Dichlorocyclooctadienerhodate(I) Salts 

[RImH(CH2)nNMe2][RhCl2(cod)] (6-10). [RImH(CH2)nNMe2]Cl·HCl (2.21 mmol) (1-5) and NaH 

(55.7 mg, 2.32 mmol) were reacted in THF (10 mL) for 30 min. Then [{Rh(µ-Cl)(cod)}2] (1.11 mmol) 

was added and the suspension was stirred overnight at room temperature. The pale yellow solids formed 

were separated by filtration, washed with diethyl ether and dried in vacuo.  

[MeImH(CH2)2NMe2][RhCl2(cod)] (6). Yield: 84%. Anal. Calcd for C16H28Cl2N3Rh: C, 44.05; H, 

6.47; N, 9.63. Found: C, 44.09; H, 6.34; N, 9.60. 1H NMR (298 K, CDCl3): δ 10.41 (s, 1H, CHNCHN), 

7.38 (s, 1H, CH), 7.13 (s, 1H, CH), 4.45 (t, JH-H = 5.4, 2H, NCH2), 4.21 (m, 4H, CH cod), 4.05 (s, 3H, 

NMe), 2.73 (t, JH-H = 5.4, 2H, NCH2), 2.39 (m, 4H, CH2 cod), 2.26 (s, 6H, NMe2), 1.65 (m, 4H, CH2 

cod). 13C{1H} NMR (298 K, CDCl3): δ 122.27, 121.78 (CH), 77.70 (d, JC-Rh = 11.1, CH cod), 58.60, 

47.29 (NCH2), 45.27 (NMe), 36.62 (NMe2), 31.09 (CH2 cod). ESI-MS (CH3CN) m/z = 154.1 

[MeImH(CH2)2NMe2]+, 211.0 [Rh(cod)]+.  

[MeImH(CH2)3NMe2][RhCl2(cod)] (7). Yield: 84%. Anal. Calcd for C17H30Cl2N3Rh: C, 45.35; H, 
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6.71; N, 9.33. Found: C, 44.84; H, 6.34; N, 9.60. 1H NMR (298 K, CDCl3): δ 10.64 (s, 1H, CHNCHN), 

7.24 (s, 1H, CH), 7.10 (s, 1H, CH), 4.47 (t, JH-H = 6.8, 2H, NCH2), 4.26 (m, 4H, CH cod), 4.13 (s, 3H, 

NMe), 2.47 (m, 4H, CH2 cod), 2.35 (t, JH-H = 6.5, 2H, NCH2), 2.25 (s, 6H, NMe2), 2.15 (m, 2H, CH2), 

1.71 (m, 4H, CH2 cod). 13C{1H} NMR (298 K, CDCl3): δ 122.14, 121.96, 120.99 (CH), 77.70 (d, JC-Rh = 

11.1, CH cod), 54.97, 47.57 (NCH2), 44.92 (NMe), 36.78 (NMe2), 31.09 (CH2 cod), 27.61 (CH2). ESI-

MS (CH3CN) m/z = 168.3 [MeImH(CH2)3NMe2]+, 211.0 [Rh(cod)]+.  

[t-BuImH(CH2)2NMe2][RhCl2(cod)] (8). NMR data. 1H NMR (298 K, CDCl3): δ 10.20 (s, 1H, 

CHNCHN), 7.97 (s, 1H, CH), 7.23 (s, 1H, CH), 5.16 (t, JHH = 7.5, 2H, NCH2), 4.22 (m, 4H, CH cod), 4.10 

(t, JHH = 7.5, 2H, NCH2), 3.06 (s, 6H, NMe2), 2.42 (m, 4H, CH2 cod), 1.80 (s, 9H, CH3, t-Bu), 1.68 (m, 

4H, CH2 cod).  

[t-BuImH(CH2)3NMe2][RhCl2(cod)] (9). NMR data. 1H NMR (298 K, CDCl3): δ 10.38 (s, 1H, 

CHNCHN), 7.63 (s, 1H, CH), 7.27 (s, 1H, CH), 4.68 (t, JHH = 7.8, 2H, NCH2), 4.22 (m, 4H, CH cod), 2.99 

(t, JHH = 7.5, 2H, NCH2), 2.66 (s, 6H, NMe2), 2.52 (m, 2H, CH2), 2.40 (m, 4H, CH2 cod), 1.77 (s, 9H, 

CH3, t-Bu), 1.68 (m, 4H, CH2 cod). 

 [MesImH(CH2)3NMe2][RhCl2(cod)] (10). NMR data. 1H NMR (298 K, CDCl3): δ 10.20 (s, 1H, 

CHNCHN), 7.80 (s, 1H, CH), 7.20 (s, CH Mes), 7.03 (s, 1H, CH), 6.96 (s, 2H, CH Mes), 4.79 (t, JH-H= 7.1, 

2H, NCH2), 4.09 (m, 4H, CH cod), 3.68 (m, 2H, NCH2), 2.85 (m, 2H, CH2 cod), 2.51 (s, 3H, CH3 Mes), 

2.45 (m, 2H, CH2 cod), 2.29 (s, 6H, NMe2), 2.04 (s, 6H, CH3 Mes), 1.78 (m, 2H, CH2), 1.58 (m, 4H, CH2 

cod). 

General Procedure for the Preparation of the Complexes [RhCl(cod)(RIm(CH2)nNMe2)] (11-15). 

Method A. A suspension of the compounds [RImH(CH2)nNMe2][RhCl2(cod)] (6-10) (1 mmol) in THF 

(10 mL) was treated with NaH (27.85 mg, 1.16 mmol) and H2O (0.3 mL) to give an orange suspension. 

The solid was removed by filtration and the resulting orange solution evaporated to dryness. 

Recrystallization from diethyl ether/pentane rendered the products as yellow solids which were filtered, 

washed with pentane, and dried in vacuo. Method B. The corresponding [RImH(CH2)nNMe2]Cl·HCl (1 
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mmol), NaH (1.16 mmol) and [{Rh(µ-Cl)(cod)}2] (0.5 mmol) were reacted in THF (10 mL) for 16 h to 

give suspensions of the compounds [RImH(CH2)nNMe2][RhCl2(cod)] (6-10). Further reaction with NaH 

(27.85 mg, 1.16 mmol) and H2O (0.3 mL) afforded orange suspensions from which the compounds were 

isolated following the procedure described above. 

[RhCl(cod)(MeIm(CH2)2NMe2)] (11). Yield: 55 % (Method A). Anal. Calcd for C16H27ClN3Rh: C, 

48.07; H, 6.81; N, 10.51. Found: C, 46.95; H, 6.59; N, 9.47. 1H NMR (298 K, CDCl3): δ 6.99 (d, JH4-H5= 

1.8, 1H, CH), 6.78 (d, JH4-H5 = 1.8, 1H, CH), 5.02 (m, 2H, CH cod), 4.73 (m, 1H, NCH2), 4.50 (m, 1H, 

NCH2), 4.07 (s, 3H, NCH3), 3.34 (m, 1H, CH cod), 3.26 (m, 1H, CH cod), 2.84 (m, 1H, NCH2), 2.74 (m, 

1H, NCH2), 2.40 (m, 4H, CH2 cod), 2.35 (s, 6H, NMe2), 1.99 (m, 4H, CH2 cod). 13C{1H} NMR (298 K, 

CDCl3): δ 182.37 (d, JC-Rh = 50.9, CNCN), 121.72, 121.16 (CH), 98.46 (m, CH cod), 68.13 (d, JC-Rh = 14.4, 

CH cod), 67.39 (d, JC-Rh = 15.1, CH cod), 59.89 (NCH2), 48.39 (s, NCH2), 45.64 (NCH3), 37.65 (NMe2), 

33.32, 32.59, 29.22, 28.52 (CH2 cod). MS (MALDI-TOF, DCTB matrix, CH2Cl2) m/z = 364.2 [M-Cl] +, 

154.1 [MeImH(CH2)2NMe2]+. ΛM (acetone) = 1.42 Ω-1cm2mol-1. 

 [RhCl(cod)(MeIm(CH2)3NMe2)] (12). Yield: 63 % (Method A). Anal. Calcd for C17H29ClN3Rh: C, 

49.34; H, 7.06; N, 10.15. Found: C, 49.06; H, 6.69; N, 9.75. 1H NMR (298 K, CDCl3): δ 6.86 (d, JH4-H5= 

1.8 Hz, 1H, CH), 6.80 (d, JH4-H5= 1.8 Hz, 1H, CH), 5.02 (m, 2H, CH cod), 4.66 (m, 1H, NCH2), 4.39 (m, 

1H, NCH2), 4.09 (s, 3H, NMe), 3.36 (m, 1H, CH cod), 3.26 (m, 1H, CH cod), 2.41 (m, 6H, CH2 cod and 

NCH2), 2.30 (s, 6H, NMe2), 1.95 (m, 6H, CH2 cod and CH2). 13C{1H} NMR (298 K, CDCl3): δ 121.79, 

120.75 (CH), 98.39 (d, JC-Rh = 7.1, CH cod), 98.24 (d, JC-Rh= 6.8, CH cod), 68.23 (d, JC-Rh = 14.7, CH 

cod), 67.41 (d, JC-Rh = 14.6, CH cod), 56.46, 48.71 (NCH2), 45.45 (NMe), 37.75 (NMe2), 33.36, 32.55, 

29.23 (CH2 cod), 29.11 (CH2), 28.53 (CH2 cod). ESI-MS (CH3CN) m/z = 378.1 [M-Cl]+. ΛM (acetone) = 

3.60 Ω-1cm2mol-1.  

[RhCl(cod)(t-BuIm(CH2)2NMe2)] (13). Yield: 63 % (Method B). Anal. Calcd for C19H33ClN3Rh: C, 

51.65; H, 7.53; N, 9.59. Found: C, 51.15; H, 7.44; N, 9.57. 1H NMR (298 K, CDCl3): δ 7.09 (d, JH4-H5= 
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1.8, 1H, CH), 7.00 (d, JH5-H4= 1.8, 1H, CH), 5.43 (m, 1H, NCH2), 4.96 (m, 2H, CH cod), 4.67 (m, 1H, 

NCH2), 3.27 (m, 2H, CH cod), 2.93 (m, 1H, NCH2), 2.78 (m, 1H, NCH2), 2.45 (m, 4H, CH2 cod), 2.39 

(s, 6H, NMe2), 1.96 (s, 9H, t-Bu), 1.80 (m, 4H, CH2 cod). 13C{1H} NMR (298 K, CDCl3): δ 180.15 (d, 

JC-Rh = 49.8, CNCN), 120.55, 119.55 (CH), 96.27 (d, JC-Rh = 7.5, CH cod), 94.01 (d, JC-Rh = 7.5, CH cod), 

69.84 (d, JC-Rh = 15.1, CH cod), 66.95 (d, JC-Rh = 14.3, CH cod), 59.72 (NCH2), 58.22 (t-Bu), 50.22 

(NCH2), 45.66 (NMe), 33.25 (CH2 cod), 32.27 (CH3, t-Bu), 31.85, 29.15, 28.50 (CH2 cod). MS 

(MALDI-TOF, DCTB matrix, CH2Cl2) m/z = 406.2 [M-Cl]+, 196.1 [t-BuImH(CH2)2NMe2]+. ΛM 

(acetone) = 1.14 Ω-1cm2mol-1. 

[RhCl(cod)(t-BuIm(CH2)3NMe2)] (14). Yield: 72 % (Method B). Anal. Calcd for C20H35ClN3Rh: C, 

52.69; H, 7.74; N, 9.22. Found: C, 52.48; H, 7.44; N, 9.35. 1H NMR (298 K, CDCl3): δ 7.03 (d, JH4-H5= 

2.0, 1H, CH), 6.94 (d, JH5-H4 = 2.0, 1H, CH), 5.25 (m, 1H, NCH2), 4.95 (m, 3H, CH cod and NCH2), 4.61 

(m, 1H, NCH2), 3.29 (m, 3H, CH cod and NCH2), 2.38 (m, 5H, CH2 cod and CH2), 2.31 (s, 6H, NMe2), 

1.98 (s, 9H, t-Bu), 1.93 (m, 5H, CH2 cod, CH2). 13C{1H} NMR (298 K, CDCl3): δ 180.35 (d, JC-Rh = 51.4, 

CNCN), 119.00, 119.60 (s, CH), 96.27 (d, JC-Rh = 7.7, CH cod), 93.99 (d, JC-Rh = 7.5, CH cod), 69.78 (d, JC-

Rh = 15.5, CH cod), 67.07 (d, JC-Rh = 14.4, CH cod), 58.29 (t-Bu), 56.86, 50.80 (NCH2), 45.53 (NCH3), 

33.15 (CH2 cod), 32.30 (CH3, t-Bu), 31.98 (CH2 cod), 29.12 (CH2 cod and CH2), 28.59 (CH2 cod). MS 

(MALDI-TOF, DCTB matrix, CH2Cl2) m/z = 420.1 [M-Cl]+, 210.1 [t-BuImH(CH2)3NMe2]+. ΛM 

(acetone) = 0.38 Ω-1cm2mol-1. 

[RhCl(cod)(MesIm(CH2)3NMe2)] (15). Yield: 63 % (Method B). Anal. Calcd for C25H37ClN3Rh: C, 

57.97; H, 7.20; N, 8.11. Found: C, 56.94; H, 7.34; N, 7.97. 1H NMR (298 K, CDCl3): δ 7.03 (s, 1H, CH 

Mes), 7.00 (d, JH4-H5 = 1.8, 1H, CH), 6.85 (s, 1H, CH Mes), 6.67 (d, JH4-H5 = 1.8, 1H, CH), 5.11 (m, 1H, 

NCH2), 4.79 (m, 1H, CH cod), 4.71 (m, 1H, CH cod), 4.36 (m, 1H, NCH2), 3.35 (m, 1H, CH cod), 2.92 

(m, 1H, CH cod), 2.37 (s, 3H, CH3 Mes), 2.35 (m, 1H, CH2), 2.32 (s, 3H, CH3 Mes), 2.31 (m, 1H, CH2), 

2.22 (s, 7H, CH2 and NMe2), 2.13 (m, 1H, CH2), 2.09 (m, 2H, CH2 cod), 1.91 (m, 2H, CH2 cod), 1.65 
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(m, 2H, CH2 cod), 1.76 (s, 3H, CH3 Mes), 1.42 (m, 2H, CH2 cod). 13C{1H} NMR (298 K, CDCl3): δ 

181.88 (d, JC-Rh = 51.1, CNCN), 138.59, 137.22, 136.27, 134.31 (Mes), 129.56, 128.02 (CH), 126.48 (CH 

Mes), 96.80, 96.75 (m, CH cod), 68.03 (d, JC-Rh = 14.3, CH cod), 67.40 (d, JC-Rh= 14.3, CH cod), 56.46, 

49.38 (NCH2), 45.09 (NMe2), 33.75, 31.41 (CH2 cod), 28.80 (s, CH2 and CH2 cod), 27.86 (CH2 cod), 

20.83, 19.50, 17.45 (CH3). MS (MALDI-TOF, DCTB matrix, CH2Cl2) m/z = 482.3 [M-Cl] +, 272.2 

[MesImH(CH2)3NMe2]+. ΛM (acetone) = 0.82 Ω-1cm2mol-1. 

Preparation of [Rh(cod)(MeIm(CH2)3NMe2)][BF4] (16). AgBF4 (47 mg, 0.24 mmol) was added to a 

solution of complex 12 (100 mg, 0.24 mmol) in CH3CN/acetone. After 6h of stirring a 0 °C the solid 

formed was separated by filtration. The resulting yellow solution was concentrated to ca. 1mL and 

treated with diethyl ether to give a yellow solid. The solid was separated by decantation, washed with 

diethyl ether, and dried in vacuo. Yield: 62 %. Anal. Calcd for C17H29BF4N3Rh: C, 43.90; H, 6.28; N, 

9.03. Found: C, 44.10; H, 6.17; N, 9.09. 1H NMR (298 K, CDCl3): δ 7.06 (d, JH4-H5 = 2.0, 1H, CH), 7.01 

(d, JH4-H5 = 2.0, 1H, CH), 5.65 (m, 1H, NCH2), 4.63 (m, 2H, CH cod), 4.32 (m, 1H, NCH2), 3.96 (s, 3H, 

NMe), 3.66 (m, 2H, CH cod), 2.68 (m, 3H, CH2 and CH2 cod), 2.54 (m, 2H, CH2 cod), 2.41 (m, 6H, 

NMe2), 2.24 (m, 3H, CH2 and CH2 cod), 2.17 (m, 1H, CH2), 1.89 (s, 3H, CH2 and CH2 cod). 13C{1H} 

NMR (298 K, CDCl3): δ 179.63 (d, JC-Rh = 28.8, CNCN), 125.86, 123.99 (CH), 100.40 (d, JC-Rh = 8.4, CH 

cod), 100.21 (d, JC-Rh = 7.8, CH cod), 77.33 (d, JC-Rh = 13.5, CH cod), 72.45 (m, CH cod), 65.13 (NCH2), 

51.51 (NMe), 49.35 (NCH2), 39.21 (NMe2), 35.79 (CH2), 32.14, 31.60, 29.67, 27.86 (CH2 cod). MS 

(MALDI-TOF, DCTB matrix, CH2Cl2) m/z = 378.1 [M] +. ΛM (acetone) = 74 Ω-1cm2mol-1. 

 [Rh(cod)(MesIm(CH2)3NMe2)][BF4] (17). AgBF4 (37.6 mg, 0.19 mmol) and 15 (100 mg, 0.19 

mmol) were reacted in CH3CN/acetone at 0 °C for 6 h. Work-up as described above gave the compound 

as a yellow solid. Yield: 71 %. Anal. Calcd for C25H37BF4N3Rh: C, 52.74; H, 6.55; N, 7.38. Found: C, 

52.79; H, 6.31; N, 7.39. 1H NMR (298 K, CDCl3): δ 7.45 (d, JH4-H5 = 1.7, 1H, CH), 7.09 (s, 1H, CH 

Mes), 6.93 (s, 1H, CH Mes), 6.79 (d, JH4-H5 = 1.7, 1H, CH), 5.90 (m, 1H, NCH2), 4.79 (m, 1H, CH cod), 
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4.61 (m, 1H, NCH2), 4.06 (m, 1H, CH cod), 3.50 (m, 1H, CH cod), 3.13 (m, 1H, CH cod), 2.39 (m, 2H, 

CH2 cod), 2.29 (s, 9H, NMe2 and CH3 Mes), 2.22 (m, 3H, CH2 and CH2 cod), 2.18 (s, 3H, CH3 Mes), 

1.85 (m, 3H, CH2 and CH2 cod), 1.73 (s, 3H, CH Mes), 1.65 (m, 3H, CH2 and CH2 cod), 1.55 (m, 1H, 

CH2). 13C{1H} NMR (298 K, CDCl3): δ 139.47 (CN Mes), 135.33, 134.85, 134.24 (Mes), 129.32 (CH 

Mes), 125.32, 122.24 (CH), 98.97 (d, JCRh = 8.7, CH cod), 94.97 (m, CH cod), 72.64 (d, JCRh = 11.8, CH 

cod), 71.38 (m, CH cod), 62.58, 47.14 (s, NCH2), 32.99, 30.84, 28.79, 28.30, 25.25 (s, CH2 cod and 

CH2), 20.99, 18.99, 17.78 (s, CH3). MS (MALDI-TOF, DCTB matrix, CH2Cl2) m/z = 482.2 [M]+. ΛM 

(acetone) = 77 Ω-1cm2mol-1. 

Preparation of [Rh(cod)(MeIm(CH2)3ImMe)][BF4] (18). A mixture MeIm(CH2)3ImMe (0.138 g, 

0.5 mmol) and Ag2O (0.462 g, 2.0 mmol) was stirred in water (10 mL) at 0 °C for 30 min. The excess of 

Ag2O was removed by filtration and a saturated solution of NaBF4 (0.137 g, 1.25 mmol) in water was 

added to the resulting solution. The white solid formed was filtered and dried under vacuum. The solid 

was dissolved in CH2Cl2 at reflux temperature and [{Rh(µ-Cl)(cod)}2] (0.25 mmol, 123.3 mg) was 

added and the mixture heated for further 30 min. The AgCl formed was removed by filtration, and the 

solvent was pumped off from the resulting yellow solution. The yellow residue was washed and treated 

with pentane until a yellow solid was formed, which was isolated by filtration, washed with pentane and 

dried in vacuum. The compound was recrystallized from THF/pentane. Yield: 63 %. Anal. Calcd for 

C19H28BF4N4Rh: C, 45.44; H, 5.62; N, 11.16. Found: C, 45.30; H, 5.60; N, 10.72. 1H NMR (298 K, 

CDCl3): δ 6.96 (d, JH4-H5= 1.8 Hz, 1H, CH), 6.88 (d, JH4-H5= 1.8 Hz, 1H, CH), 4.93 (m, 2H, NCH2), 4.50 

(m, 4H, CH cod), 4.35 (m, 2H, NCH2), 3.96 (s, 6H, NMe), 2.47 (m, 4H, CH2 cod), 2.25 (m, 4H, CH2 

cod), 1.75 (m, 2H, CH2). 13C{1H} NMR (298 K, CDCl3): δ 181.8 (d, JC-Rh= 47.3, CNCN), 122.86, 122.64 

(CH), 89.71 (d, JC-Rh= 7.8, CH cod), 88.52 (d, JC-Rh= 7.7, CH cod), 78.86, 78.67 (s, CH cod), 52.55 

(NCH2), 37.81 (NMe), 32.76 (CH2), 30.83, 30.69, 30.49 (s, CH2 cod). ESI-MS (CH3CN) m/z = 415.1 

[M]+, 307.0 [M-cod]+.  

General Procedure for the Hydrosilylation of 1-Alkynes with HSiMe2Ph. A 5 mm 
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NMR tube was charged with the catalyst precursors (11-18) (7.7 x 10-4 mmol), CDCl3 (0.5 mL), the 

corresponding alkyne (PhC≡CH, t-Bu-C≡CH, 1-hexyne or Et3C≡CH) (0.077 mmol), and a light excess 

of HSiMe2Ph (0.085 mmol). The solution was kept in a thermostatic bath at 60 °C and the progress of 

the reactions monitored by 1H NMR spectroscopy. The reaction products were identified by NMR by 

comparison with literature reported data. The catalytic solutions obtained from Et3C≡CH were filtered 

through a pad of Celite and the volatiles removed under reduced pressure. The new compounds were 

characterized by 1H NMR and GC-MS. 

1-(Dimethylphenilsilyl)-1-(triethylsilyl)ethene: 1H NMR (CDCl3): δ = 7.35, 7.19 (m, 5H, Ph), AB 

system ( δA = 6.22, δB = 6.21, JAB = 5.2, 2H, CH), 0.64 (t, JHH = 7.8, 6H, CH2), 0.32 (q, JHH = 7.8, 9H, 

CH3), 0.19 (s, 6H, CH3). 

(E)-2-(Dimethylphenylsilyl)-1-(triethylsilyl)ethene: 1H NMR (CDCl3): δ = 7.32, 7.15 (m, 5H, Ph), 

AB system (δA = 6.55, δB = 6.47, JAB = 22.8, 2H, CH), 0.76 (t, JHH = 8.0, 6H, CH2), 0.41 (q, JHH = 8.0, 

9H, CH3), 0.15 (s, 6H, CH3). 

Synthesis of β-hexen-1-enyl-methyl-diphenyl-silane. A schlenk tube with a screw tap was charged 

with the catalyst precursors 12 (38.5 x 10-3 mmol, 16 mg), CHCl3 (5 mL), 1-hexyne (3.85 mmol, 456 

µL), and HSiMe2Ph (4.25 mmol, 675 µL). The solution was stirred at 60 °C for 30 min and then 

transferred to a round-botton flask under Argon. Distillation in a Kugelrohr oven 160 ºC (ca. 0.1 Torr) 

gave β-hexen-1-enyl-methyl-diphenyl-silane as a colourless liquid (Z:E = 94:6, 817 mg, 97%). The α 

isomer was observed only in traces amounts.  

X-ray Structural Determination of Compounds [MeImH(CH2)2NMe2][RhCl2(cod)] (6) and 

[RhCl(cod)(MeIm(CH2)2NMe2)] (11). Suitable yellow crystals for X-ray diffraction experiments were 

obtained by slow diffusion of diethyl ether (6) or pentane (11) into concentrated THF solutions of the 

complexes. Intensity data were collected at low temperature (100(2)K) on a Bruker SMART CCD area 

detector diffractometer equipped with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) using 
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narrow frames (0.3˚ in ω). Cell parameters were refined from the observed setting angles and detector 

positions of strong reflections (9406 refl., 2θ < 56.3º, 6; 9743 refl., 2θ < 56.6º, 11). Data were corrected 

for Lorentz and polarisation effects, and multi-scan absorption corrections were applied with SADABS 

program.58 The structures were solved by Patterson method and completed by successive difference 

Fourier syntheses (SHELXS-86).59 Refinement, by full-matrix least-squares on F2 with SHELXL97,59 

was similar for both structures, including isotropic and subsequent anisotropic displacement parameters 

for all non-hydrogen atoms.  Most of the hydrogen atoms were included from observed positions and 

refined as free isotropic atoms; details are included below. All the highest electronic residuals (smaller 

than 1.0 e/Å3) were observed in close proximity of the Rh metal and have no chemical sense. Atomic 

scattering factors, corrected for anomalous dispersion, were used as implemented in the refinement 

program.59 

Crystal data for compound 6: C16H28Cl2N3Rh, M = 436.22; yellow needle, 0.198 x 0.055 x 0.052 

mm3; trigonal, R-3; a = 36.9644(10), c = 7.2845(4) Å; Z = 18; V = 8619.8(6) Å3; Dc = 1.513 g/cm3; µ = 

1.171 mm-1, min. and max. transmission factors 0.801 and 0.942; 2θmax = 56.70º; 30250 reflections 

collected, 4698 unique [Rint = 0.0396]; number of data/restrains/parameters 4698/0/287; final GoF 1.020, 

R1 = 0.0289 [4066 reflections, I > 2σ(I)], wR2 = 0.0684 for all data. Only hydrogens of three 

methylenic -CH2- groups of the cod molecule required a restrained refinement (calculated positions and 

positional and displacement riding refinement), all the rest were refined as free isotropic atoms. 

Crystal data for compound 11: C16H27ClN3Rh, M = 399.77; yellow irregular block, 0.167 x 0.125 x 

0.079 mm3; monoclinic, P21/c; a = 10.3428(7), b = 13.0938(9), c = 12.7756(9) Å, β = 97.2510(10)º; Z = 

4; V = 1716.3(2) Å3; Dc = 1.547 g/cm3; µ = 1.148 mm-1, min. and max. transmission factors 0.831 and 

0.915; 2θmax = 56.60º; 20970 reflections collected, 4181 unique [Rint = 0.0310]; number of 

data/restrains/parameters 4181/0/298; final GoF 1.106, R1 = 0.0233 [3921 reflections, I > 2σ(I)], wR2 = 

0.0522 for all data. All hydrogens were refined as free isotropic atoms. 
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Figure 1: Molecular structure of compound [(MeImH(CH2)2NMe2)][RhCl2(cod)] (6). (Most hydrogen 

atoms have been omitted for clarity). 

 

 

 

Figure 2: Molecular diagram of complex [RhCl(cod)(MeIm(CH2)2NMe2)] (11).  
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Figure 3: Reaction profile of conversion vs time for the hydrosilylation of n-BuC≡CH with different 

precursors. 
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Figure 4: β-(E)/β-(Z) ratio for the hydrosilylation of n-BuC≡CH catalyzed by [RhCl(cod)(t-

BuIm(CH2)2N(CH3)2)] (13) at 60 °C. Total consumption of 1-hexyne at t = 120 min. 

 

 

Table 1. Selected Bond Distances (Å) and Angles (deg) for Compounds 6 and 11.a 

Compound 6 11 6 11 
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___________________________________________________________________________________ 
Rh-Cl(1) 2.3766(5) 2.3868(4) Rh-M(1)a 1.981(3) 1.9843(19) 

Rh-Cl(2)/C(1) 2.3878(5) 2.0292(17) Rh-M(2)a 1.994(2) 2.0927(17) 

Rh-C(9) 2.102(2) 2.1101(17) Rh-C(12) 2.109(2) 2.1985(17) 

Rh-C(16) 2.095(2) 2.1016(18) Rh-C(13) 2.115(5) 2.2078(17) 

N(1)-C(1) 1.328(3) 1.356(2) N(2)-C(1) 1.326(3) 1.355(2) 

N(1)-C(2) 1.375(3) 1.389(2) N(2)-C(3) 1.378(3) 1.387(2) 

N(1)-C(4) 1.467(3) 1.460(2) N(2)-C(5) 1.470(3) 1.466(2) 

N(3)-C(6) 1.448(4) 1.458(2) C(2)-C(3) 1.344(4) 1.341(3) 

N(3)-C(7) 1.457(4) 1.457(3) C(5)-C(6) 1.516(4) 1.517(2) 

N(3)-C(8) 1.451(4) 1.462(2) 

 
Cl(1)-Rh-Cl(2)/C(1)   89.752(19)   88.15(5) C(3)-N(2)-C(5) 126.1(2) 123.71(15) 

Cl(1)-Rh-M(1)a 177.87(7) 179.44(5) C(6)-N(3)-C(7) 109.4(3) 112.54(15) 

Cl(1)-Rh-M(2)a   90.16(7)   92.01(5) C(6)-N(3)-C(8) 112.5(3) 109.63(15) 

Cl(2)/C(1)-Rh-M(1)a   91.80(8)   92.25(7) C(7)-N(3)-C(8) 110.3(3) 110.34(17) 

Cl(2)/C(1)-Rh-M(2)a 178.69(8) 177.61(7) Rh-C(1)-N(1)     - 124.88(13) 

M(1)-Rh-M(2)a   88.32(10)   87.60(7) Rh-C(1)-N(2)     - 130.72(13) 

C(1)-N(1)-C(2) 108.94(19) 111.18(16) N(1)-C(1)-N(2) 108.2(2) 104.37(15) 

C(1)-N(1)-C(4) 125.1(2) 124.21(15) N(1)-C(2)-C(3) 106.9(2) 106.44(16) 

C(2)-N(1)-C(4) 126.0(2) 124.61(16) N(2)-C(3)-C(2) 107.2(2) 107.09(16) 

C(1)-N(2)-C(3) 108.73(19) 110.91(15) N(2)-C(5)-C(6) 111.4(2) 112.24(14) 

C(1)-N(2)-C(5) 125.0(2) 124.66(15) N(3)-C(6)-C(5) 113.0(2) 113.05(15) 

a M(1) and M(2) represent the midpoints of the olefinic double bonds C(9)-C(16) and C(12)-C(13), respectively. 

 

 

 

Table 2. Hydrosilylation of Terminal Alkynes with Aminoalkyl-functionalized NHC Carbene 



 

Jiménez, Pérez-Torrente, Bartolomé, Gierz, Lahoz and Oro, manuscript for Organometallics 
 

 

42 

Rhodium(I) Complexes a, b 

entry alkyne catalyst time, h conv % % β-(E) % β-(Z) % α % alkene % polym. 

          1c PhC≡CH 11 2.00 97 20 13 0 0 67 
2 " 12 2.00 99 58 16 19 6 1 
3c " 13 0.50 97 41 0 10 0 49 
4c " 14 0.50 99 14 10 1 0 75 
5 " 15 12.00 98 67 13 8 4 8 
6c " 16 0.25 97 32 0 6 0 62 
7 " 17 12.00 98 67 0 15 0 18 
8 " 18 4.00 95 47 17 15 3 18 
          9 t-BuC≡CH 11 12.00 99 79 9 9 3  

10 " 12 12.00 97 76 6 8 10  
11 " 13 12.00 95 77 9 10 4  
12 " 14 12.00 99 74 9 11 7  
13 " 15 24.00 87 58 13 15 14  
14 " 16 7.00 90 65 12 13 10  
15 " 17 24.00 72 73 6 11 9  
16 " 18 5.35 93 57 5 28 10  
          17 n-BuC≡CH 11 1.50 96 2 98 0 0  

18 " 12 1.25 97 5 95 0 0  
19 " 13 1.00 95 5 95 0 0  
20 " 14 8.00 87 7 88 4 0  
21 " 15 5.00 82 9 85 3 3  
22 " 16 2.00 98 14 79 6 0  
23 " 17 4.50 92 10 88 2 0  
24 " 18 4.25 94 22 64 8 6  
          25 Et3SiC≡CH 11 5.00 93 56 0 42 2  

26 " 12 12.00 98 74 4 21 0  
27 " 13 1.00 98 45 0 55 0  
28 " 14 9.00 94 51 0 49 0  
29 " 15 24.00 81 67 0 33 0  
30 " 16 1.75 98 38 1 61 0  
31 " 17 24.00 78 55 1 43 0  
32 " 18 5.35 90 81 2 17 0  

a) Reactions were monitored by 1H NMR. b) Experiments were carried out using a HSiMe2Ph/RC≡CH/catalyst ratio of 
110/100/1, [catalyst]o =  1.54 x 10-3 M in CDCl3, temperature 60°C. c) Room temperature. 

 

 

Table 3. Distribution of products after prolonged heating at 60 °C for the hydrosilylation of n-BuC≡CH 
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in CDCl3.         

entry catalyst time, h conv % β-(E)/ β-(Z) % α % allyl % alkene 

        1 11   1.50 96 0.02 0 0 0 
2  10.00 100 0.13 5 0 0 
3 12   1.25 97 0.05 0 0 0 
4  12.00 100 0.27 7 0 5 
5 13   1.00 95 0.05 0 0 0 
6  12.00 100 1.29 3 18 0 
7 14   5.00 57 0.32 6 0 0 
8  15.00 100 4.09 3 41 0 
9 15  3.50 70 0.10 3 0 2 
10  10.00 100 0.24 7 0 4 
11 16   2.00 98 0.18 6 0 0 
12    9.00 100 0.64 0 23 0 
13 17  4.50 92 0.11 2 0 0 
14  12.00 100 0 .35 12 0 0 
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A series of neutral and cationic rhodium (I) complexes containing hemilabile amino-alkyl functionalized 

NHC ligands have been prepared from the appropriate ammonium-imidazolium chloride salts. These 

complexes are efficient catalyst precursors for the hydrosilylation of terminal alkynes. Excellent 

selectivities in the β-(Z)-vinylsilane isomer have been found in the hydrosilylation of 1-hexyne. 

Noteworthy, the hydrosilylation of triethylsilylacetylene gave mainly β-(E) and α bis(silyl)alkenes. 


