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1.1. Definition and origin of trace elements 

The term "trace element" is widely used in the literature and may have differing meanings in 

various scientific disciplines. Trace elements refer generally to elements that occur in natural 

and perturbed environments in small amounts and that, when present in excessive 

bioavailable concentrations, are toxic to living organisms. Often it defines elements that are 

essential or toxic in small quantities to microorganisms and plant and animal organisms, 

including humans. However, it often includes elements with no known physiological 

functions. Other terms that are often used as synonymous for most "trace elements" include: 

"trace or heavy metals", "microelements", "trace inorganics" (Blum, 1998; Adriano, 2001; 

Carrillo-González et al., 2006). The most used of the latter terms in environmental studies is 

heavy metals, referring to elements having densities greater than 5.0 g cm
3
 and denote metals 

and metalloids that are associated with pollution and toxicity but also include essential 

elements. However, some authors have stressed the imprecision of the term “heavy metal” 

concerning which elements are included, as well as the lack of chemical consistency of using 

such term for any compound of a given element (Duffus, 2002; Hodson, 2004; Madrid, 2010). 

In Geology trace elements are those distinct that major elements (O, Si, Al, Na, Mg, Ca and 

Fe) and minor elements (H, C, S, K, P, Ti, Cr, Mn). In which Soil Science this term is applied 

to those elements which concentration is <1000 mg kg
-1

. This includes Mn, Cr, Ni, Pb and Zn 

(1 - 1500 mg kg
-1

); Co, Cu and As (0.1 - 250 mg kg
-1

); Cd and Hg (0.01 - 2 mg kg
-1

). In 

biochemical and biomedical research, trace elements are considered to be those that are 

ordinarily present in plant or animal tissues in concentrations comprising <100 mg kg
-1

 of the 

organism dry matter. In food and nutrition science, a trace element may be defined as an 

element that is of common occurrence but whose concentration rarely exceeds 20 mg kg
-1

 in 

the foodstuffs as consumed (Blum, 1998; Adriano, 2001; Carrillo-González et al., 2006). 

Trace elements are ubiquitous in agroecosystems. Trace elements enter an agroecosystem 

through both natural and anthropogenic processes. Some soils have been found to have a high 

background of some trace elements, which are toxic to plants and wild life, due to extremely 

high concentrations of these elements in the parent materials. Anthropogenic processes 

include inputs of trace elements through use of fertilizers, liming materials, organic manures 

(municipal wastes as sewage suldges and other wastes used as soil amendments), irrigation 

waters and other industrial wastes. Other anthropogenic sources include mining and smelting 

of metallic ores, combustion of coal and other fossil fuels, use of pesticides in agriculture and 

timber industry, manufacturing, landfills, and so on. These processes contribute variable 
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amounts of trace elements to the agroecosystem. Accumulation of trace elements, especially 

heavy metals, in the soil has potential to restrict the soil’s function, cause toxicity to plants, 

and contaminate the food chain. (Blum, 1998; Senesi et al., 1999; Adriano, 2001; He et al., 

2005; Carrillo-González et al., 2006). 

 

1.2. Remediation of soil contaminated with trace elements 

Figure 1.1 Bioavailability processes in the soil-plant system. Modified from the US-NRC (2003), (Adriano et al., 

2004). 

Contamination of soils with trace elements is a challenging environmental issue due to: a) the 

non-degradable character of inorganic elements, b) the risks associated with their transfer to 

non-contaminated areas via run-off and leaching, and c) their potential entry in the food chain 

via plant uptake or direct ingestion. However, the detrimental effects in exposed organisms 

and ecosystems are not caused by the entire amount of trace elements released to the 

environment but only by the bioavailable fraction (Figure 1.1). The mobility and availability 

of trace elements are controlled by many chemical and biochemical processes (precipitation-

dissolution, adsorption-desorption, complexation-dissociation, and oxidation-reduction, etc.) 

(Figure 1.2) (He et al., 2005). Therefore, the studies on trace element contamination have 

been evolving from an old mentality, where the total concentration of the contaminants has 

been the main basis for risk assessment, to a modern mindset where mainly the bioavailable 

fraction of the total mass is considered (US-EPA, 1993; Adriano et al., 2004).  
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Figure 1.2 Trace element biogeochemical cycle (Alloway, 1990). 

 

However, the definition of bioavailability and the concepts on which it is based are still 

unclear. The methods adopted for its measurement vary and as such there is no single standard 

technique for the assessment of either plant availability of contaminants or their 

ecotoxicological impacts on soil biota. The bioavailable contaminant fraction in soil 

represents the relevant exposure concentration for soil organisms (Figure 1.3) (Tobias et al., 

2003). According to Adriano et al. (2004), the bioavailable fraction of trace element refers to 

the readily available fraction (sum of soluble and weakly adsorbed fractions) that oftentimes 

refers to the most labile fraction.  

 

 

 

 

 

 

 

 
Figure 1.3 Bioavailability – complexity of parameters and processes (Tobias et al., 2003). 
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Remediation of contaminated soil is accomplished by either destroying contaminants or by 

removing them from the soil or by reducing their toxicity or their bioavailability. 

Environmental remediation technologies use physical, chemical, or biological processes to 

eliminate, reduce, isolate, or stabilized contaminants. There are many classifications of the 

technologies of soil remediation: 1) depending on the place where the treatment is 

accomplished the treatment is in situ (the soil is treated in place) or ex situ (the soil is 

excavated and treated on the place or transported to a treatment plant); 2) depending on the 

type of treatment: physical, chemical or biological; 3) on the technology: isolation, 

immobilization, toxicity reduction, physical separation and extraction; 4 ) depending on the 

objective: remove the contaminants from the soil (“site decontamination”) or reduce the risk 

posed by the contaminants by reducing exposure (“site stabilization”). 

Every remediation technology has certain limitations and disadvantages. Therefore, site-

specific evaluations must be made to assure that the appropriate technologies are applied. If 

multiple contaminants are involved, it may be necessary to use a combination of techniques to 

reduce the concentration of pollutants to acceptable levels. The economic cost of remediation 

is one of the most important factors to be taken into account. Another factor is the nature and 

concentration of the contaminant. In this last respect is very important the cleanup goal. 

Within the “in situ” techniques (isolation, removal/extraction and stabilization) few of them 

have been fully developed to date and can be considered as cost-effective and reliable for land 

treating of extensive contaminated areas. 

Among the different remediation techniques, biological  ones have gained great importance in 

the last decade due to its low cost, low technical requirement and their potential to take 

place in situ (Baker & Brooks, 1989; Ensley, 1995). Bioremediation attempts to use plants and 

microbe to enhance the natural processes for removing or decomposing the unwanted 

substances. Once a favorable environmental condition is established for the selected plants or 

microbes to thrive, the biological processes for remediation could be sustained by the selected 

plants or microbes with much reduced energy inputs. After the contaminants are removed by 

biological means, the soil would remain biologically active and its capability to function as a 

medium for plant growth would not be impaired.  

Therefore, while proper attention should be devoted to establishing processes and devising 

techniques to reduce or eliminate contaminants from soil as much rapidly as possible, equal 

importance should be given to understanding the impact of the treatment processes on 

decontaminated soil. The goal of soil remediation is not only to eliminate contamination from 
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the soil but also to restore the quality of the soil. 

Compared with physical and chemical remediation, bioremediation has several advantages: (1) 

it preserves the natural properties of soil; (2) it acquires energy mainly from sunlight; (3) high 

levels of microbial biomass in the rhizosphere can be achieved; (4) it is low in cost; and (5) it 

has the potential to be rapid (Huang et al., 2004).  

In situ bioremediation methods comprise: 

Natural attenuation that occurs when physical, chemical and biological processes act to 

reduce the toxicity and mobility of contaminants. The predominant processes that comprise 

natural attenuation include biodegradation, chemical transformation, stabilization, 

volatilization. 

Enhanced bioremediation that is directed towards stimulating the microorganisms to grow 

and use the contaminants as a food and energy source by creating a favorable environment for 

microorganisms.  

Phytoremediation that refers to the technologies that use plants for treating polluted soils. 

Phytoremediation is a technology that should be considered for remediation of contaminated 

sites because of its cost effectiveness, aesthetic advantages, and long-term applicability. 

Phytoremediation is well-suited for use at very large field sites where other methods of 

remediation are not cost-effective or practicable; at sites with low concentrations of 

contaminants where only “polishing treatment” is required over long periods of time; and in 

conjunction with other technologies where vegetation is used as a final cap and closure of the 

site (Schnoor, 1997). 

Plants have shown the capacity to withstand relatively high concentrations of organic 

chemicals without toxic effects, and they can uptake and convert chemicals quickly to less 

toxic metabolites in some cases. In addition, they stimulate the degradation of organic 

chemicals in the rhizosphere by the release of root exudates, enzymes, and the build-up of 

organic carbon in the soil. For metal contaminants, plants show the potential for 

phytoextraction (uptake and recovery of contaminants into above-ground biomass), filtering 

metals from water onto root systems (rhizofiltration), or stabilizing waste sites by erosion 

control (phytostabilization) and evapotranspiration of large quantities of water 

(phytovolatilization) (Schnoor, 1997). 

Enhancements of phytoremediation processes (Wenzel et al., 1999). Basically, three 

approaches may be used to enhance phytoremadioation processes: 
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1. Improve plant’s genetic potential. Some specific targets are to improve: root morphology, 

root exudates involved in mobilization/immobilization of pollutants, plant enzymes that are 

essential for detoxification, oxidation/reduction, translocation, degradation or volatilization of 

pollutants, and biomass. 

2. Cultural/management practices, e.g., crop management, weed/plant disease control and 

harvest techniques. 

3. Soil conditioning aimed at providing optimal physical and nutritional conditions for plant 

growth, development of the root/microrhyzal system, and enhancing phytoremediation 

processes by adjusting soil physical, chemical, and biological properties that control 

pollutants mobility and bioavailability. In this sense, the use of some wastes and byproducts 

as amendments could enhance remediation processes.  

 

1.3. Application of amendments to the contaminated soil 

Application of soil amendments might be an environmentally friendly and cost-effective 

approach to restore extensive areas with a moderate-level of contamination. These “in situ” 

treatments aim at enhancing natural attenuation mechanisms (sorption, precipitation and 

complexation reactions) that occur in the soil, thus reducing the mobility and bioavailability 

of the contaminants rather than total concentrations of trace elements (Adriano et al., 2004). 

In addition, amendments may facilitate plant establishment on such degraded land and 

enhance microbial activity (Figure 1.4) (Mora et al., 2005; Madejón et al., 2006a; Bolan et al., 

2011).  

Figure 1.4 Schematic diagram illustrating the potential action of phytostabilization on contaminants in soil 

(Bolan et al., 2011). 
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The use of by-products as soil amendments, such as lime or composts, also reduces waste 

disposal and revalues these wastes (Lombi et al., 2002a; Lombi et al., 2002b). However, the 

true potential of “in situ” treatments is still unclear, because it requires validation of long term 

stability data (Pérez-de-Mora et al., 2007). Numerous amendments have been used to 

immobilize trace elements in contaminated soils (Knox et al., 2001). These include lime, 

zeolites, apatite, Fe and Mn oxides, alkaline composted biosolids, clay minerals and industrial 

by-products such as beringite. Applications to soils of certain amendments that enhance key 

biogeochemical processes in soils that effectively immobilize metals have already been 

demonstrated in Europe and North America on a field scale (Adriano et al., 2004). Case 

studies using lime, phosphate and biosolid amendments have demonstrated, under field 

conditions, enhanced natural remediation resulting in substantially improved vegetation 

growth, invigorated microbial population and diversity, and reduced offsite metal transport. 

Depending on soil/hydrogeochemical properties, source term and metal form/species, and 

land use, the immobilization efficacy induced by such assisted natural remediation may be 

enduring. Apart from the stabilization of trace elements, the use of these materials in soil 

reclamation fulfills two objectives: i) recycling of byproducts because in modern societies, 

adequate management of residues and wastes has become essential and ii) soil regeneration. 

In this second objective, the effectiveness of these remediation practices in restoring soil 

functionality of trace element polluted soils has been less studied (Burgos et al., 2010). 

Use of amendments and/or plant growth alkalinized soil pH and increased total organic C and 

water-soluble C concentrations. Particularly, application of lime and stabilized composts seem 

to be very effective to change soil pH. Addition of organic amendments is useful for 

increasing soil organic C, however the presence of a root system might be as important or 

even more than organic amendments for readily soluble C sources (Pérez-de-Mora et al., 

2006). In addition, application of amendments can act as a long term source of available 

nutrients as its release is gradual so that improve soil fertility (Alburquerque et al., 2011). 
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1.4. Development of spontaneous vegetation in the polluted area 

Vegetation plays a crucial role in the restoration of such degraded areas, because it prevents 

wind-blow of contaminated particles and reduces water pollution (Tordoff et al., 2000). 

Nevertheless, trace element uptake by plants implies several hazards such as introduction into 

the food chain (McLaughin, 2001). Thus, a study of soil properties and vegetation 

development is necessary to evaluate the effectiveness of remediation measures on ecosystem 

ecology and risk posed by the trace element content (Madejón et al., 2006a).  

In semiarid areas, pioneer plant communities in trace element affected soils are well-adapted 

to stress due to the presence of contaminants, and poor nutrient and water availability (Freitas 

et al., 2004; Madejón et al., 2009). Natural vegetation also provides physical protection 

against soil erosion by wind and water (Norland & Veith, 1995). In addition, 

evapotranspiration limits losses to groundwater by evapotranspiration of soil water by 

vegetation (Tordoff et al., 2000). Pioneer herbaceous vegetation may play a chief role in the 

cycling of trace elements during the early stages of secondary succession in contaminated 

areas, particularly in semiarid climates. 

Minimizing accumulation of trace elements in aboveground biomass is a major challenge for 

any large-scale phytomanagement programme (Domínguez et al., 2008). Research shows that 

addition of amendment may improve soil properties for colonization and growth of trace 

element-tolerant plants; for instance, nutrients can exert a protective effect against metal and 

metalloid toxicity in plants (Mengel & Kirkby, 1987).  

Therefore, the study of these spontaneously developed plants is necessary to determine the 

associated risk of elevated trace element accumulation in plant shoots as well as the 

investigation of pollution indicator related to the contaminated soil.  
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1.5. Objective 

To assess the true potential of Assisted Natural Remediation as a technique for the 

remediation of a soil moderately contaminated with trace elements it is necessary to conduct 

long-term studies. Such studies should consider the effect of the application of this technique 

on: 1) the physic-chemical properties of soil, with particular emphasis on trace element 

concentrations (total and bioavailable), and 2) the development of a vegetation cover and the 

uptake and accumulation of trace elements by plants. 

Moreover, it is necessary to verify the adequacy and the effect of the amendments applied and 

the doses of application to determine the persistence of amendment effects over time. The use 

of different industrial byproduct and wastes as amendments (e.g.: sugar beet lime, biosolid 

compost, urban compost, etc.) has additional interest because of recycling and extending the 

use of these byproducts, not only in agriculture use but also in the field and landscaping in the 

remediation of degraded and contaminated soil under the framework of sustainable 

development. 

The present work has two main objectives. The first is the evaluation of the effect of the 

application of various amendments to a trace element polluted soil on: 1) trace elements 

mobility and plant availability, 2) soil chemical properties, and 3) on plant colonization, 

growth and composition. The second objective is to assess the efficacy of repeated 

amendment applications on the reduction of the concentration of labile trace elements in soil. 

The present study was carried out 8 years after the first application of three amendments to a 

moderately-polluted soil. 
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2.1. Aznalcóllar mine spill 

The Aznalcóllar mine spill occurred on the 25 April 1998; approximately 6 million cubic 

meters of slurry inundated both river banks of the Agrio and Guadiamar rivers (Figure 2.1). 

Slurry was composed of acidic water loaded with heavy metals and other toxic elements, and 

sludge consisting of finely divided metal sulphides: pyrite with arsenopyrite (75-80%) and 

sphalerite and galena (5%). Concentrations of trace elements in the sludge is shown in 

(Cabrera et al., 1999). A strip approximately 40 km long and 300 m wide along both rivers 

was covered by a layer (2-30 cm thick) of the sludge (IGME, 1998). Approximately 4500 ha 

of agricultural land devoted to dry-land agriculture and fruit and olive tree orchards were 

affected by the pollution (CMA, 1998). After the flood cultivation of food crops in the spill-

affected area was prohibited by law after the accident (Madejón et al., 2006a). 

 
Figure 2.1 Map of the Aznalcóllar mine spill  and location of the experimental plot of “El Vicario”, modified 

from (Grimalt et al., 1999). 
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Soils affected by the flood showed concentration of total As, Bi, Cd, Cu, Hg, Pb, Sb, Tl y Zn 

in the 0-50 cm layer higher than the background levels of the Guadiamar valley soils (Cabrera 

et al., 1999; López-Pamo et al., 1999; Simón et al., 1999; Cabrera et al., 2008a; Cabrera et al., 

2008b). In most of the affected soils severe trace elements pollution was observed in the 

superficial layers (0-20 cm), which decreased downward in the soil profile. Generally, in soils 

with more than 25% of clay concentration of trace elements below the 20 cm depth decreased 

to values close to those of the background, while in coarser soils, heavy metal pollution 

penetrated below this depth, being noticeable down to a depth of at least 50-80 cm (Cabrera et 

al., 1999). 

Remediation works in the affected area consisted of: (1) removal of the sludge from the 

surface together with a layer of soil of around 10 cm; (2) application of amendments; (3) disk 

harrowing (20 cm) to mix soil within the ploughed depth. The emergency soil clean-up 

procedure was quickly started at the beginning of May 1998. This clean-up operation, which 

took about 6 months, removed the sludge and a major part of the contaminated soil surface. 

The toxic sludge covering the soil was mechanically removed and disposed-off in an open-

cast mine. In October of the same year most of planned work was completed. The mud 

withdrawal left behind some amounts of sludge that was buried in the superficial layer of the 

soil by the machinery used in these works (Grimalt et al., 1999). The amendments applied 

were: sugar beet lime, Fe-rich red soil and compost and manure. The application rate of sugar 

beet lime depended on the degree of pollution of the soils and ranged from 20 to 60 Mg ha
-1

. 

Red soil was applied according to the As concentration of the soils and ranged from 500 to 

900 Mg ha
-1

. Compost or manure was applied throughout the affected soils at a rate of 15-20 

Mg ha
-1

 to restore the organic matter losses in the removal of the sludge and contaminated soil 

layers (OTCVG, 2000; Antón Pacheco et al., 2001). 

The Regional Government purchased affected lands, which were farms with some fragmented 

forests and savannah-like woodlands and any agricultural practice was banned. The 

“Guadiamar Green Corridor” programme was implemented, with the aim of providing a 

continuous vegetation belt for wildlife to migrate along the Guadiamar River basin between 

the Doñana (south) and the Sierra Morena mountains (north). Revegetation on the alluvial 

terraces started in 1999 and consisted of the planting of more than 3 × 106 plants of bushes 

and trees (planting density 480-980 plants pr hectare). Depending on local habitat conditions, 

the target tree and shrub species selected to afforest were those typical of riparian forests 

(such as white poplar and willow) or those typical of drier upland forests, such as holm oak, 
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wild olive, rosemary, broom brush and lavender oleander (Arenas et al., 2008). 

After the sludge removal from the soil surface and restoration activities total content of trace 

elements in the sludge-affected soils were still higher than background values of the area, and 

occasionally higher than values before restoration. This was attributed to remains of sludge 

left on the soil surface and buried during restoration operations (Cabrera, 2000; Cabrera et al., 

2008a; Cabrera et al., 2008b). Several studies carried out in representative zones along the 

Guadiamar valley by researchers of IRNAS (Madejón et al., 2002; Madejón et al., 2004; 

Madejón et al., 2006a; Madejón et al., 2006b; Cabrera et al., 2007) to assess the mobility and 

availability of trace elements in remediated soils, showed that mean values of trace elements 

extracted with EDTA from affected clean soils after the amendment addition were higher than 

those from non-affected soils (Madejón et al., 2002; Madejón et al., 2004), but lower than 

from clean soils before the amendment addition (Madejón et al., 2006a). 

Despite these results, Madejón et al. (2002) reported that eighteen months after the accident 

wild grasses growing in sludge-covered soils have high concentration of As, Cd, Cu, Fe, and 

Pb, above toxic levels, while on remediated soils only Cd reached a toxic level in grass tissue. 

Murillo et al. (2005) studying trace elements in wild olive plants five years after the accident 

(2003), reported that although the trace element concentrations in the soil were generally 

greater than those considered fitotoxic, the residual pollution within the “green corridor” 

seems to be stabilized by the rather low concentrations of trace elements in the different 

species analysed. Only the willow (Salix) sapling reached comparatively high concentration 

of Cd and Zn. According to Murillo et al. (2005) it is possible that the amendments applied to 

restore the soils after the accident together with the natural dynamics of trace elements in soils 

(retention is perhaps the main process) contributed to the apparent rather low mobilization of 

these elements, as reflected by plant uptake. 

 

2.2. Study area and previous results 

The magnitude of the Aznalcóllar mining accident, the large area of land affected, the 

characteristics of the landfill, as well as the need for action in the shortest possible time, did 

not allow to take specific measures for the remediation of the affected soils, based on the 

nature and content of pollutants, and on the physical-chemical characteristics of the soils. On 

the other hand, the monitoring of the remediated soils has not been easy due to the vast size of 

the contaminated area, the diversity of soils, the different degree of contamination, and even 
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to the uncertainty of the type and dosage of amendment used in each zone. In view of these 

circumstances, and taking advantage of the existence of areas of contaminated soils in which 

the only remediation work carried out was the removal of the sludge from the soil surface, 

researchers of IRNAS designed experiments to evaluate 1) the effectiveness of the application 

of several amendments and the influence on the reestablishment of a natural plant cover, 2) 

the potential of several amendments and/or the development of vegetation cover and its 

corresponding rhizosphere to remediate a soil contaminated by various  trace elements and 3) 

the durability of the stabilizing effect of the amendments. 

The study was conducted in an experimental field area (“El Vicario”) that was affected by the 

toxic Aznalcóllar mine spill, located on the right bank of the Guadiamar river (latitude N 37° 

26′ 21″, longitude W 06° 12′ 59″), 10 km downstream from the Aznalcóllar mine in southern 

Spain (Figure 2.1). The only remediation work carried out in this area was the initial removal 

of the sludge from the surface of the soil together with a layer of underlying soil of around 10-

15 cm. After the initial sludge removing work, several relevant soil characteristics were 

determined. Initial measurements of soil parameters showed that the field plot was very 

heterogeneous (Table 2.1) (Madejón et al., 2006a). This could be attributed to remains of 

sludge left buried in the soil after the clean-up operations (Cabrera, 2000). In addition, acidic 

water accumulated in surface puddles could have contributed to the heterogeneity of pH, total 

S and trace element distribution (Clemente et al., 2003).  

Table 2.1 Mean, standard deviation (SD), variation coefficient (CV), minimum and maximum values of some 

soil chemical properties before remediation (n=48) (Madejón et al., 2006a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Mean SD CV (%) Min. Max. 

pH 3.86 1.32 34.2 2.45 7.28 

TOC (%) 0.92 0.16 17.6 0.62 1.33 

S (mg kg
-1

) 8693 5740 66.0 529 25663 

      

Total (mg kg
-1

)      

As 211 103 48.8 58.9 421 

Cd 4.44 1.16 26.1 1.79 8.26 

Cu 119 26.6 22.3 84.2 193 

Pb 471 216 45.9 159 1100 

Zn 381 136 35.6 134 812 

      

Available (EDTA) (mg kg
-1

)      

As 3.58 4.88 136 0.26 24.2 

Cd 0.57 0.29 51.0 0.07 1.50 

Cu 34.1 9.55 28.0 17.0 60.3 

Pb 5.21 4.24 81.3 0.55 15.9 

Zn 96.3 35.0 36.4 26.9 187 

      

Soluble (CaCl2) (mg kg
-1

)      

Cd 0.37 0.26 70.3 0.00 1.05 

Cu 15.0 12.2 81.3 0.92 47.0 

Zn 98.6 64.6 65.5 0.23 233 
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The area has a semi-arid Mediterranean climate that shows a complex pattern of spatial and 

seasonal variability, with wide and unpredictable rainfall fluctuation from year to year 

(Martínez-Casasnovas et al., 2002). Average annual temperature is 19 °C (min. 9 °C in 

January, max. 27 °C in July) and annual average rainfall is 484 mm (Madejón et al., 2010).  

2.2.1. Soil 

Soils in this region of Spain are generally characterized by low water content that can alter the 

availability of trace elements. The soil was a clay loam (21.1% clay, 29.1% silt and 49.8% 

sand) classified as Typic Xerofluvent (USDA, 1996), main characteristics at 0-15cm depth 

were shown in Table 2.1 before the remediation. 

2.2.2. Amendments 

Three amendments -- two organic and one inorganic -- from different sources were used. The 

two organic amendments were a biosolid compost (BC) from the wastewater treatment plant 

of SUFISA (Jerez de la Frontera, southern Spain) and a leonardite (LE), a low rank coal rich 

in humic acids (DAYMSA, Zaragoza, northern Spain). The inorganic amendment was sugar 

beet lime (SL), a residual material from the sugar beet manufacturing process with 70-80% 

(dry basis) of CaCO3 (EBRO-AGRÍCOLAS, San José de la Rinconada, southern Spain). The 

most relevant characteristics of the amendment are described followed (Table 2.2) (Madejón 

et al., 2006a). 

Table 2.2 Mean values (±SD) of some characteristics of the amendments. 

 
Amendment 

BC LE SL 

pH 6.93±0.03 6.08±0.07 9.04±0.08 

Moisture (%) 45.0 27.5 25.0 

TOC (%) 19.5±1.22 28.9±0.39 6.70±1.55 

N (%) 1.31±0.06 1.17±0.02 0.98±0.04 

P (%) 1.24±0.02 0.04±0.001 0.51±0.06 

K (%) 0.93±0.02 3.97±0.08 0.53±0.05 

As (mg kg
-1

) 5.63±1.48 34.9±3.46 1.63±0.34 

Cd (mg kg
-1

) 0.73±0.40 0.83±0.11 0.43±0.15 

Cu (mg kg
-1

) 121±5.66 28.2±2.40 51.0±8.20 

Mn (mg kg
-1

) 257±24.8 66.2±1.41 297±10.3 

Pb (mg kg
-1

) 137±26.2 22.0±2.33 39.2±6.70 

Zn (mg kg
-1

) 258±18.4 64.5±1.06 138±31.0 

TOC: total organic carbon; BC: biosolid compost; LE: leonardite; SL: sugar beet lime (n=3) (Madejón et al., 

2006a). 

 



MATERIALS AND METHODS 

 

 25 

2.2.3. Experimental design 

The research was established in a field experimental plot (20×50m) which was divided into 12 

subplots of 7×8m each, with a margin of 1 m (long) and 2 m (wide) between plots. The 

experiment was set up in October 2002. Three treatments with amendment were established 

SL (sugar beet lime), BC (biosolid compost), and LESL (mixture of leonardite and sugar beet 

lime). A treatment without amendment addition (NA) was also established. The treatments 

were applied as the rates (fresh basis) followed, BC: biosolid compost applied at a rate of 30 

Mg ha
-1

 yr
-1

,SL: sugar beet lime applied at rate of 30 Mg ha
-1

 yr
-1

, and LESL: leonardite at a 

rate of 25 Mg ha
-1

 yr
-1

 plus 10 Mg ha
-1

 yr
-1

 of sugar beet lime. The application rates were 

comparable to those applied to the whole of the spill-affected region of the Guadiamar Green 

Corridor (Antón Pacheco et al., 2001) and were below the maximum permitted limits for 

annual trace element loading established by the European Union (Directive 86/278/EEC) 

(CEC, 1986). In a first stage of the experiment the amendments were applied for two 

consecutive years (October 2002 and October 2003) and incorporated into the top 15cm of 

soil using a rotary tiller (RL328 Honda). The non-amended subplots were tilled in an identical 

manner. The experiment was carried out in a completely randomized block design with three 

replicates per treatment (Figure 2.2). 

Soil samples (0-15 cm and 15-30 cm) were collected from 48 sites (four sites per subplots) on 

a 14×15 m grid over the experimental plot. Soils were sampled three times: September 2002 

(before the application of amendments), September 2003 (one year after the application of the 

first amendment and before the second amendment application) and September 2004 (one 

year after the second amendment application). At different dates (December 2003, March 

2004 and June 2004) surveys of wild plants were conducted, and in (December 2003, March 

2004, June 2004 and March-April 2005) samples of the most frequent grasses species were 

collected for chemical analysis of shoots. Plant biomass and vegetation cover were estimated 

and plant species were identified and listed. 

In the second stage of the experiments, started in October 2005, each subplot was subdivided 

into two equal halves. One half remained unamending in the following years (Doses 2, DO2) 

(SL2, BC2 and LESL2), whereas the other half received the same amendment at the same rate 

than in 2002 and 2003 for two further years (October 2005 and October 2006; Doses 4, DO4) 

(SL4, BC4 and LESL4). Soil samples (0-15 cm and 15-30 cm) were collected in each subplot 

in November 2006 and December 2007. Plant surveys and samplings were carried out in the 

spring of 2006, 2007 and 2008 to perform the same determinations than in the first stage of 
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the experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2 Soil sampling locations and distribution of amendments in the experimental plot.  
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2.2.4. Previous results 

Results of the first stage of the experiment showed that the application of amendments 

increased soil pH values and total organic carbon (TOC) concentrations and reduced trace 

element CaCl2 soluble concentration in comparison with non-amended soil. Amendments 

clearly improved the establishment and colonization of wild plants and improved in some 

instances the nutritional status of plants, diminishing the trace element soil-plant transfer to 

above ground parts (Madejón et al., 2006a; Madejón et al., 2009). 

The second step of the experiment revealed that the need for repeated amendment additions to 

stabilized trace elements was dependent on the type of amendment and frequency of 

application. Two consecutive applications of inorganic amendment, sugarbeet lime was 

sufficient to maintain soil close to neutrality over a 5-year period and to reduce the CaCl2-

extractable pool of Cd, Ca and Zn. Repeated applications of two organic amendments were 

required to produce the same responses in the test soil (Madejón et al., 2010). Successive 

applications of amendments may be necessary to improve plant growth and to reduce trace 

element concentrations in aboveground biomass, but this depend on the type of amendment 

used, the species and the element considered (Pérez-De-Mora et al., 2011). 

These results demonstrate that there are clear differences in the potential long-term 

sustainability of in situ amendments in field conditions and that treated soils require an 

effective monitoring program as part of any post-treatment management (Madejón et al., 

2010). Consequently, it is reasonable to continue the research work to obtain more 

information about the sustainability of the amendments. In addition, new soil sampling will 

allow knowing on the fertility of these soils subjected to different programs of amendments 

during 8 year. 

2.3. New sampling 

During the spring 2011 a new campaign of sampling was carried out in the experimental plot 

of “El Vicario”. 

2.3.1. Soil sampling 

Soil samples were collected in March 2011 at two depths (0–15 and 15–30 cm) from 84 sites 

(four sites per each subplot). The four different location samples were mixed to make a 

composite sample representative for each subplot. Soil samples were air-dried, crushed, 

sieved (< 2 mm). Prior to determination of pseudo-total trace element concentrations, < 2 mm 

soil samples were grounded in a agata morter and sieved to <60μm. 
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2.3.2. Plant sampling 

Plant sampling was carried out in June 2011 in the same sites that soil sampled. In each 

sample site plant cover was estimated before plant sampling. The shoots of Cynodon dactylon 

(L.) Pers, one of the more representative species of wild grass existing in all the plots, were 

collected. Plant material was washed for 15 s with 0.1 M HCl solution, followed by 10 s with 

distilled water, and then oven dried at 70 °C. Dried plant materials were grounded and passed 

through a 500-mm stainless-steel sieve.  

2.3.3. Determination of soil pH 

It weighed 10 g dry soil in centrifuge tubes and added 25 ml of a 1M KCL solution. Tubes 

were shaken (140 agitation min
-1

) on a reciprocating shaker (Selecta Rotabit) for 1 hour at 

constant temperature (22 ± 1ºC). Subsequently, the samples were left to decant and the pH 

was measured in the supernatant with a pH meter (CRISON micro pH 2002 with automatic 

temperature compensation). 

2.3.4. Determination of soil total organic carbon 

Total organic carbon (TOC) was analyzed by the method of Walkley and Black (1934), 

consisting in the oxidation of 1 g dry soil sample (< 2 mm) with 1 M K2CrO7 in acid media 

(H2SO4 concentrated), and subsequent tritation of excess dichromate with Mohr’ salt (0.5 M 

ferrous sulfate-ammonium solution) with a TOC meter (G20 compact titrator). The content of 

TOC was expressed in percent. 

2.3.5. Determination of soil water soluble organic carbon 

The extraction of soil water soluble organic carbon (WSOC) was performed with distilled 

water using a 1:10 (soil (<2 mm)/solution) ratio and shaking (140 agitation min
-1

) 1 hour at 

room temperature (22 ± 1ºC) in a reciprocating shaker (Selecta Rotabit). The extracts were 

centrifuged 6 min at 20000 rpm and the supernatant was filtered through filter paper 

Whatman 2. Organic carbon in solution was determined in a total organic carbon analyzer 

(TOC-VCSH Shimadzu) (Sims & Haby, 1971). The content of WSOC was expressed in 

percent. 

2.3.6. Determination of soil Kjeldahl N 

One g dry soil sample (> 2 mm) was treated with concentrated H2SO4 in the presence of Se 

catalyst at 420 ºC in a TECATOR block digester. After the digestion and the addition of 

distilled water (75 ml), the samples were treated with 40% NaOH and 



MATERIALS AND METHODS 

 

 29 

distilled in a distillation unit Kjeltec System 1002. The distillate was collected in a 4% boric 

acid solution in a erlenmeyer flask and titrated with a M HCl titrated solution in the presence 

of methyl red and bromocresol green (Hesse P R., 1971). The content of Kjeldahl N was 

expressed in percent. 

2.3.7. Determination of Olsen-P 

The available P concentration weas determined by the method of Olsen et al. (1954), 

extracting the P with a 0.1 M NaHCO3 solution at pH 8.5 (relationship soil:water/1:20), in the 

presence of active carbon after 30 min agitation. After filtering 2 times, the P content was 

determined by the method of Murphy and Riley (1962) in an auto-analyzer (Bran + Luebbe 

AΙΙΙ). The content of Olsen-P was expressed in mg kg
-1

. 

2.3.8. Determination of soil available K 

The concentration available K was determined by the method of Pratt P.F. (1965), extracting 

the K with a 1M ammonium acetate solution at pH 7 (soil (<2mm):water/1:10 ratio) after 

shaking for 30 min. The extracts were decanted, filtered, and measured by an auto-analyzer 

(Bran + Luebbe AΙΙΙ). The content of available K was expressed in mg kg
-1

. 

2.3.9. Determination of 0.01M CaCl2-soluble trace element in soil 

The 0.01M CaCl2-soluble trace element concentrations were determined by the method of 

Houba et al. (1996): 2.5g dry soil (<2mm) in centrifuge tubes and are extracted with 25 ml of 

a 0.1M CaCl2 solution. Tubes were shaken (140 agitation min
-1

) on a reciprocating shaker 

(Selecta Rotabit) for 3 hours at constant temperature (22 ± 1ºC). Subsequently, the samples 

were centrifuged during 6 min at 10000 rpm and the supernatants were filtered through filter 

paper Whatman 2. The determination of trace element in solution was carried out by a Varian 

ICP 720-ES (simultaneous ICP-OES with axially viewed plasma). The content was expressed 

in mg kg
-1

. 

2.3.10. Determination of soil pseudo-total trace element 

The determination of total concentrations of micronutrients and elements trace in a soil 

sample requires the total dissolution of the sample. Mixtures of acids including the HF are 

used that is highly effective in breaking down most of common silicates of the soil but is a 

dangerous chemical requiring careful handling. However, other acidic mixtures not including 

HF are often used. One of the most widely aqua regia: HNO3 conc.: HCl conc. (1: 3 v), which 

although not completely dissolve soil samples, dissolves most of the components of soil in 
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which trace elements are liked in more labile forms, releasing most of these elements that 

could play a role in plant nutrition, pollution of surface and groundwater, etc.  

The digestion of soil samples was carried out in teflon tubes, hermetically sealed, in a 

microwave oven (Microwave Laboratory Satation Mileston ETHOS 900, Milestone s.r.l., 

Sorisole, Italy). Dry soil samples (<60μm) of 0.5 g were treated with 3 ml of conc. HCl and 1 

ml of conc. HNO3 (aqua regia). After digestion and cooling of the samples, the extracts were 

diluted by MiliQ water to 50 ml. Finally, the diluted extracts were filtered by 0.45 NYL 

syringe filters (pore size 0.45 µm) and stored in PVC bottles until analysis.  

Quantification of elements in the extracts was achieved using a Varian ICP 720-ES 

(simultaneous ICP-OES with axially viewed plasma). The accuracy and precision of the 

method were assessed through BCR-143R reference sample (Commission of the European 

Communities, Community Bureau of Reference, BCR, Reference Material No. 143R, trace 

elements in a sewage sludge amended soil) (Table 2.3). The concentrations of trace elements 

were expressed in mg kg
-1

. 

Table 2.3 Means values (mg kg
-1

±SD) of pseudo-total trace elements concentrations for the reference sample 

analysis (n=2). 

 BCR-143R (sewage sludge amended soil) 

 Certified (Aqua regia) Experimental 

As ND 12±0.2 

Cd 72 72±0.4 

Cu 128 131±1.8 

Pb 174 167±1.0 

Zn 1063 1001±18 

 

2.3.11. Plant analysis -- determination of trace element in plant shoot 

The analysis of plant material was carried out by wet acid oxidation, under pressure in a 

microwave oven. Samples of 0.5 g dry and grounded plant material were treat with 4 ml of 

concentrated HNO3 Suprapur in teflon tube, and shaking gently for completely wetting, and 

left overnight. After digestion and cooling, the samples were diluted with MiliQ water to 50 

ml. Finally, the diluted extracts were filtered by 0.45 NYL syringe filters (pore size 0.45 µm) 

and stored in PVC bottles until analysis. The concentrations of different elements were 

determined by a Varian ICP 720-ES (simultaneous ICP-OES with axially viewed plasma). 

The accuracy and precision of the analytical method was assessed through analysis of a 

reference sample INCT-TL-1 (Polish Certified Reference Material, For Multielement Trace 
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Analysis, tea leaves) (Table 2.4). The concentrations of trace elements were expressed in mg 

kg
-1

. 

Table 2.4 Means values (mg kg
-1

±SD) of pseudo-total trace elements concentrations for the reference plant 

sample analysis (n=2). 

 INCT-TL-1 (tea leaves) 

 Certified Experimental 

As 0.106 0.131±0.011 

Cd 0.0302 0.021±0.004 

Cu 20.4 20.0±0.45 

Pb 1.78 0.87±0.015 

Zn 34.7 34.7±0.03 

 

2.4. Statistical analysis 

The statistic work was carried out using the software package SPSS 15.0 for Windows. Mean 

and standard deviation (SD) or standard error (SE) were determined for all data. Normality of 

the data was tested prior to analysis. The data was analyzed by one way ANOVA, considering 

the treatment as the independent variable. Significant statistical differences of all variables 

between the different treatments were established by Tukey’s test (p<0.05). Homogeneity of 

variances test was performed, if it did not pass the test, the Games-Howell significance was 

used. Pearson’s coefficient correlation analysis was performed to determine the relationship 

between different parameters at two significant levels (p<0.01 and p<0.05).  

Principle component analysis (PCA) was carried out for the values of the different studied 

parameters (Plt Cov, pH, TOC, WSOC, Kj-N, Olsen-P, Avail-K, CaCl2-Cd, -Cu and -Zn) of 

the different treatment plots, using STATISTICA 6.0 for Windows. 

Sun ray plots (Dilly & Blume, 1998; Moreno et al., 2009) were constructed to compare 

graphically the mean values of different studied parameters in each treatment plot at every 

soil layer. The star shape and integrated area for each treatment allow a comparison of visual 

and statistical presentations of multivariate data. Soil fertility and contamination profiles were 

designed; the integrated area of the plot for each treatment was measured using the measuring 

tools of Adobe Acrobat 9® (Adobe Systems Incorporated, CA, USA) (Moreno et al., 2011). 

Graphical works were carried out using Sigmaplot 8.0 and Microsoft Office Excel 10.0. 



RESULTS 

 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS 
 



RESULTS 

 33 

3.1 Soil pH 

Mean values of soil pH for the two depths are shown in Figure 3.1. In general, in all amended 

plots pH mean values at soil upper layer (0-15cm) were higher than in NA although 

differences were not always significant (p<0.05). Mean values of pH follow the trend: 

SL>BC>LESL>>NA. Treatment SL2 significantly increased pH: 3.6 units of pH higher than 

in NA. Treatments BC2 and LESL2 also increased the soil pH, 1.9 and 1.3 units respectively, 

although the differences were not significant. 
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Figure 3.1 Mean values (±SE) of Soil pH at two soil layers, 0-15 and 15-30 cm (n=3). Values with the same 

letter do not differ significantly for each layer by one way ANOVA (p<0.05). 

 

Successive amendment applications (DO4) had not significant effect in any of the treatments 

compared to DO2, although it was observed a small decrease in SL4, and increases of 0.83 

and 0.85 units for BC4 and LESL4 respectively.  

Mean pH values also increased at soil lower layer (15-30cm) but less than in the upper layer. 

In this layer only SL2 treatment significantly increased pH values by ca. 2.5 units. The 

increases in treatment BC2 and LESL2, 1.3 and 0.6 units respectively were not significant. In 

DO4 not significant decreases of mean pH was detected in the three treatments. 

Figure 3.2 shows the evolution of the mean pH from 2003 to 2011. From 2003 up to 2007 pH 

values in all the treatments, both in DO2 and DO4, tend to increase, while from 2007 up to 

2011 a decrease of these values was observed in all the amended plots.  
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Figure 3.2 Evaluation of soil pH for every treatment at two soil layers 0-15 and 15-30 cm from 2003 to 2011. 

Open: amendment doses2; Black: amendment doses4. 

 

3.2 Soil total organic carbon and water soluble organic carbon 

Mean values of soil total organic carbon (TOC) increased in all the amendment plots, 

especially at the superficial layer (Figure 3.3). The organic treatments BC and LESL raised 

TOC more than the inorganic treatment SL both in DO2 and DO4. The trend of the increase of 

TOC was LESL>BC>SL. In DO2 the increases (BC2 and LESL2) were significant compared 

to NA (0.47% in SL2, 0.62% in BC2 and 0.67% in LESL2).  

In DO4 different behavior was observed for each treatment: i) small no significant decrease of 

TOC in SL4 (0.17%), ii) small no significant increase in BC4 (0.20%) and iii) significant 

increase in LESL4 (0.56%). It is interesting to note that TOC values in these treatments (BC4 

and LESL4) represent significant increases compared to that in NA. 
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No significant effect of treatment was observed in the 15-30 cm layer (Figure 3.3). 
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Figure 3.3 Mean values (±SE) of Total Organic Carbon (TOC) and Water Soluble Organic Carbon (WSOC) at 

two soil layers, 0-15 and 15-30 cm (n=3). Values with the same letter do not differ significantly for each layer by 

one way ANOVA (p<0.05). 

 

Figure 3.4 shows the evolution of the mean values of TOC from 2003 to 2011. From 2003 up 

to 2007 a slight but steady increase of the mean values of TOC was observed at 0-15 cm in 

NA, SL2, BC2 and LESL2 plots: 1.8 g kg
-1

 for NA, 0.8 g kg
-1

 for SL2, 4.6 g kg
-1

 for BC2 and 

4.5 g kg
-1

 for LESL2 compared to the values of 2003. At the end of the experiment values for 

BC2 and LESL2 decreased with respect to those of 2007, but in all the plots (NA, SL2, BC2 

and LESL2) mean values of TOC were greater than the corresponding at the beginning of the 

experiment in untreated soils: 1.5 g kg
-1

 for NA, 6.2 g kg
-1

 for SL2, 7.6 g kg
-1

 for BC2 ad 8.2 

g kg
-1

 for LESL2. The increase of TOC observed in the treatments without application of 

organic matter (NA and SL2), might be due to the indirect effect of increase of pH that 

enhanced vegetation cover development; plant residues from the enhanced plant growth 

probably gave rise to the increase soil TOC in these subplots. 

Mean vales of TOC in SL4, BC4 and LESL4 subplots also decrease from 2007 up to 2011. 

Values of TOC in BC4 and LESL4 at 2011 were still greater than those in BC2 and LESL2.  

Evolution plot of TOC at 15-30 cm (Figure 3.4) shows very low values of TOC at any 

treatment and sampling date. In pervious papers Madejón et al. (2009); Madejón et al. (2010) 

did not find significant differences due to treatment from 2003 to 2007; in the present work 

we neither found significant differences attributable to treatments. Therefore is difficult to 

discern the actual evolution of TOC in each treatment. Nevertheless, it can be observed that i) 

generally values in all the treated subplots were greater than in the untreated subplot; ii) at the 
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end of the experiment TOC values are very similar for all the subplots (mean value 7.3 g kg
-1

), 

and lower than the values at the starting of the experiment (mean value 9.1 g kg
-1

).  

Mean water soluble organic carbon (WSOC) concentrations at both layers increased in all the 

amended plots by the amendments, but no significant difference was found either the 

treatment or the doses (Figure 3.3).  

 
Figure 3.4 Evaluation of soil TOC (g kg

-1
) for every treatment at two soil layers 0-15 and 15-30 cm from 2003 to 

2011. Open: amendment doses2; Black: amendment doses4. 

 

3.3 Soil Kjeldahl N, Olsen-P and available K 

In general, mean values of soil Kjeldahl N (Kj-N), Olsen-P and available K (avail-K) 

increased in the amendment plots, especially at the soil upper layer (Figure 3.5). 

In soil upper layer, in DO2 mean values of Kj-N increased in all the treated plots increased 

compared to NA, although differences were only significant for BC2 (Figure 3.5). In DO4 a 

small no significant decrease of Kj-N was observed in SL4. However increases were detected 
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both in BC4 and LESL4 but only significant in BC4 where the Kj-N was 1.7 times greater 

than in NA. At 15-30 cm no effect of amended or doses was detected. 
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Figure 3.5 Mean values (±SE) of Kjeldahl N (Kj-N), Olsen-P and available K (avail-K) at two soil layers, 0-15 

and 15-30 cm (n=3). Values with the same letter do not differ significantly for each layer by one way ANOVA 

(p<0.05). 

 

 

In the upper layer, mean values of Olsen-P increased in SL2 and BC2 plots, although the 

differences were only significant for SL2 (Figure 3.5). In DO4 plots the more interesting 

result was the increase of Olsen-P in BC4 that reach values of 71.6 mg kg
-1

, 3.6 times higher 

than in NA. At 15-30 cm, no effects of amendments or doses were found. 

Figure 3.5 also shows that mean values of Avail-K increased in amended plots but in any case 

differences were significant, despite that a mean value 2 times greater in LESL2 plots than in 

NA was observed. 
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3.4 Soil trace elements concentrations (pseudo-total and CaCl2 extractable trace 

elements concentrations) 

3.4.1. Pseudo-total trace elements 

Mean values of pseudo-total As, Cd, Cu, Pb and Zn concentrations are shown in (Table 3.1). 

In both layers no significant differences attributed to treatment or doses were found. Values at 

each depth were similar in all treatments irrespective of the amendment applied and of the 

amendment doses. In fact, difference between pseudo-total trace elements were not expected 

since trace elements cannot be degraded. Mean values of pseudo-total were much higher than 

the background values of the Guadiamar valley soils (Table 3.1) reported by Cabrera et al. 

(1999).  

Table 3.1 Means values (mg kg
-1

±SE) of pseudo-total trace element concentrations for the different treatments 

(n=3). In each column, values with the same latter do not differ significantly by one way ANOVA (p<0.05). 

Treatment 
Upper Layer (0-15cm) 

As Cd Cu Pb Zn PLI 

NA 250±50a 1.2±0.20a 180±10a 600±140a 360±48a  

SL2 180±49a 2.1±0.36a 165±7.7a 350±91a 550±73a  

SL4 170±61a 2.3±0.72a 180±22a 400±110a 600±124a  

BC2 200±42a 1.7±0.33a 180±22a 430±52a 460±72a  

BC4 200±17a 2.3±0.59a 190±21a 410±46a 600±150a  

LESL2 180±54a 1.5±0.29a 180±22a 500±160a 380±68a  

LESL4 230±28a 1.4±0.23a 169±8.6a 600±93a 400±58a  

Total Mean 201±72 1.78±0.75 177±27 451±178 478±167 7.06 

Background* 18.3 0.33 30.9 38.2 109 1 

 

Treatment 
Lower Layer (15-30cm) 

As Cd Cu Pb Zn  

NA 110±39a 1.1±0.23a 120±28a 260±85a 330±36a  

SL2 50±14a 0.6±0.16a 100±24a 130±29a 260±19a  

SL4 50±14a 0.5±0.17a 100±17a 120±23a 220±24a  

BC2 73±3.4a 1.2±0.28a 130±29a 165±7.5a 380±75a  

BC4 42±6.8a 1.1±0.09a 100±13a 120±11a 330±34a  

LESL2 49±9.3a 1.0±0.07a 140±28a 130±14a 310±26a  

LESL4 120±52a 0.6±0.13a 120±28a 290±99a 250±27a  

Total Mean 71±49 0.87±0.36 116±39 173±101 297±78 3.43 

*The background of Guadiamar valley soils was nearly constant throughout the profile (Cabrera et al., 1999). 

 

The degree of trace element pollution evaluated using the Pollution Load Index of (PLI) of 

Tomlinson et al. (1980). This index is based on the values of the Concentration Factors (CF) 

of each trace element in the soil. The CF is the quotient obtained by dividing the 

concentration of each trace element in the soil (Ctrace element) by the base line or background 

value (concentration in unpolluted soil, Cbackground). Background values used were that 

reported by Cabrera et al. (1999) estimated from the mean concentrations of the trace 
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elements in unaffected soils of the area. For each soil sample, PLI at one determined soil 

depth may be calculated as the n
th

 root of the product of the n CF: 

n
nCFCFCFPLI )( 21   

This index provides a simple, comparative means for assessing the level of heavy metal 

pollution. Values of PLI = 1 indicate heavy metal loads close to the background level, and 

values above 1 indicate pollution. 

Table 3.1 shows very high values of PLI, 7.1 and 3.4 in the 0-15 and 15-30 cm layers 

respectively, indicating severe trace elements pollution.  

3.4.2. CaCl2 extractable trace elements 

Figure 3.6 shows mean values concentrations of CaCl2-soluble Cd, Cu Zn. Concentrations of 

extractable As and Pb were always below detection limits of the method (0.01mg L
-1

; 0.1 mg 

L
-1

). In general, concentrations of As and Pb were very small in comparison with total 

concentration in soil, suggesting little mobility of these elements.  

Mean values of CaCl2-soluble Cd, Cu, Zn concentrations decreased in amended plots compare 

to NA, especially at the upper layer. The most efficient amendment to reduce Cd and Zn 

values was SL; data analysis indicated that for these elements there were significant 

differences between NA and SL plots in both soil layers. The efficiency of the amendments in 

the reduction Cd and Zn concentration in the CaCl2 extracts was: SL>BC>LESL. For Cu no 

significant differences were found in both layers.  

For treatments BC and LESL repetition of the applications of amendments DO4 tended to 

reduce the concentration of Cd and Zn in the CaCl2 extracts compared to DO2 in the soil top 

layer: BC4 and LESL4 significantly decreased Cd and Zn concentrations compare to BC2 and 

LESL2. However, no significant differences were found between SL2 and SL4 in both soil 

layers and for all the elements, indicating that a second application (DO4) does not continues 

reducing the size of the extractable pool of trace elements achieved by the lowest amendment 

application (DO2). 
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Figure 3.6 Mean values (±SE) of 0.01M CaCl2-extractable trace elements concentrations at two soil layers, 0-15 

and 15-30 cm (n=3). Values with the same letter do not differ significantly for each layer by one way ANOVA 

(p<0.05). 

 

Figure 3.7 shows the evolution of the mean concentration of Cd, Cu and Zn extracted with 

0.01 M CaCl2. The behaviour was similar for these three elements, at 0-15 cm i) the first 

amendment application (2002) resulted in a significant decrease of the concentrations 

compared to the corresponding concentration in NA (values of 2003 in Figure 3.7); ii) the 

second application (2003) again produced a significant decrease in the concentrations of these 

trace elements extracted with CaCl2 (values of 2004 in Figure 3.7). Afterwards up to 2011 in 

all treatments the concentrations of trace elements continued decreasing more slowly. It is 

interesting to note the decrease of the concentrations of trace elements extracted with CaCl2 

observed in the NA plots that is a sign of natural remediation; iii) New amendment 

applications in 2005 and 2006 (DO4) resulted in new significant decreases in the 

concentrations of these elements extracted with CaCl2 in BC and LESL subplots, but not in 

SL subplots. As in DO2 treatments trace elements concentrations went on decreasing up to 

2011. 
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In lower layer, SL treatment is the only amendment reducing significantly the Cd and Zn 

concentration in the CaCl2 extracts (Figure 3.6). Regarding the evolution from 2003 to 2011 

of the concentrations of soluble trace elements (Figure 3.7), it was observed that the decreases 

of the concentrations of Cd, Cu and Zn after the first and second amendment applications 

(DO4) were less noticeable than at the upper layer, being the greater differences those 

corresponding to SL in the three elements, BC in Cd and Zn. Afterwards in all the subplots of 

treatment DO2 decreased slowly up to 2011. Treatment DO4 supposed only small differences 

compared to DO2 in the concentrations of soluble Cd, Cu and Zn.  

 

Figure 3.7 Evaluation of soil CaCl2 extractable-Cd, Cu, Zn (mg kg
-1

) for every treatment at two soil layers 0-15 

and 15-30 cm from 2003 to 2011. Open: amendment doses2; Black: amendment doses4. 
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3.5 Plant Cover estimation and wield grass shoot trace elements concentrations 

Table 3.2 shows that colonization of soil by wild plants was enhanced by amendments. 

However, due to high variance values no significant differences were observed for vegetation 

cover that followed the trend: NA 58% < LESL2 78% < LESL4 85% < SL4 88% <BC2 92% 

< SL2 97% < BC4 98% (Table 3.2).  

Table 3.2 Mean values of Plant Cover (%; *n=3 in this column) and trace element concentrations (±SE mg kg
-1

) 

in shoots of Cynodon dactylon. In each column values with the same latter do not differ significantly by one way 

ANOVA (p<0.05). 

Treatment Plant Cover* As Cd Cu Pb Zn 

NA(n=7) 58±20a 0.8±0.22a 0.10±0.018ab 5.4±0.22a 0.8±0.31a 80±14ab 

SL2(n=6) 97±3.0a 0.6±0.14a 0.05±0.029a 4.9±0.14a 0.5±0.17a 49±4.0a 

SL4(n=6) 88±6.0a 0.7±0.07a 0.07±0.019ab 5.8±0.07a 0.8±0.17a 58±6.7ab 

BC2(n=4) 92±6.0a 0.7±0.06a 0.14±0.030ab 5.4±0.06a 0.3±0.10a 102±6.1b 

BC4(n=4) 98±1.7a 0.5±0.17a 0.10±0.030ab 6.3±0.17a 0.3±0.11a 90±17ab 

LESL2(n=7) 78±17a 1.1±0.28a 0.16±0.016b 5.8±0.28a 1.7±0.61a 78±5.0ab 

LESL4(n=3) 85±7.6a 0.7±0.40a 0.10±0.024ab 4.6±0.40a 1.0±0.61a 64±6.4ab 

Normal ranges**   0.1-1 3-20 2-5 15-150 

**Normal ranges in plants (Madejón et al., 2002). 

 

Concentrations of As, Cd, Cu, Pb and Zn in Cynodon dactylon are within the normal range for 

plants, and generally very low in all the plots (Table 3.2). No significant differences were 

detected for the mean values of As, Cu or Pb in the different plots. The lowest concentrations 

of trace elements were found in SL treatments. Re-treatment of soil showed no consistent 

trends regarding trace element concentrations. 
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Increasing pH values is a frequent practice for remediation of trace element polluted soils, due 

to most trace elements are less soluble in alkaline conditions (Adriano, 2001). The data 

obtained shows that the most effective treatment to increase soil pH values is SL, due to the 

high (70-80%) CaCO3 contents (Figure 3.1). The effect of SL-induced changes in pH lasted 

several years. In fact, in this acid soil, the first two additions of SL raised soil pH close to 

neutrality and these values have been maintained for at least eight years without any further 

amendment. However, organic amendments BC and LESL, were less effective to improve pH 

values and the further application DO4 was necessary to maintain full performance. Organic 

matter also increased soil pH, although less efficiently (Figure 3.1). It can ameliorate the 

effects of soil acidity in several ways: a) by binding Al
3+

 ions tightly, b) by forming soluble 

complexes with Al
3+

, and c) by adding Ca
2-

 to the soil, thereby replacing H
+
 and Al

3+
 ions in 

the soil solution and in the exchange complex (Brady & Weil, 2002; Naramabuye & Haynes, 

2006). However, protons released by soil microorganisms during mineralization of organic 

matter can slightly acidify the soil restricting the alkalinising potential of organic amendments 

(Madejón et al., 2010). In this experiment, repeated additions of organic amendments were 

necessary to maintain soil pH close to neutrality, even in the case of the LESL treatment, 

which contained 25% of sugar beet lime (Figure 3.1).  

Due to the low TOC contents of this Mediterranean soil and the clean-up operations in the 

area (removing a significant amount of topsoil), it was reasonable to incorporate organic 

amendments to increase soil organic matter content and simultaneously increase trace element 

immobilization (Madejón et al., 2006a; Madejón et al., 2010). The organic matter of the 

amendment presented high stability against microbial degradation which constituted a clear 

advantage of soil organic amendment and guaranteed the improvement of soil fertility in the 

long term (Bernal et al., 1998). Both organic amendments (BC and LESL) significantly 

increased TOC values in surface, but further applications (DO4) were necessary to maintain 

TOC values close or above 2% (Figure 3.3). The increase of TOC values was found in 

inorganic SL treatment was attributed to the indirect effect of pH improvement that enhanced 

plant cover development.  

Nitrogen, P and K are essential nutrients for plant growth. However, Mediterranean 

ecosystems often suffer from nutrient deficiencies, such as nitrogen and phosphorus, which is 

a frequent limiting factor for soil fertility (Mayor & Rodà, 1994; Hanley & Fenner, 2001; 

Sardans et al., 2004). Amendments acted as an available nutrient source and showed a low 

mineralization rate, suggesting a slow release of nutrients and thus favoring long term soil 
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fertility (Alburquerque et al., 2011). This could be attributed to the reduced stress/toxicity for 

the microorganisms and the positive effect of humic acids from compost on nitrifying bacteria 

(Vallini et al., 1997).  

Figure 3.5 shows that the increase of Kj-N in each treatment at 0-15 cm are related with the 

total N concentrations of the used amendments; Table 2.2 shows that the trend of the N 

concentrations in the amendments is BC > LE > SL, similar to those of the Kj-N in the 

treatment plots: BC > SL ≥ LESL for DO2 and BC > LESL ≥ SL for DO4 (Figure 3.5). 

Research shows that the continued amendment application as in our experiment (DO4) could 

lead to a significant increase of the total N in the soil (López-Piñeiro et al., 2008). Acid pH 

values and trace element contamination can inhibit soil nitrification but not N mineralization 

(Richards, 1987; Baath, 1989).  

The application of amendments in the different treatments involves increases of total P of the 

soil that are related to concentrations of P of each amendment (Table 2.2). Thus, in DO2 the 

increases of total P were 84 mg P kg
-1

 in treatment SL, 270 mg P kg
-1

 in BC and 46 mg P kg
-1

 

in LESL, and in DO4 were 168 mg P kg
-1

 in SL, 540 mg P kg
-1

 in BC and 91 mg P kg
-1

 in 

LESL. The applied P undergoes a series of changes in soil depending on the nature of the 

added P and of the properties of the soil (e.g. pH, organic matter content, mineralogy, etc.). At 

the same time part of the soil P was imported by plant (we have estimated a maximum value 

of ca. 25 kg P ha
-1

 ≈ 12 mg P kg
-1

). The result is that the increase of the concentration of P 

available for plants (Olsen-P) observed in Figure 3.5 is normally less than the concentration 

of the applied P. Alburquerque et al. (2011) reported that compost increased significantly the 

available P compared to the mineral fertilizer treatment. From Figure 3.5 it is difficult to 

deduce whether SL or BC was the more effective amendments to increase Olsen-P. Some 

researchers showed that cumulative application, rather than the source of the P, determined the 

available P (Eghball & Power, 1999; Cooperband et al., 2002; Madejón et al., 2003; Paredes 

et al., 2005; López-Piñeiro et al., 2008). 

As for P, the application of amendments implies the increase of total K of the soil due to the K 

contents of the amendments (Table 2.2). It can be calculated that the increase are: in DO2 88 

mg K kg
-1

 in treatment SL, 202 mg K kg
-1

 in BC and 783 mg K kg
-1

 in LESL, and in DO4 175 

mg K kg
-1

 in treatment SL, 404 mg K kg
-1

 in BC and 1566 mg K kg
-1

 in LESL. Potassium 

also undergoes a series of changes tending to decrease its availability for plants. At the same 

time K imported by plants account for a maximum of 238 kg K ha
-1

 ≈ 120 12 mg K kg
-1

. In 

fact, Figure 3.5 shows the increase of K availability in the three treatments, that as expected is 
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less than calculated total increase, and that follow the trend LESL > BC> SL, according with 

the K contents of these amendments. There are many studies reporting that soil amendments 

can increase soil available K content (Madejón et al., 2003; Montemurro et al., 2004; López-

Piñeiro et al., 2008).  

The results of the present study shows that the application of amendments to a soil moderately 

contaminated by trace elements in which the top soil was removed, increased soil pH and the 

concentrations TOC, WSOC, Kj-N, Olsen-P, and Avail-K,. This is a useful practice to improve 

soil fertility and help plant growth. 

Nevertheless, the main aim of the present paper is the remediation of the soil reducing the 

trace element mobility applying amendments. When amendments that contain elevated trace 

element concentrations are added to soils (even if those are contaminated), their impact on 

total soil trace element concentrations requires investigation. In a previous study (Madejón et 

al., 2010), both theoretical model and experimental result demonstrated that the predicted 

increase of total trace element concentrations from amendment application was insignificant 

compare to the standard error of the initial soil. Our data (Table 3.1) also support this: no 

effect was found between each treatment of pseudo-total trace elements concentrations neither 

DO2 nor DO4. Meanwhile, like the majority of polluted soils, the spatial heterogeneity in 

total trace element concentrations should be taken into account (Burgos et al., 2006). 

In the present study 0.01 M CaCl2 extractable soil trace element concentrations were 

measured. This extract displaces cations from soil components by a process of ion-exchange, 

tends to reflect the readily soluble pool of trace elements and may be representative of the 

current bioavailability of trace elements in soil; that is considered more relevant for 

environmental protection and ecological risk assessment (Adriano, 2001; Kabata-Pendias, 

2004; Meers et al., 2006).  

Our results show that, 0.01M CaCl2 extractable trace element concentrations are significantly 

and negatively correlated with pH (Table 3.3). The alkalinizing effect of both organic and 

inorganic amendments can ameliorate soil acidity and reduce trace element bioavailable 

concentrations. The formation of insoluble and stable complexes between OM and trace 

element, together with absorption of trace element by organic colloids, also contributes to 

reduction of trace element availability in soil. Castaldi et al. (2005) related trace element 

immobilization to soil pH increases that followed amendment with compost and calcium 

hydroxide. Walker et al. (2003) attributed trace element immobilization to the formation of 
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insoluble salts such as phosphates, as mineralization progressed after manure addition to a 

calcareous, contaminated soil. These results emphasize that control of soil acidification was 

the determining factor that permitted amendment addition to improve and recover soil quality 

parameters in the acidic soil, since it led to a soil pH increase and to heavy metal 

immobilization (Alburquerque et al., 2011). 

The results of the present study shows that when applying SL (Figures 3.6 and 3.7), the 

concentrations of soluble Cd, Cu and Zn decreased after the first treatment (DO2) and were 

still very low at the end of the experiment, after 8 years of the application of 2003. Further 

application of SL (DO4) did not change the former results. Therefore, application of SL is a 

reliable solution - at long term - to remediate this trace element polluted soil. Organic 

amendments BC and LESL, were less effective than SL. For Cd and Zn it was a second 

treatment (DO4) with BC and LESL was necessary to reach the same results than with SL. In 

the previous study (Madejón et al., 2010), in a soil sampling carried out in 2007 already found 

that the additional amendment (DO4) contributed to control the solubilisation of trace 

elements, reducing risk of transfer to other environmental compartments. 
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4.1. Correlation between parameters 

In Table 4.1, pH values were significant positively correlated with plant cover, Olsen-P and 

significant negatively correlated with CaCl2-extractable trace element contents. This 

demonstrates that soil pH has a significant influence on metal solubility (Madejón et al., 2010; 

Pérez-De-Mora et al., 2011). 

Table 4.1 Person´s Correlation at two soil layer (0-15 and 15-30 cm), **p<0.01, *p<0.05 (n=21). 

 Upper layer (0-15cm) 

Variable Plt Cov pH TOC WSOC Kj-N Olsen-P Avail-K CaCl2-Cd CaCl2-Cu CaCl2-Zn 

Plt Cov 1 0.711**     0.669** -0.755** -0.863** -0.853** 

pH  1    0.555**  -0.918** -0.556** -0.897** 

TOC   1  0.554**  0.483*  -0.440*  

WSOC    1       

Kj-N     1 0.640**     

Olsen-P      1    -0.443* 

Avail-K       1 -0.492* -0.633** -0.545* 

CaCl2-Cd        1 0.592** 0.970** 

CaCl2-Cu         1 0.747** 

CaCl2-Zn          1 

           

 Lower layer (15-30cm) 

Variable Plt Cov pH TOC WSOC Kj-N Olsen-P Avail-K CaCl2-Cd CaCl2-Cu CaCl2-Zn 

Plt Cov 1 0.577**    -0.576** 0.576** -0.624** -0.788** -0.665** 

pH  1      -0.834** -0.567** -0.805** 

TOC   1  0.909** 0.435*   0.584**  

WSOC    1  0.617**     

Kj-N     1 0.647**   0.670**  

Olsen-P      1   0.731**  

Avail-K       1  -0.460*  

CaCl2-Cd        1  0.969** 

CaCl2-Cu         1 0.467* 

CaCl2-Zn          1 

Plt Cov: plant cover; TOC: total organic carbon; WSOC: water soluble organic carbon; Kj-N: Kjeldahl N; Avail-

K: Available K. 
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4.2. Multivariate Analysis methods (Principal Component Analysis and Sun Ray Plots) 

Principal Component Analysis (PCA) is a technique which uses sophisticated underlying 

mathematical principles to transforms a number of possibly correlated variables into a smaller 

number of variables called principal components. Principal component analysis of the results 

of soils (0-15 cm) shows that two components accounted for 67.8% (PC1 53.0%; PC2 14.8%) 

of the total variance (Table 4.2; Figure 4.1a). The first component (PC1) was determined 

mainly by the concentration of trace elements extracted with CaCl2, soil pH and plant cover. 

These three variables are related to treatments: amendments increase soil pH and as 

consequently decrease solubility of trace elements, and increases plant cover. Therefore PC1 

can be considered as an index of soil remediation: lower values correspond to untreated soils 

(NA). As increases the value of PC1, increases the degree of soil remediation. Figure 4.2 

shows that the mean values of the scores of PC1 of the different treatments followed the trend: 

NA<LESL2<BC2<SL4<LESL4<SL2<BC4. The second component (PC2) was mainly 

associated positively with Olsen-P, and at less extends negatively to Avail-K and TOC, and 

positively to WSOC. Plot of the factor scores of the two PCA’s (Figure 4.1b) shows the 

grouping of the treatment replicates. Despite the high variability of the results, from this plot 

it may be inferred that the application of the different amendments gives rise to differences in 

the soil variables related with contamination. This allows grouping the replicates of each 

treatment and assessing the efficiency of the different amendments used in this experiment. 

Data of the soil layer (15-30 cm) was not shown. 

 

Table 4.2 Results of principal component analysis of some soil (0-15 cm) properties (pH, TOC, WSOC, Kj-N, 

Olsen-P, Avail-K, CaCl2-Cd, -Cu and –Zn) and plant cover (Plt Cov). 

Parameters PC1 PC2 PC3 PC4 

CaCl2-Zn -0.957 -0.088 -0.116 0.121 

CaCl2-Cd -0.905 -0.163 -0.113 0.103 

Plt Cov 0.903 -0.147 0.126 -0.189 

pH 0.876 0.356 0.182 0.008 

CaCl2-Cu -0.811 0.305 -0.076 0.201 

Avail-K 0.648 -0.556 0.282 0.092 

Olsen-P 0.499 0.639 -0.484 -0.101 

Kj-N 0.568 0.021 -0.751 0.178 

TOC 0.542 -0.451 -0.320 0.569 

WSOC 0.206 0.535 0.536 0.568 

Explained variance (%) 53.0 14.8 13.5 8.0 
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Figure 4.1 Principal components analysis (PCA) of the different studied parameters (Plt Cov, pH, TOC, WSOC, 

Kj-N, Olsen-P, Avail-K, CaCl2-Cd, -Cu and -Zn): a) variable loading on the two first principal components, b) 

ordination of the treatments by the two first principal components. Big symbols with the name of treatments are 

the centroids of each treatment (coordinates of mean values of the PC1 and PC2 scores). 
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Figure 4.2 Mean values (±SE) of the factor scores of PC1 for the different treatments. 

 

Another manner of assessing the efficiency of the different amendments is by mean of the 

Sun Ray Plots. Figure 4.3 shows the starts constructed with all the studied variables for each 

treatment at 0-15 and 15-30 cm depths. The shape and size of the starts is a characteristic of 

each treatment. In general, it can be observed that the application of amendments increased 

the values of those variables related with the soil fertility (soil pH and the concentrations of 

TOC, WSOC, Kjeldahl-N, Olsen-P and available-K) and the plant covering. At the same time 

amendments decreased the concentrations of Cd, Cu and Zn extracted with CaCl2. Figures 4.4 

and 4.5 shows the starts obtained separating both types of variables. These figures allow 

evaluating separately the effects of the amendments on soil fertility and soil 

contamination/remediation. The integrated area (IA) and relative area (RA) of each star 

respect to the area of the NA treatment can be considered as an index of soil fertility (Figure 

4.4; Table 4.3) or as an index of soil contamination or remediation (Figure 4.5; Table 4.3). The 

fertility index increases as increase soil fertility. This index of soil fertility reached a 

maximum value of 3.5 at 0-15 cm for treatment BC4. The trend of the values of the fertility 

index for the different treatments was: LESL2<BC2≤SL4<LESL4<SL2<BC4. The 

contamination index decreases as decreases contamination. The lower value at 0-15 cm was 

observed for SL2 and SL4; the trend of the values of this index at this depth was: 

SL2=SL4≤BC4≤LESL4≤BC2<LESL2. From this trend it can be inferred that sugar beet lime 

(SL) is the most effective amendment to reduce mobile trace elements in the soil and that a 

second dose was not necessary. With the other two amendments, biosolid compost (BC) and 

mixture of leonerdite and sugar beet lime (LESL), the reduction of the concentration of 

mobile trace elements was less, and a second application improved the results. 
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Figure 4.3 Sun ray plots for different treatments of the two soil layers. According to the clockwise, starting at the 12 o’clock, 

the parameters are Plant Cover (Plt Cov), pH, Total Organic Carbon (TOC), Water Soluble Organic Carbon (WSOC), 

Kjeldahl N (Kj-N), Olsen-P, Available K (Avail-K), CaCl2-Cd (Cd), CaCl2-Cu (Cu), CaCl2-Zn (Zn). 
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Figure 4.4 Sun ray plots of soil fertility for different treatments of the two soil layers. According to the clockwise, starting at 

the 12 o’clock, the parameters are Plant Cover (Plt Cov), pH, Total Organic Carbon (TOC), Water Soluble Organic Carbon 

(WSOC), Kjeldahl N (Kj-N), Olsen-P, Available K (Avail-K). 
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Figure 4.5 Sun ray plots of soil contamination for different treatments of the two soil layers. According to the clockwise, 

starting at the 12 o’clock, the parameters are CaCl2-Cd (Cd), CaCl2-Cu (Cu), CaCl2-Zn (Zn). 
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Table 4.3 Index of integrated area (IA, mm
2
) and relative area (RA=IATreatmen/IANA) values of Sun ray plots by 

every treatment of soil fertility and contamination at both soil layers (0-15 and 15-30cm). 

 

Treatment 

Fertility 

0-15 cm 15-30 cm 

IA (mm
2
) RA IA (mm

2
) RA 

NA 32.1 1.0 25.7 1.0 

SL2 104.1 3.2 38.9 1.5 

SL4 81.6 2.5 47.5 1.8 

BC2 80.6 2.5 38.2 1.5 

BC4 111.7 3.5 36.3 1.4 

LESL2 69.5 2.2 44.0 1.7 

LESL4 82.2 2.6 37.4 1.5 

     

 Contamination 

 0-15 cm 15-30 cm 

 IA (mm
2
) RA IA (mm

2
) RA 

NA 90.8 1.0 66.3 1.0 

SL2 16.4 0.2 19.2 0.3 

SL4 15.3 0.2 20.6 0.3 

BC2 25.0 0.3 28.5 0.4 

BC4 16.9 0.2 29.8 0.4 

LESL2 46.7 0.5 46.5 0.7 

LESL4 20.9 0.2 53.8 0.8 
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The application of amendments to a trace element polluted soil improves its fertility, 

increased the pH and the concentrations of soil organic matter, of Kjeldhal-N and of Olsen-P, 

and reduces the concentration of readily soluble trace elements in the soil. 

The repetition of the amendments two years after the first application had positive effects on 

most of the chemical properties of the soil; in some cases it contributes to enhance the 

reduction of the concentration of readily soluble trace element previously achieved with the 

first applications. 

Amendments favoured the colonization and the establishment of spontaneous plant species, 

enhanced the establishment of a vegetation cover and decreased in some instances the trace 

element concentrations in the aerial part of plants. 

Non amended soil showed clear signs of Natural Remediation. 

Assisted Natural Remediation has a potential for success on field scale reducing trace element 

mobility and availability in soil and their entry into the food chain. 
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