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The number NðEÞ of complex zeros of the Riemann zeta function with positive imaginary part less than

E is the sum of a ‘‘smooth’’ function �NðEÞ and a ‘‘fluctuation.’’ Berry and Keating have shown that the

asymptotic expansion of �NðEÞ counts states of positive energy less than E in a ‘‘regularized’’ semiclassical

model with classical Hamiltonian H ¼ xp. For a different regularization, Connes has shown that it counts

states ‘‘missing’’ from a continuum. Here we show how the ‘‘absorption spectrum’’ model of Connes

emerges as the lowest Landau level limit of a specific quantum-mechanical model for a charged particle

on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher

Landau levels in the fluctuation part of NðEÞ.
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At the begining of the 20th century Polya and Hilbert
conjectured that the imaginary part of the complex zeros of
the Riemann zeta function �ðsÞ are the eigenvalues of a
self-adjoint operator H. The existence of such an operator
implies the celebrated Riemann hypothesis that all com-
plex zeros lie on the ‘‘critical line’’ ReðsÞ ¼ 1=2. Support
for this ‘‘spectral’’ approach did not emerge until the
1950s, when Selberg found a ‘‘trace’’ formula relating
the eigenvalues of the Laplacian on a compact hyperbolic
surface to its geodesics; there is a strong resemblance of
this formula to the Riemann-Weil ‘‘explicit’’ formula relat-
ing the Riemann zeros to the prime numbers. Further
support came in the 1970s and 80s from the works of
Montgomery and Odlyzko: assuming the Riemann hy-
pothesis, they showed that the local statistics of the
Riemann zeros is described by the Gaussian unitary en-
semble (GUE) of random matrix theory (see, e.g., [1]).
Inspired by this, and by analogies between trace formulas
of number theory and the Gutzwiller formula for chaotic
dynamical systems, Berry conjectured the existence of a
classical chaotic Hamiltonian system with isolated peri-
odic orbits, with periods related to the prime numbers, such
that the spectrum of the quantum theory gives the complex
Riemann zeros [2]. The GUE statistics of the zeros requires
the Hamiltonian to break time-reversal invariance.

Berry’s conjecture received support in 1999 from the
work of Connes [3], and Berry and Keating [4], on a
semiclassical model for a particle in one dimension with
classical Hamiltonian H ¼ xp. This Hamiltonian breaks
time-reversal invariance since ðx; pÞ ! ðx;�pÞ ) H !
�H. Classical orbits in this model are unbounded hyper-
polas in phase space but they may be converted into closed
orbits by an identification at the boundaries of a restricted
region of the phase plane that defines some ‘‘regulariza-
tion’’ of the model. This regularization also makes finite

the number of states with energy less than E, and this
number is related to the number NðEÞ of complex zeros
of the Riemann zeta function with positive imaginary part
less than E. The Riemann-van Mangoldt ‘‘counting’’ for-
mula states that

NðEÞ ¼ �NðEÞ þ 1

�
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�
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2
þ iE

�
; (1)

where �NðEÞ is a ‘‘smoothed’’ counting function that gives
the average number of zeros, which is corrected by the
remaining ‘‘fluctuation’’ term. The smooth term can be
written as

�NðEÞ ¼ �ðEÞ
�

þ 1; (2)

where (see, e.g., [5])
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which is the phase of the zeta function on the critical line.
The smooth term has the following asymptotic expansion
for large E:

�NðEÞ � E

2�
log

E

2�
� E

2�
þOð1Þ; (4)

while the fluctuation term is of order logE. In the Berry-
Keating model this asymptotic expression for �NðEÞ is
recovered from a semiclassical count of states with positive
energy less than E; the correct Oð1Þ term is obtained by
taking into account the Maslov phase implied by the iden-
tifications that close the hyperbolic orbits [4]. In the
Connes model, which has a different ‘‘regularization’’,
the same asymptotic expression is found as a semiclassical
count of states missing from a continuous spectrum. Thus,
the Berry-Keating interpretation of �NðEÞ is as an ‘‘emis-
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sion’’ spectrum while the Connes interpretation is as an
‘‘absorption’’ spectrum.

The first aim of this Letter is to show how these semi-
classical results can be recovered by viewing the H ¼ xp
model as a lowest Landau level (LLL) limit of a quantum-
mechanical model for a charged particle on the xy plane in
a constant uniform perpendicular magnetic field of strength
B, and an electric potential ’ ¼ ��xy, where � is a
constant. Let � be the particle’s mass and �e its charge.
In the Landau gauge A ¼ Bxdy for the vector potential 1-
form A, the particle’s Lagrangian is

L ¼ �

2
ð _x2 þ _y2Þ � eB

c
_yx� e�xy: (5)

This Lagrangian is invariant under ðx; yÞ ! ð�x;�yÞ,
which implies a double degeneracy of states of energy E.
It is also quadratic, with two normal modes: the standard
‘‘cyclotronic’’ mode of the � ¼ 0 model, and a ‘‘hyper-
bolic’’ mode. The respective angular frequencies are

!c ¼ eB

�c
cosh#; !h ¼ i

eB

�c
sinh#; (6)

where sinhð2#Þ ¼ ð2��c2Þ=ðeB2Þ; for simplicity, we shall
consider the limiting case !c � j!hj, for which

!c � eB

�c
; !h � i

�c

B
: (7)

In the quantum theory, the energy in the cyclotronic mode
is ðnþ 1=2Þ@!c for integer n labeling the Landau level. At
sufficiently low energy only the lowest (n ¼ 0) level is
relevant and the physics is effectively described by the
Lagrangian (see, e.g., [6])

L LLL ¼ p _x� j!hjxp p ¼ @y

‘2
; ‘2 ¼ @c

eB
: (8)

where ‘ is the ‘‘magnetic’’ length. This LLL model is the
(unregularized) one-dimensionalH ¼ xpmodel. From the
Landau model perspective, each quantum state is associ-
ated to a quantum of magnetic flux �0 ¼ 2�@c=e that
occupies an area 2�‘2 in the xy-plane. In the LLL limit,
this implies the standard semiclassical quantization in
which one quantum state is associated with an area 2�@
in phase space.

The total number of states in each Landau level, in
particular, the lowest one, is infinite. To make the number
of states in each level finite, we shall restrict the particle to
the square

jxj<L; jyj< L: (9)

This implies for the LLL model a restriction on the phase-
space equivalent to that proposed by Connes for the H ¼
xp model. It also implies that there is a maximum magni-
tude for the classical energy: jEj � L2=‘2 in units for
which @!h ¼ 1, which fixes the value of � in terms of e
and B by (7). For large L=‘, the semiclassical estimate for
the total number of quantum states of any energy allowed

by this bound is L2=2�‘2 in each of the four quadrants in
the xy plane separated by the x and y axes. The classical
trajectory for a particle of energy E< Emax is the hyper-
bola xy ¼ E‘2, so the available classical phase space is the
region in the square that lies between the two branches of
the hyperbola. The number NscðEÞ of semiclassical quan-
tum states with energy less than E is the area of this region
divided by 2�‘2, but because of the double degeneracy due
to the ðx; yÞ ! ð�x� yÞ symmetry we count only those
states with ðx > 0; y > 0Þ, which yields

NscðEÞ ¼ E
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� E
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log

E

2�
þ E

2�
: (10)

The first term diverges as L! 1 and may be interpreted as
a regularization of the continuum of states in the lowest
Landau level for a particle free to move on the entire
xy-plane. The finite correction, which has a magnitude
equal to the asymptotic approximation of (4) to the smooth
part of the counting formula, is negative, which led Connes
to interpret it as representing spectral lines missing from
the continuum.
Another aim of this Letter is to use the Landau model

perspective to arrive at a proper quantum-mechanical
understanding of the regularized H ¼ xp model of
Connes; we focus on that model (details of which may
be found in a recent book [7]) because we have not seen
how to achieve the same objective for the Berry-Keating
model. The Hamiltonian operator corresponding to the
starting Lagrangian (5) is

H ¼ 1

2�
½p̂2

x þ ðp̂y þ @

‘2
xÞ2� þ e�xy; (11)

where p̂x ¼ �i@@x and p̂y ¼ �i@@y. There is a unitary

transformation in which this Hamiltonian becomes the sum
of a Hamiltonian Hc for the cyclotronic mode and a
Hamiltonian Hh for the hyperbolic mode. In units for
which @ ¼ ‘ ¼ 1, one finds that

Hc ¼ !c

2
ðp̂2 þ q2Þ; Hh ¼ j!hj

2
ðQP̂þ P̂QÞ; (12)

where P̂ ¼ �id=dQ and p̂ ¼ �id=dq. Note the Weyl
ordering in Hh, which follows from the starting
Hamiltonian. The unitary transformation that achieves
this decomposition simplifies considerably in the limit
that !c � j!hj; it corresponds to the classical canonical
transformation

q ¼ xþ py; p ¼ px; Q ¼ �py; P ¼ yþ px:

(13)

In the limit that !c � j!hj, any low energy eigenstate is
the product of the ground state ofHc, which is the Gaussian
 ¼ expð�q2=2‘2Þ, with an eigenstate of Hh, which we
may choose to be either even or odd under Q! �Q.
These eigenstates of definite ‘‘Q-parity’’ are
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�þ
E ðQÞ ¼

1

jQj1=2�iE ; ��
E ðQÞ ¼

sgnðQÞ
jQj1=2�iE : (14)

The corresponding wave functions of the original
Hamiltonian are then given by

 �
E ðx; yÞ ¼ C

Z
dQe�iQy=‘2e�ðx�QÞ2=2‘2��

E ðQÞ: (15)

where C is a normalization constant. This yields

 þ
E ðx; yÞ ¼ Cþ

E e
�ðx2=2‘2ÞM
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2
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1

2
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3
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2
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3

2
;
ðx� iyÞ2

2‘2

�
;

(16)

where Mða; b; zÞ �1 F1ða; b; zÞ is a confluent hypergeo-
metric function. A representative plot of the even wave
function is shown in Fig. 1.

A classical trajectory that starts at (x, L) ends at (L, x),
so that identification of these points creates periodic orbits.
This identification also means that the square in the xy
plane in which the particle is allowed to move is topologi-
cally a sphere, as shown in Fig. 2, although classical orbits
lie entirely in one of four segments of this sphere.

For these periodic orbits to emerge from the quantum
theory in a semiclassical limit, we must identify the wave
functions at these points, up to a phase. To determine the
phase we use the asymptotic formulas

Mða; b; zÞ �
8<
:

�ðbÞ
�ðaÞ e

zza�b ReðzÞ> 0
�ðbÞ

�ðb�aÞ ð�zÞ�a ReðzÞ< 0
; (17)

to deduce that

 þ
E ðL; xÞ � e�ixL=‘2�x2=2‘2

�ð12Þ
�ð14 þ iE

2 Þ
�
L2

2‘2

��1=4þiE=2

 þ
E ðx; LÞ � e�x2=2‘2

�ð12Þ
�ð14 � iE

2 Þ
�
L2

2‘2

��1=4�iE=2
: (18)

for the even functions (16), and

 �
E ðL; xÞ � Le�ixL=‘2�x2=2‘2

�ð32Þ
�ð34 þ iE

2 Þ
�
L2

2‘2

��3=4þiE=2

 �
E ðx; LÞ � �iLe�x2=2‘2 �ð32Þ

�ð34 � iE
2 Þ

�
L2

2‘2

��3=4�iE=2
: (19)

for the odd functions. Observe that the ‘‘even’’ wave
functions are symmetric, and the ‘‘odd’’ wave functions
antisymmetric, under the symmetry operation ðx; yÞ !
ð�x;�yÞ. Counting both symmetric and antisymmetric
functions corresponds, semiclassically, to counting states
for xy > 0, rather than just (x > 0, y > 0), so we could
define the quantum model by considering only the sym-
metric wave functions, which would effectively mean that
we identify (x, y) with (� x, �y). The above formulas
suggest that we should impose the boundary condition

 
�
Eðx; LÞ ¼ eiLx=‘

2þi�ð��1Þ=4 �EðL; xÞ; � ¼ �: (20)

Applied to the ‘‘even’’ (� ¼ þ) energy eigenfunctions,
this leads to the asymptotic condition

�ð14 þ i E2Þ
�ð14 � i E2Þ

�
L2

2‘2

��iE ¼ 1; (21)

which is equivalent to

e2i�ðEÞ
�
L2

2�‘2

��iE ¼ 1; (22)

where �ðEÞ is the function of (3), related to �NðEÞ by (2).
This condition implies that

�
E

2�
log

�
L2

2�‘2

�
þ 1

�
� �NðEÞ ¼ NE; (23)

where NE is an integer that we may identify, asymptoti-
cally, with the number of states with energy less than E. If
the first term on the left-hand side is interpreted as the
regularization of the infinite number of states in a contin-
uum, then we see that �NðEÞ has the Connes interpretation
as a count of states missing from this continuum. This
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FIG. 1 (color online). Absolute value of the wave function
 þ
E ðx; yÞ for E ¼ 10 in the interval�10< x; y < 10. The picture

on the left gives a 3D representation while that on the right is a
density plot.
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FIG. 2 (color online). Left: xy plane with the classical trajec-
tories xy ¼ E‘2. Right: sphere that results from the identifica-
tions of the edges. Now the open trajectories become closed
trajectories in one of four segments, enclosing one of the
equatorial points A, B, C, D.
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analysis can be repeated for the odd wave function
 �
E ðx; yÞ, in which case the function �ðEÞ is replaced by

the phase of the odd Dirichlet L functions.
Finally, we conclude with some speculations on how the

fluctuation part of the Riemann counting formula might
arise in the Landau model approach. In the context of the
Berry-Keating model, the region of phase space allowed by
the regularization may be adjusted to ‘‘fluctuate’’ in such a
way that the number of states of positive energy less than E
is precisely NðEÞ [8]. However, the Berry-Keating model
does not seem to arise as the LLL limit of a model for a
particle on a plane, and the ‘‘fluctuating boundary’’ idea of
[8] does not work for the Connes model. A natural possi-
bility for the Connes model, now viewed as a lowest
Landau limit, is to suppose that the fluctuation term in
the Riemann counting formula is related to the higher
Landau levels. An immediate drawback of this idea is
that the full Landau model is two-dimensional, whereas
we need a one-dimensional model. We thus seek some one-
dimensional limit of the Landau model that generalizes the
standard LLL limit. To this end, we return to the
Hamiltonian as the sum of Hc and Hh, as given in (12)
and rescale, for convenience, to arrive at the Hamiltonian

H ¼ �

2
ðp̂2 þ q2Þ þ 1

2
ðQP̂þ P̂QÞ; (24)

where � ¼ !c=j!hj. Introducing the standard annihilation
operator a ¼ ð1= ffiffiffi

2
p Þðqþ ip̂Þ and corresponding creation

operator, such that ½a; ay� ¼ 1, we observe that the opera-
tors

A ¼ aQi�; Ay ¼ ayQ�i� (25)

have a similar commutation relation but commute with the
Hamiltonian:

½A; Ay� ¼ 1; ½A;H� ¼ 0 ¼ ½Ay; H�: (26)

Eigenstates of A are coherent states with complex eigen-
values z. States with z ¼ 0 are those of the lowest Landau
level, annihilated by a, so we may modify this limit by
considering eigenstates of A with nonzero eigenvalue. At
the classical level, the equation A ¼ z implies that the
cyclotronic motion is governed by the hyperbolic one.
Taking z real for simplicity, one finds that

q ¼ ffiffiffi
2

p
z cosð� logQÞ; p ¼ � ffiffiffi

2
p
z sinð� logQÞ: (27)

Proceeding semiclassically, we consider the area of phase
space enclosed by a closed classical trajectory, i.e., its
action. The total action receives contributions from both
modes:

A ¼
Z
PdQþ

Z
pdq: (28)

In the limit, �� 1 the first term on the right-hand side of
this equation gives the estimate (10). Hence in the same
limit and allowing the particle to gyrate according to (27),
one finds the semiclassical formula

NscðEÞ � Eþ �z2

2�
log

L2

2�‘2
� E

2�
log

E

2�

þ E

2�
� �z2

2�
log

E

2�
: (29)

The first term, which diverges as L! 1, may be inter-
preted as a count of states that become a continuum in this
limit. Note the OðlogEÞ correction to the counting of
‘‘missing’’ states, which is exactly the order of the fluctua-
tion term in the Riemann counting formula.
In summary, we have shown that the semiclassical H ¼

xp model, conjectured to be the semiclassical limit of a
quantum-mechanical model for the complex zeros of the
Riemann zeta function, can be understood as the lowest
Landau level limit of a fully quantum-mechanical model
for a particle on a plane in the presence of electric and
magnetic fields. As it stands, a counting of states in the
model does not yield the full counting formula for the
Riemann zeros because the fluctuation term is missing,
but we have provided semiclassical evidence that this
will arise from a consideration of the higher Landau levels.
Apart from providing a new tool in the spectral approach to
the Riemann hypothesis, there is also the possibility that it
will allow a laboratory construction of a system for which
the physics is described by the ‘‘Riemann Hamiltonian’’,
the existence of which would prove the Riemann
hypothesis.
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