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1 Introduction

Flux compactifications of type IIA and IIB string theories have been approached differently.
In IIB it is known that, up to a conformal warp-factor, a Calabi-Yau (CY) solves the ten-
dimensional supergravity equations of motion in the presence of fluxes [1]. This is a nice property
since we know much about CY manifolds. On the other hand, the Kähler moduli are not fixed by
the fluxes and so must be fixed non-perturbatively [2]. The presence of non-perturbative effects,
although natural from a four-dimensional field-theory point of view, is difficult to implement
into the full solution of the equations of motion1. In that sense these vacua are not so well-
understood. In IIA the fluxes have a more drastic back-reaction and generally induce torsion
on the manifold deforming it away from a CY [4–6]. Therefore turning on the full fluxes implies
that we should consider more general SU(3)-structure manifolds which, although we have some

1See for a possible approach [3].
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examples [7–15], are extremely difficult to construct and generally not well understood. On
the bright side though it is possible to fix the moduli completely perturbatively using fluxes
and geometry only [16]. This means that we have a better understanding of such solutions
from a ten-dimensional point of view. So IIA flux compactifications have generally focused
on these two key properties: perturbative moduli fixing and induced torsion [16]. Of course
the two theories are related by T-duality, but since this interchanges NS flux with geometry,
identifying the duals to CY compactifications with NS flux leads to torsionful or non-geometric
manifolds [7, 17–25] and we return to the problem of how to construct them.

In this paper we adopt a phenomenological approach to IIA flux compactifications. Rather
than studying the more general solutions we look for vacua with attractive phenomenological
features. In this area type IIB CY compactifications have been more successful and in particular
the LARGE-volume models stand out [26–28]. Further there are a number of IIB inflation
models (reviews can be found in [29]) whilst in IIA we lack such constructions [30, 31]. The
purpose of this paper is to partially bridge this gap in phenomenology by studying IIA flux
compactifications that can recreate many of the features of the IIB models. The natural way
to approach this aim is by using mirror symmetry. However, as stated, this generally involves
moving away from the well-understood CY compactifications. We can avoid this by turning
on only particular NS fluxes. More explicitly, we can work at the ‘CY intersection’ of the two
theories where on either side only one component of NS flux is turned on. This is the electric
component that can be thought of as having ‘no legs’ along the three T-duality directions
composing mirror symmetry. Further, it is possible for a CY to solve the IIA ten-dimensional
equations of motion by restricting the fluxes and ‘smearing’ the orientifold [32]. Therefore we
study IIA CY compactifications that have IIB CY mirrors with restricted fluxes.

For these compactifications, at the cost of purely perturbative stabilisation, we find that
the phenomenologically attractive IIB features can be consistently recreated. We find vacua
where all the moduli are stabilised in an AdS or dS vacuum and supersymmetry is broken
at the TeV scale where the hierarchy is generated dynamically without fine-tuning. These
constructions also admit complex-structure modular inflation models. Perhaps the defining
feature of our models is the fact that the string coupling gs is fixed at exponentially small
values. These features are mirrors to the IIB LARGE-volume features and motivate the name
WEAKLY-coupled. Schematically, the models are constructed as follows. A combination of
fluxes and α′ corrections fix the Kähler moduli and dilaton in a perturbative regime. The
complex-structure moduli are fixed using a combination of perturbative corrections away from
the large complex-structure limit and the non-perturbative effects of gaugino condensation on
D6-branes or E2-instantons. The resulting non-supersymmetric AdS vacuum can be uplifted
to a de Sitter one by introducing D6-branes.

The structure of the paper is as follows. In section 2 we derive the four-dimensional effective
action for IIA string theory with fluxes on a CY orientifold at ‘tree-level’ in α′ but including
corrections away from the large complex-structure limit. In section 3 we study moduli stabil-
isation in these scenarios and find that the Kähler moduli cannot be stabilised at acceptable
values. This is remedied in section 4 where we include α′ corrections that, in combination with
the fluxes, stabilise the Kähler moduli at acceptable values. We also show that the complex-
structure moduli can be subsequently fixed in a non-supersymmetric WEAKLY-coupled AdS
vacuum. In section 5 we derive the D-terms induced by the introduction of D6-branes at angles
to the O6-plane and show that they can be used to uplift the AdS vacuum to a de Sitter one.
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We discuss some of the phenomenological features of our constructions in section 6.

2 CY orientifold compactifications without α
′ corrections

In this section we derive the N = 1 four-dimensional effective action resulting from a compacti-
fication of IIA string theory on a CY manifold in the presence of fluxes and orientifold six-planes
(O6). We maintain the analysis at tree-level in α′, but include corrections away from the large
complex-structure limit. The contributions away from the large complex-structure limit are
mirror to IIB α′ corrections and play a crucial role in moduli stabilisation as studied in section
4. In both the Kähler moduli and complex-structure moduli sectors we adopt the approach of
starting with the N = 2 pure CY set-up and imposing the orientifold truncation constraints.
This will be a useful approach when it comes to considering α′ corrections in section 4.

2.1 The Kähler moduli

In a IIA compactification on a CY manifold the Kähler superfields T i arise from the expansion
of the Kähler form J and the NS two-form B in the harmonic h(1,1) basis ωi

B + iJ =
(

bi + iτ i
)

ωi = T iωi . (2.1)

Their moduli space can be described by the use of a prepotential [33]

F = −1

6

KijkT
iT jT k

T 0
. (2.2)

We include a constant field T 0 (that we set to unity after differentiation of the prepotential)
playing the role of the mirror to the complex-structure homogeneous parameter, and we in-
troduce the capital index I = {0, i}. The corresponding Kähler potential is obtained by the
formula

KT = −ln i
[

T̄ IFI − T IF̄I

]

≡ −ln 8V , (2.3)

where FI ≡ ∂TI
F , and we introduce the quantities

V ≡ 1

6
Kijkτ

iτ jτk ≡ 1

6
κ , κi ≡ Kijkτ

jτk , κij ≡ Kijkτ
k . (2.4)

The orientifold truncation of this sector acts simply by reducing the index range of the
fields so that we keep only the expansion in the odd two forms [34]. This does not modify the
structure of the quantities we have introduced, and so we maintain the same index labels for
the truncated spectrum. For later use we display the Kähler derivatives

KT
ij̄ = − 3

2κ

(

κij −
3κiκj

2κ

)

≡ − 3

2κ
gij , (KT )ij̄ = −2κ

3

(

κij − 3τ iτ j

κ

)

≡ −2κ

3
gij . (2.5)

Another quantity that plays a role in our calculations is the ‘gauge coupling’ matrix N
which is given by the well known N = 2 formula (see [34,35] for more details)

NIJ = F̄IJ +
2i (Im F )IK TK (Im F )JL TL

(Im F )MN TMTN
, (2.6)

where FIJ ≡ ∂TI
∂TJ

F . Its explicit form for the prepotential (2.2) is given in Appendix A.
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2.2 The complex-structure moduli

In IIA CY compactifications the complex-structure moduli arise from an expansion of the
unique holomorphic three-form Ω in the harmonic three-form basis. In the presence of an O6,
following [34], we split this expansion into an even and odd basis

(

αk̂, βλ
)

∈ H3
+ ,

(

αλ, βk̂
)

∈ H3
− . (2.7)

Here the index range is such that summing over the indices k̂ and λ gives the total number of
real harmonic three-forms 2(h(2,1) +1) . The index k̂ is defined in the range {0, k}. Choosing the
α0 form to be even corresponds to the mirror of O3/O7 (rather than O5/O9) compactifications
on the IIB side.

The chiral superfields of the truncated N = 1 theory arise as in [34]. We define the com-
pensator field C as

C ≡ e−iθe−De
1
2
Kcs

. (2.8)

Here θ is a constant angle whose value is set by the orientifold. D is the four-dimensional
dilaton which is given in terms of the ten-dimensional dilaton φ̂ by the relation

e2D =
e2φ̂

V . (2.9)

The (N = 2) complex-structure Kähler potential, Kcs, is given by

Kcs = −ln i

∫

CY
Ω ∧ Ω̄ . (2.10)

The expansion of the three-form reads

CΩ = Re (CZ k̂)αk̂ + iIm (CZλ)αλ − Re (CFλ)βλ − iIm (CFk̂)β
k̂ .

This arises from the N = 2 expansion of the Ω form, after imposing the orientifold constraints
[34]

Im (CZk̂) = Re (CFk̂) = Re (CZλ) = Im (CFλ) = 0 . (2.11)

The RR three-form transforms evenly, and so can be expanded as

C3 = ξk̂αk̂ − ξ̃αβα . (2.12)

The complex chiral superfields of the resulting N = 1 theory are given by the expressions

S ≡ s + iσ = 2Re (CZ0) − iξ0 , (2.13)

Uλ ≡ uλ + iνλ = −2Re (CFλ) + iξλ , (2.14)

Nk = 2Re (CZk) − iξk , (2.15)

and the corresponding chiral Kähler potential reads [34]

KQ = 4D = −2ln
[

2
(

Re (CFλ)Im (CZλ) − Re (CZ k̂)Im (CFk̂)
)]

. (2.16)
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We can write more explicit expressions for these quantities, rendering more manifest mirror
symmetry with the IIB O3/O7 compactifications. In particular we would like to derive the
mirrors of the IIB α′ corrections and these should correspond to corrections away from the
large complex-structure limit. To derive these we again consider the explicit form of the N = 2
prepotential away from the large complex-structure limit as derived in [36]

F =
1

6
dabc

ZaZbZc

Z0
+ d

(1)
ab ZaZb − 1

2
d(2)

a ZaZ0 − i(Z0)2ξ + O
(

eiZ
)

. (2.17)

Here dabc, d
(1)
ab , d

(2)
a are rational coefficients and ξ is a real number. The co-ordinates ZA =

{Z0, Za} are homogenous co-ordinates of the complex-structure moduli za of the CY. From
here on we neglect the exponentially suppressed corrections that appear in the last term of
(2.17).

We now introduce the O6 planes. The index structure splits as A = {0, k, λ} and in order
to match the usual IIB expressions we choose the symplectic basis Nk = 0 (keeping only the

component N0 = S). Imposing the orientifold constraints (2.11) we find d
(1)
λρ = 0, and the

resulting Kähler potential reads

KQ = −2ln
{

2
[

Re (CFλ)Im (CZλ) − Re (CZ0)Im (CF0)
]}

= −ln
[

S + S̄
]

− 2 ln f(q) − ln 2 . (2.18)

The function f(q) is defined by

f(q) ≡ 1

6
dλρσqλqρqσ + s3/2 ξ

2
≡ V ′ +

ξ′

2
, (2.19)

qλ ≡ −2s−
1
2 Im (CZλ) . (2.20)

In terms of f(q) we have the superfields expression

uλ = ∂qλf . (2.21)

In general the Kähler potential satisfies a no-scale like condition [34]

KQ
N

(

KQ
)NM̄

KQ
M̄

= 4 , (2.22)

where the index N runs over all the superfields N = {S,Uλ}. In the absence of the ξ parameter
the dilaton and complex-structure contributions decouple and then we recover the exact no-scale
condition

KQ
uλ

(

KQ
)uλūσ

KQ
ūσ

= 3 . (2.23)

This set-up is exactly the mirror to IIB on a CY with O3/O7 planes. In our case the qλ

play the role of the IIB (string frame) two-cycle volumes, and uλ correspond to the four-cycle
volumes. V ′ is the mirror to the IIB CY volume. The ξ term accounts for α′3 correction terms
in the mirror IIB side (as shown in the N = 2 case in [36]). Notice that the IIA complex-
structure prepotential includes perturbative terms in d(1) and d(2) corresponding to IIB lower
order α′ corrections. These cancel out of the Kähler potential, and also do not appear in the
superpotential: consequently they do not affect the theory. The exponentially suppressed terms
in the IIA complex-structure prepotential correspond to IIB world-sheet instantons.
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2.3 The fluxes and superpotential

Having described the structure of the Kähler potential, we turn to the superpotential induced
by the presence of fluxes. We choose to turn on the following fluxes

H = −h0β
0 , F0 = −f0 , F2 = −f̃ iωi , F4 = −fiω̃

i , F6 = −f̃0ǫ . (2.24)

We switch on only one component of H-flux. This is the electric component that threads the
cycle orthogonal to the one wrapped by the O6 that is the mirror to the IIB O3 . In going to
the mirror this can be thought of as the component that has ‘no-legs’ along the three T-duality
directions. It gets mapped to H-flux on the IIB mirror. Other H-flux components would
get mapped into non-geometric fluxes in a O3/O7 IIB set-up [22, 23]. The fluxes induce the
superpotential [34]

W =
f0

6
KijkT

iT jT k +
1

2
Kijkf̃

iT jT k − fiT
i + f̃0 − ih0S . (2.25)

The absence of complex-structure superfields Uλ in the superpotential, combined with (2.23),
implies that in the absence of the ξ term the compactification is no-scale.

The values of the fluxes are constrained by the tadpole equations [37]

− f0h0 = Q0 = 2ND6
0 − 4NO6

0 , (2.26)

0 = Qλ = 2
(

ND6
)λ − 4

(

NO6
)λ

. (2.27)

Here Q0 corresponds to the local charge induced by D6 and O6 planes2 wrapping α0. The
charges Qλ correspond to the cycles βλ. We see that for those cycles the local sources must
cancel by themselves. The local charge Q0 will play an important role in the analysis, since it
will constrain the size of the vevs of the moduli. It is therefore worth pointing out that it can
take values up to 102−103 [38]. Note that the constraints are independent of most of the fluxes
which follows from the fact that the tadpole constraints are generally products of RR fluxes
and NS or metric fluxes. Since we only have h0 turned on, this choice substantially reduces the
number of constraints. The absence of the fluxes from the tadpoles does not imply a formally
infinite number of solutions, since some choices of fluxes are related by axion shifts, making
them physically equivalent.

In this paper we consider CY compactifications with fluxes turned on. This corresponds
to neglecting the back-reaction of the fluxes on the geometry which is sometimes referred to
as the ‘CY with fluxes’ limit. In the IIB case the back-reaction induces a warp-factor which
only deforms the CY conformally [1] and, in the large volume approximation, does not change
its key properties. In IIA the back-reaction can be more drastic, deforming the CY to a half-
flat manifold [4–6]. However it has been shown in [32], that turning off the fluxes F2 and F6,
and additionally ’smearing’ the orientifold, an unwarped CY compactification still solves the
complete ten-dimensional equations of motion. As we will see, setting the fluxes f̃0 = f̃ i = 0
does not qualitatively affect the properties of our solutions. Therefore, although we will consider
general fluxes for the sake of completeness, we can keep in mind that the more accurate scenario
of [32] can be reached as a suitable limit of our constructions without affecting the results.

2Recall that the charge of an O6 is −4 with respect to a D6 and that we must include the orientifold images
of the D6 branes.

6



3 Moduli stabilisation without α
′ corrections

Having established our set-up, we go on to study moduli stabilisation within this scenario. The
N = 1 effective theory is specified by the Kähler potential and the superpotential

K = KT (T ) + KQ(S,U) = −ln 8V − ln
[

S + S̄
]

− 2ln

[

V ′ +
ξ′

2

]

− ln 2 ,

W = W T (T ) + W Q(S) =
f0

6
KijkT

iT jT k +
1

2
Kijkf̃

iT jT k − fiT
i + f̃0 − ih0S . (3.1)

where the definitions of the various quantities are provided in section 2.
Our aim is to recreate, in this type IIA context, the moduli stabilisation constructions that

have been developed on the type IIB side. There, at tree-level, the Kähler moduli sector is
characterised by a no-scale structure while the complex-structure moduli are fixed by fluxes [1].
The additional inclusion of non-perturbative effects, and α′ corrections, allows to fix also the
Kähler moduli [2, 26]. The situation in our IIA set up can be considered as a mirror to the
IIB scenario just described, with all but one of the NS flux parameters turned off. As in
IIB, we study moduli stabilisation using a two-stage procedure where we first consider the
no-scale vacuum and solve for the IIA Kähler moduli and dilaton F-terms. This corresponds
to neglecting the ξ term in (3.1) and not considering non-perturbative effects in which case
the complex-structure moduli are characterised by a no-scale structure and decouple from the
theory. The second step is to fix the complex-structure moduli but, as we proceed to show,
already in the first step we encounter problems.

3.1 Solving the Kähler moduli F-terms

We proceed to solve the dilaton and Kähler moduli F-terms. An analysis similar to ours
was performed in [37]. There it was shown that if all the H-flux components are turned on,
then all the complex-structure and Kähler moduli can be fixed perturbatively. In our case we
are interested in turning on only one H-flux component and instead stabilising the complex-
structure moduli non-perturbatively. However, the choice of H-flux turns out to also influence
the stabilisation of the Kähler moduli sector. Indeed we will see that the Kähler moduli are
either fixed at unphysical values (where the volume of the internal manifold vanishes), or are
left as flat directions. This may appear counter intuitive, especially since in the analysis of [37]
the F-term conditions for the Kähler and complex-structure moduli decouple and are solved
independently. However, the particular decoupling found in [37] relied on the fact that all the
H-flux is switched on.

Using (3.1) the F-term for the dilaton reads

DSW = 0 = WS + KSW = −ih0 −
W

S + S̄
, (3.2)

which fixes the dilaton and its axion as

− ih0S̄ = W T . (3.3)

When this is satisfied we have the nice property that

W = 2iIm (W T ) , (3.4)
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which means that the F-terms for the Kähler moduli are independent of the dilaton and can
be written as

W T
T i + 2iKT iIm (W T ) = 0 . (3.5)

This crucially differs from a similar expression in [37] by a factor of −2 in the second term which
arises because of the different choice of H-flux. The imaginary part of (3.5) fixes the axions as

bi = − f̃ i

f0
. (3.6)

The real part reads

1

2
f0κijk(τ

jτk − bjbk) − κijkf̃
jbk + fi

− 3κi

κ

[

1

6
f0κlmn

(

τ lτmτn − 3τ lbmbn
)

− κlmnf̃ lτmbn + flτ
l

]

= 0 . (3.7)

Substituting (3.6) into (3.7) and multiplying by 4f0κ gives

κ
[

2f2
0 κi + 2κijkf̃j f̃k + 4f0fi

]

− 2
[

κf2
0 κi + κi

(

3κlmnf̃lf̃mτn + 6f0flτ
l
)]

= 0 . (3.8)

Contracting with τ i we get

κτ i
[

κijkf̃j f̃k + 2f0fi

]

= 0 . (3.9)

Then substituting (3.9) into (3.8) we arrive at

κ
[

κijkf̃j f̃k + 2f0fi

]

= 0 . (3.10)

For general fluxes, this condition fixes the moduli at vanishing volume. This is unacceptable
and so we are forced to pick the fluxes so that the term in the brackets vanishes. But this in
turn is just a constraint on the flux parameters, and so none of the Kähler moduli get fixed3.
Therefore with this choice all the moduli other than the dilaton remain as flat directions 4. To
see how the dilaton is fixed we substitute (3.10) into (3.3) and recover

s =
1

6

f0

h0
κ ,

σ = − 1

h0f0

(

1

3
f̃ifi + f̃0f0

)

. (3.11)

This analysis exactly agrees with the special case in [19] where a no-scale model on a torodial
orbifold was studied.

The IIB mirror to the analysis of the dilaton and Kähler moduli F-terms is the Imaginary
Self Dual (ISD) condition on the flux [1]. In Appendix A we show indeed that this condition,
in the mirror IIB side, exactly leads to the same solution as the one we find in IIA.

3We emphasise that the moduli are only flat directions in the case where we neglect the effects of the ξ

parameter. Once it is included, the no-scale property of the complex structure sector will be broken, and, as
shown in section 3.2, the Kähler moduli become runaway rather than flat directions.

4Note that this is only possible because supersymmetry is broken, since the axion partners of the Kähler
moduli do get fixed.
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3.2 The scalar potential

It is interesting to examine these results at the level of the scalar potential. The scalar potential
reads [39]

V =
9e2φ̂

κ2

∫

H3 ∧ ⋆H3 −
18 e4φ̂

κ2

(

ẽI − NIJm̃J
) (

Im N−1
)JK (

ẽK − N̄KLm̃L
)

+ VO6 , (3.12)

where the gauge coupling matrix N was introduced in equation (2.6). In terms of the fluxes
(2.24) we have

ẽI =
(

f̃0 − ξ0h0,−fi

)

, m̃I =
(

−f0, f̃i

)

. (3.13)

We have added to the expression in [39] the local orientifold contribution VO6. This reads
(see [8, 37] and section 5 for a derivation)

VO6 = f0e
4DIm W Q . (3.14)

We want to eliminate the ten and four-dimensional dilatons for the dilaton superfield S. They
are connected through (2.8), which provides

s = 2Re
(

CZ0
)

= 2e
1
2
Kcse−DRe

(

e−iθZ0
)

. (3.15)

Then the resulting scalar potential reads

V = R

[

3h2
0r

2κs2
− 1

2s4

(

ẽI − NIJm̃J
) (

Im N−1
)JK (

ẽK − N̄KLm̃L
)

− f0h0

s3

]

, (3.16)

where we have defined the quantities

R ≡ 16e2KcsRe
(

e−iθZ0
)4

, (3.17)

r ≡ e−Kcs

4Re (e−iθZ0)
2

∫

β0 ∧ ⋆β0 = − e−Kcs

4Re (e−iθZ0)
2

(

Im (M)−1
)00

=

(

V ′ + ξ′

2

)

(V ′ − ξ′)
[

1 − 2 V ′−ξ′

4V ′−ξ′

] . (3.18)

The matrix M assumes the same form as N in (2.6), with the complex-structure moduli re-
placing the Kähler moduli (in other words we send Xi → Zλ), and additionally imposing the
orientifold constraints (2.11) [34]. The case r = 2 corresponds exactly to the large complex-
structure or no-scale limit.

3.2.1 Reproducing the solution

We now proceed to recover the solution obtained from the F-term analysis in section 3.1. To do
so we set r = 2 since this is the no-scale case studied. Away from this limit there are corrections
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that will be suppressed by powers of V ′, which we discuss in section 4. To simplify the analysis
we set the fluxes f̃i = f̃0 = 0 and, matching the F-terms solutions, take bi = σ = 0. This gives5

V = R

[

3h2
0

κs2
+

κf2
0

12s4
− f0h0

s3
− 1

2s4
gijfifj

]

. (3.19)

The F-term equations are equivalent to the minimum equations for this potential, and we can
see this by considering the combination

4τ i∂τ iV − s∂sV =
R

3s4κ

[

−90h2
0s

2 + 4κ2f2
0 − 9f0h0κs

]

, (3.20)

which is solved by

s =
f0

6h0
κ . (3.21)

This is exactly the F-terms solution (3.11). Now using this solution we can write

τ i∂τ iV =
R

2s4
gijfifj =

R

2s4
|f |2 , (3.22)

where we used τ i∂ig
jk = −gjk. This is the analogous condition to (3.9) which forces us to

choose fi = 0 otherwise the Kähler moduli are fixed in a non-physical regime. If we take fi = 0
then the Kähler moduli become flat directions since then (3.21) implies ∂τ iV = 0. Note that
for the case r 6= 2 there are no solutions to ∂τ iV = 0 which shows that they destabilise.

3.2.2 Relation with the no-go theorem of [31]

There is a further interesting property of the r = 2 no-scale solution in relation to the no-go
theorem of [31]. There the scalar potential was decomposed as a sum of positive definite terms
called Vp, with p denoting the degree of the flux that gives rise to that term, and positive and
negative contributions from D6 branes and O6 planes respectively [31]

V = V3 + V0 + V2 + V4 + V6 + VD6 − VO6

=
A3

τ3s2
+

A0τ
3

s4
+

A2τ

s4
+

A4

τs4
+

A6

τ3s4
+

AD6

s3
− AO6

s3
. (3.23)

In [31] it was shown that neutrally-stable Minkowski vacua require the condition V2 = V4 =
V6 = 0. Since we have set F2 = F4 = F6 = 0 it is immediate to see that the r = 2 case is such
a Minkowski vacuum where the (trivial) tadpoles are satisfied. We can also analyse the more
general case where all the RR fluxes are kept on. To do this, we use the identities

(

ẽ0 − Re N0Jm̃J
)

= f̃0 + h0σ − 1

3
Kijkb

ibjbkf0 −
1

2
Kijkb

jbkf̃ i = 0 ,

(

ẽi − Re NiJm̃J
)

= −fi +
1

2
Kijkb

jbkf0 + Kijkb
j f̃k = 0 , (3.24)

5This can be checked by direct dimensional reduction, using the supergravity formula for the scalar potential
and the relation eK = 3R

4κs4 .
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that are straightforward to prove using the solutions for σ and bi, formulae (A.6) for the N
matrix, and imposing the constraint on the fluxes that comes from setting to zero the term in
brackets in formula (3.10). This gives

V = − R

2s4

(

ẽI − NIJm̃J
) (

Im N−1
)IK (

ẽK − N̄KLm̃L
)

=
Rk

12s4
f2
0 = V0 , (3.25)

V2 = V4 = V6 = 0 , (3.26)

as required. So we see that the no-scale case relates nicely to the no-go theorem of [31]: there
it was argued that the condition V2 = V4 = V6 = 0 is difficult to satisfy due to the tadpole
constraints. In this case the tadpoles do not constrain the fluxes but the F-terms do.

4 Moduli stabilisation with α
′ corrections

We have seen that the Kähler moduli either get stabilised at unphysical values or are left as
flat directions. A possible way to avoid this is to move away from a CY compactification by
introducing metric or non-geometric fluxes. However, in moving away from CY compactifica-
tions, we lose explicit control over our constructions. For example, mirror symmetry predicts
that there should be half-flat manifolds for which, away from the large complex-structure limit,
the corrections to the complex-structure Kähler potential have the form as in (2.18). However
these corrections have not been calculated explicitly.

To maintain explicitness we consider only CY compactifications. We focus on the effects
of α′ corrections. Naively, it seems unlikely that such α′ corrections can stabilise the Kähler
moduli at acceptable values whilst still maintaining the validity of the α′ expansion: recall that
the tree-level potential (henceforth we refer to the leading terms in α′ as tree-level) pushes the
Kähler moduli towards an unphysical regime. In order to move them substantially away from
this region we must ensure that α′ corrections compete with the tree-level result. This seems to
violate the α′ expansion. Fortunately, in the presence of fluxes, we will see that it is possible to
have a well-controlled α′ expansion and still have tree-level terms in one type of flux competing
with higher order terms in a different type of flux. We reserve a more detailed discussion of
this to section 4.4.

This section begins with a derivation of α′ corrections in our case. We then go on to study
their effects on moduli stabilisation and show that they allow to fix the dilaton and Kähler
moduli at acceptable values. In section 4.3 we show how this is realised in the scalar potential.
In section 4.4 we discuss the validity of the α′ expansion and the effects of other corrections
to the potential. In section 4.5 we complete the moduli stabilisation framework by including
the complex-structure moduli which are stabilised by a combination of the ξ term and non-
perturbative effects.

4.1 The α
′ corrections

Deriving α′ corrections is a very difficult task. Few of these corrections can be calculated
explicitly. In [40] a correction associated with the internal gradient of the dilaton, induced by
the α′3R4 correction to the type II supergravity action, was obtained. This corresponds to
a correction to the volume factor that multiplies the four-dimensional Ricci scalar, following
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integration over the internal space

VR4 →
(

V +
ǫ

2

)

R4 , (4.1)

where ǫ = −χζ(3)
2 with χ being the CY Euler number. Starting from this explicitly calculated

correction, we can use supersymmetry arguments to infer the form of other corrections, since
they all must fit into a supergravity formalism. It was shown in [40] that (4.1) can be accom-
modated in supergravity by appropriately modifying the Kähler potential. Furthermore, it was
shown that it is exactly the correction that arises from the (orientifold truncated) modification
of the prepotential predicted by mirror symmetry [36] (in our notation it corresponds to the
mirror of the ξ term in (2.18)). Once we know the correction to the prepotential/Kähler po-
tential, we can deduce corrections other than (4.1) by using the supergravity formula for the
scalar potential. This is indeed the approach taken in [26] where the key corrections in that
scenario comes from α′3R3H2 type terms. These were not derived in [40] but rather inferred
using supersymmetry arguments.

In this paper we adopt the same approach. We take the prepotential to be of the form6

F = −1

6

KijkT
iT jT k

T 0
+ K

(1)
ij T iT j + K

(2)
i T iT 0 − iǫ(T 0)2 . (4.2)

The first term is the tree-level result, and the ǫ term is the term that is required to account
for the volume correction. We also include two new corrections K(1) and K(2). These are not
required to account for the volume factor, but are consistent with it since they drop out of
the Kähler potential. Instead they are required by mirror symmetry, as we should match the
prepotential (2.17), and correspond to lower order α′ corrections. Notice that such a correction
does not occur for the pure CY case, and this is reflected in the fact that they drop out of the
Kähler potential; however, in the presence of fluxes they do modify the theory.

In the IIB case, supersymmetry arguments provide the form of corrections to the Kähler
potential. In the IIA case, they also suggest the form of the corrections to the superpotential.
Indeed, while the IIB superpotential is unaffected by α′ corrections, being protected by shift
symmetries of the RR axions that superpartner the Kähler moduli [42], in IIA there are no
such symmetries and the superpotential normally receives α′ corrections7.

The orientifold acts on the prepotential as a truncation of the index range, and so the
effective N = 1 theory we are going to study is given by

KT = −ln 8

(

V +
1

2
ǫ

)

.

W T = f0F0 − f̃ iFi − fiT
i + f̃0

=
f0

6
KijkT

iT jT k +
1

2
Kijkf̃

iT jT k − f̄iT
i + f̄0 − 2if0ǫ , (4.3)

where
f̄i = fi − f0K

(2)
i + 2f̃ jK

(1)
ij , f̄0 = f̃0 − f̃ iK

(2)
i . (4.4)

6The prepotential (4.2) receives further exponentially suppressed worldsheet instanton corrections, which we
neglect.

7α′ corrections are not interpreted in the effective four-dimensional theory as quantum corrections thereby
satisfying more general non-renormalisation theorems.

12



Notice that we can absorb the lower order corrections into a redefinition of the fluxes8. We now
go on to study moduli stabilisation using the corrected scenario of (4.3).

4.2 Solving the Kähler moduli F-terms

The analysis of the Kähler moduli F-terms proceeds as in subsection 3.1, so we will be brief
here and present only the results. The axions are fixed as in (3.6), but the the Kähler moduli
satisfy

9ǫf2
0 κi = (3ǫ − 2κ)

(

Kijkf̃
j f̃k + 2f0f̄i

)

. (4.5)

This is a non-trivial constraint and gives a condition that fixes the Kähler moduli at acceptable
values. For the dilaton we find the following solution

s =
1

6

f0

h0
(κ + 12ǫ) +

τ i

2h0f0

(

Kijkf̃
j f̃k + 2f̄if0

)

,

σ = − 1

3h0f
2
0

(

Kijkf̃
if̃ jf̃k + 3f0f̃

if̄i

)

− f̄0

h0
. (4.6)

The corrections therefore allow for a minimum in which the Kähler moduli and the dilaton
are all fixed. Note that in (4.5) the α′ correction on the left hand side has to compete with
the tree-level term on the right. However we can still maintain a large vev for the τ i fields by
tuning the values of the fluxes. To see this more explicitly in a particular example, we can find
a solution to the implicit equation (4.5) by focusing on the homogeneous case τ i = τ , where we
can define κi ≡ Kiτ

2, κ ≡ Kτ3, f̃ i ≡ f̃ and f̄i ≡ f̄Ki. We then obtain the solution

τ ≃ −9ǫf2
0

2K
(

f̃2 + 2f0f̄
) ,

s ≃ f0Kτ3

6h0
, (4.7)

where we made the approximation κ ≫ ǫ. As expected, the vev of the Kähler moduli is
proportional to the ǫ term, but we can still make this large by taking the flux f0 large (whilst
keeping f̃ and f̄ small). Note that in this limit s is also large. However we should keep in mind
that the value of f0 is capped by the tadpoles constraints (2.27) 9.

Note that the IIA α′ corrections we are considering correspond in the mirror IIB picture to
corrections away from the large complex-structure limit. Then the F-term equations we solved
in this IIA set-up are still equivalent to the ISD condition on the flux in IIB: in Appendix
A.2 we show that this is indeed the case, and that the ISD equations away from the large
complex-structure limit are solved by (3.6), (4.5) and (4.6).

8This may be related to the combination F4 + F0B ∧ B which appears in massive IIA supergravity.
9The capping of the moduli vevs is typical behaviour when only the Kähler moduli or only the complex-

structure moduli appear in the superpotential, while cases where both appear parametrically controlled solutions
can be found [18,23,37].
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4.3 The scalar potential

It is interesting to see how this stabilisation mechanism can be understood at the level of the
scalar potential. This analysis will also be useful in understanding how the α′ expansion is
realised.

To simplify the expressions we again focus on the case bi = f̃ i = 0. To calculate the
scalar potential we can use the supergravity formula in terms of the Kähler potential and
superpotential (4.3)10. We may also use the expression of (3.12) with the ǫ-corrected N matrix
of Appendix A.2. However, this will not account for the corrections to the first term in (3.12).
The corrected scalar potential then reads

V = R

[

3h2
0r

2s2

( κ− 3
2

κ3κ−6

)

+
f2
0κ3

12s4
− f0h0

s3
− 3f2

0 ǫκ3

8 s4 κ− 3
2

− L

2s4

]

, (4.8)

where

L ≡
(

κij − 3τ iτ j

κ3

)

f̂if̂j , f̂i ≡ f̄i +
9f0ǫκi

4κ− 3
2

, κx ≡ κ + xǫ . (4.9)

We have already minimised with respect to the axion σ, which only appears in one positive-
definite term and so just sets that term to zero and is fixed as in (4.6). The equations we have
to solve are

∂sV =
R

s5

[

−3rh2
0

( κ− 3
2

κ3κ−6

)

s2 + 3f0h0s −
(

f2
0κ3

3
− 3f2

0 ǫ κ3

2κ− 3
2

− 2L

)]

= 0 , (4.10)

∂τ iV =
Rκi

s4





9rh2
0s

2

2κ3κ−6

(

1 −
κ− 3

2

κ3
−

κ− 3
2

κ−6

)

+
f2
0

4
+

81

16

f2
0 ǫ2

κ2
− 3

2



− R

2s4
∂τ iL = 0 (4.11)

where

∂τ l L = −
(

κimκjn κlmn + 6
δi
lτ

j

κ3
− 9

τ iτ j

κ2
3

κl

)

f̂if̂j

+
9f0ǫ

κ− 3
2

(

κij − 3
τ iτ j

κ3

)

f̂i

(

κjl −
3

2

κjκl

κ− 3
2

)

. (4.12)

In order to understand how the stabilisation of the Kähler moduli occurs in this context, we
plug in the previous equations the solution for s that we already found

s =
f0κ12

6h0
+

τ i f̄i

h0
=

f0

6h0

κ3κ−6

κ− 3
2

+
τ i f̂i

h0
≡ s0 + s1 , (4.13)

10The corrected Kähler derivatives are given in (A.28). Also eK = 3R

4s4κ3

and the following identity can be

used to write it in the form (4.8): κ3

12
− 3κ3ǫ

8κ
−3/2

− 81κǫ2

32(κ
−3/2)

2 + 243κ2ǫ2

32κ3(κ
−3/2)

2 = 3
4κ3

“

κ2

36
+ 2κǫ

3
+ 4ǫ2 +

κκ
−6

12

”

.
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where the last equality is such that s0 and s1 are identified with the first and second terms
respectively. We find, in the case r = 2, the conditions

0 =
f̂i τ

i

2

[

f0 −
6h0 κ− 3

2
s1

κ3κ−6

]

+

(

κij − 3τ iτ j

κ3

)

f̂if̂j , (4.14)

0 =
18 (f̂iτ

i)h0 κl (s1 + 2s0)

κ3κ−6

(

1 −
κ− 3

2

κ3
−

κ− 3
2

κ−6

)

− ∂τ lL (4.15)

that indeed are solved by choosing f̂i = 0 which is equivalent to (4.5). As expected from the
no-scale structure, V = 0 in the minimum. It is important to notice that, after expanding the
expressions for f̂i, the conditions (4.14) and (4.15) involve terms of order ǫ2, and terms of this
order are essential to stabilise the Kähler moduli. Indeed, using (4.5) we can write the solution
for s = f0

6h0

κ3κ−6

κ
− 3

2

which when substituted into (4.8) cancels the first four terms leaving only a

term proportional to L.

Note that the scalar potential (4.8) cannot be written in the form (3.23), and so avoids the
no-go theorem of [31], which was derived at tree level in α′ only. This will be important in
section 5, where we will show it is possible to uplift our minimum to a de Sitter vacuum using
only D6 branes.

4.4 The α
′ and gs expansions

Since the moduli stabilisation relies on α′ corrections it is important to understand how the
α′ expansion can be kept under control. We now explore this in more detail. The Kähler
moduli are fixed by competition between tree-level terms and α′ corrections. In general, the
α′ expansion is essentially an expansion of the four dimensional effective action in terms in the
vevs of the Kähler moduli. As an example, consider the second term of the potential (4.8)
which contains a tree-level part and the relative ǫ ∼ α′3 correction

∼ f2
0

τ3
+

f2
0 ǫ

τ6
. (4.16)

Here we see that the higher order term in α′ is suppressed by a larger power of the Kähler
moduli. This is always the case when the fluxes, and the powers of the dilaton, appear as a
common factor in the part of the potential that is being expanded.

Recall that fluxes are dimensionful quantities and, in particular, fluxes of different degree
must be integrated over different degree cycles. This implies that terms in the four-dimensional
effective action associated with different fluxes have a different dependence on the Kähler mod-
uli. Indeed this is the key property that allows Kähler moduli to be fixed perturbatively in
IIA, while in IIB, where the fluxes are of the same degree (three-forms), the Kähler moduli
dependence is universal and leads to a no-scale structure. The dependence of the power of the
Kähler moduli on the degree of the flux implies that, for generic values of the fluxes, the α′

expansion is not so clear-cut. For example, if we also include the tree-level term for F4 we have

∼ f2
0

τ3
+

f2
0 ǫ

τ6
+

f2
i

τ7
. (4.17)
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Then for generic values of the fluxes fi and f0, the α′ corrections are lower order in the inverse
vev expansion. Of course this just corresponds to the fact that the vev of the moduli is fixed by
the fluxes and we must choose the fluxes so that their vev is large. So if the Kähler moduli were
fixed by the competition between the tree-level terms in (4.17) then we would have τ2 ∼ fi

f0
and

so to reach large values we must take fi ≫ f0 which would mean that the third term in (4.17)
would still dominate the second.

The two cases above illustrate the two important properties of the α′ expansion that we will
use. The first is that for terms involving the same fluxes (and dilaton) factors, the α′ expansion
is exactly an expansion in the vev of the moduli and it is a valid expansion as long as the vev
is large. In a way it is really this expansion that is the essence of the α′ expansion and it is this
one that we have well under control. The second point is that for terms with different degree
fluxes the α′ expansion is more complicated and is a property of the solution of the vev in terms
of the fluxes. In our case we find that the fixing of the moduli requires competition between α′

and tree-level terms in the sense of this latter expansion.
Let us return to our solution in light of these considerations. In subsection 4.2 we showed

that once the dilaton is fixed at its minimum, the Kähler moduli are fixed by the requirement
that f̂i vanished. This can be seen as follows. Schematically, the potential (4.8) can be expanded
as

V ∼ f2
0

τ3
+

h2
0

τ6
+

f0h0

τ
9
2

+
f2
0 ǫ

τ6
+

(

fi + f0K
(2)
i

)2

τ7
+

(

fi + f0K
(2)
i

)

f0ǫ

τ8
+

f2
0 ǫ2

τ9
+ ... (4.18)

where the ellipses denote higher order terms that are suppressed in the vacuum. These include

terms that are lower order in the α′ expansion such as
h2
0ǫ

τ9 . Here we are interested in the
powers of the Kähler moduli in relation to the α′ expansion and so have factored out the
appropriate powers from the definition of the four-dimensional dilaton superfield (s ∼ τ

3
2 s̃

where s̃ is independent of the Kähler moduli). As we showed in section 4.3, minimising with
respect to the dilaton nullifies the contribution from the first four terms. The remaining terms,
which have the same dilaton factor in front, fix τ as in (4.5). We therefore see that the Kähler
moduli are fixed by competition between tree-level terms involving fi and higher order terms
in α′ up to terms in (α′)6f2

0 : this is the first non-vanishing term involving f0 only11. Hence we
keep only the first order (in α′) term for each type of flux.

It is important to note that the α′ analysis we are doing is essentially an analysis of the
mirror to the IIB ISD equations away from the large complex-structure limit. Since on the
IIB side we expect the ISD equations to hold away from the large complex-structure limit, and
since mirror symmetry should hold at all orders in α′, we expect that our analysis captures the
relevant corrections.

All of the analysis so far has been done at tree-level in terms of string loops. String loops are
certainly expected to induce corrections in both the Kähler and complex-structure moduli [43].
However we will show in subsection 4.5 that in these compactifications the ten-dimensional

11There is a subtlety here due to the lower order corrections K
(2)
i . These do induce lower order corrections

in f2
0 . However they only appear in combination with the fi so that we are required to choose a cancellation

between the two fluxes so that f̄i is smaller than f0. This is accounted for in (4.5) where such choice is required
to go to large Kähler vevs.
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string coupling gs can be made exponentially small. The complex-structure ‘volume’ V ′ on the
other hand is exponentially large, and the two can compensate each other12. Correction terms
where we do not expect such complex-structure moduli dependence, in particular terms such
as F 4

0 , we can safely neglect since the small string coupling will dominate any enhancement
effects from flux values. The cases which involve the complex-structure moduli, such as KK
and winding mode exchange between D6 branes, can introduce significant corrections and for
those a more careful analysis must be made. We leave this to section 4.5 and just state here
that they are exponentially suppressed compared to the α′ corrections.

4.5 Including the complex-structure moduli

We can now proceed to the second stage of the moduli stabilisation. Having fixed the Kähler
moduli by means of α′ corrections, we can focus on the stabilisation of the complex-structure
moduli sector. We include in our discussion non-perturbative effects, and the ξ term in the
complex-structure Kähler potential as derived in section 2.2. The latter is associated with
deviations from the large complex structure moduli limit and breaks the no-scale properties of
the configuration. We will see that since this account for the IIB α′ corrections, we are able to
reproduce the mirror to the IIB LARGE volume model of [26] .

We consider the superpotential

W = W0 +
∑

λ̃

Aλ̃e−a
λ̃
U

λ̃ . (4.19)

Here we treat W0 as a constant resulting from integrating out the Kähler moduli and dilaton.
We have separated the index range of the complex-structure superfields as λ = {b, λ̃}. This
is in expectation that one of the superfields, denoted by the index b, will take a much larger
vev than the other moduli. The new non-perturbative term in the complex-structure moduli
can be attributed to gaugino condensation on D6 branes or E2 brane instantons13. The non-
perturbative term involving the quantity Ub will be doubly exponentially suppressed, and so
can be neglected. The associated scalar potential can be written as

V = eK
[

KT iT̄ j

FT i F̄T̄ j + KSS̄FSF̄S̄ +
(

K S̄U
λ̃FU

λ̃
F̄S̄ + c.c.

)

+ KU
λ̃
Ūσ̃FU

λ̃
F̄Ūσ̃

+
(

KUbŪbKUb
KŪb

− 3
)

|W |2
]

, (4.20)

where the F-terms have their usual form FS = ∂SW + (∂SK)W . We will need the fact that,
for the vacuum we are interested in, the scaling of the different terms with respect to V ′ go as

eK ∼ V ′−2 , FU
λ̃
∼ FS ∼ FT ∼ K S̄U

λ̃ ∼
(

KUbŪbKUb
KŪb

− 3
)

∼ V ′−1 ,

KT T̄ ∼ KSS̄ ∼ W ∼ 1 , KŪ
λ̃
Uσ̃ ∼ V ′ . (4.21)

12For example, this allows the NS term in (3.12), which is of lower order in string coupling, to compete with
the other RR terms.

13Note that the compatibility of these effects with an embedding of a visible chiral matter sector is non-trivial
and may affect the moduli stabilisation scheme [41].
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Accepting this for the moment, and keeping only terms up to order V ′−3, we get the potential

V =
1

32sV
[ 4

V ′

(

−dλ̃σ̃ρ̃q
ρ̃
)

Aλ̃aλ̃e−a
λ̃
U

λ̃Aσ̃aσ̃e−aσ̃Uσ̃ − 2uλ̃

V ′2
(

Aλ̃aλ̃e−a
λ̃
U

λ̃W̄0 + c.c.
)

+
3ξ′|W0|2

4V ′3

]

. (4.22)

We can further simplify the form of the potential, requiring that the CY has a ”mirror Swiss-
cheese” form, so that V ′ reads

V ′ =
1

6
dλσρ qλqσqρ = α

(

u
3/2
b − hλ̃u

3/2

λ̃

)

. (4.23)

In that case we can write

− dλ̃σ̃ρ̃ qρ̃ ≃
2V ′ u1/2

λ̃
δλ̃σ̃

3α hλ̃
. (4.24)

This gives the scalar potential

V =
1

32sV





8u
1/2

λ̃

3V ′αhλ̃

∣

∣Aλ̃aλ̃

∣

∣

2
e−2a

λ̃
u

λ̃ − 4uλ̃

V ′2
∣

∣Aλ̃aλ̃

∣

∣ |W0|e−a
λ̃
u

λ̃ +
3ξ′|W0|2

4V ′3



 , (4.25)

where we have fixed the axions νλ̃, as they adjust to make the sign of the second term of (4.25)
negative14. This potential was shown in [26] to admit a non-supersymmetric AdS minimum

with all moduli fixed, where V ′ ∼ u
3/2
b is exponentially large where (ln V ′) ∼ aλ̃uλ̃.

At the minimum, the scaling properties with respect to V ′ (4.21) follow simply from the
form of the Kähler potential, apart from the expressions for the dilaton and Kähler moduli F-
terms. To calculate their scaling behaviour we consider a small perturbation around the point
FS = FT i = 0. Let us consider just the dilaton for simplicity and write it as s = s0 + δs. Then
we can expand

K S̄SF̄SFS = Mδ2
s , |W | = |W0| + |W1|δs ,

K = K0 + K1δs , V = NeK1δs
[

Mδ2
s − γδs − α

]

. (4.26)

Here |W0| and K0 denote the superpotential and Kähler potential evaluated at s = s0, and W1

and K1 are the first terms in the expansion. M is a (positive) constant of order one, whilst γ
and α are constants of order V ′−1. Minimising this with respect to δs provides δs ∼ V ′−1. This
gives the correct scaling (4.21). The same analysis also holds for the Kähler moduli. The fact
that the dilaton and Kähler moduli are expected to be fixed very close to values corresponding
to vanishing F-terms was already pointed out (in the IIB mirror) in [26]. There it was argued
that moving away from vanishing F-terms would give a positive contribution to the potential,
which overwhelms the other terms and so must constitute an increase in energy. We have
confirmed this argument in showing that although the moduli do actually move from their
supersymmetric values, the resulting contribution in the potential is suppressed with respect
to the other terms.

14For the case of a single axion this is true. As pointed out in [41], the case of multiple axions is not so clear
and the interplay between the phases could lead to modifications of the scenario.
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It is interesting to evaluate the value of the ten-dimensional dilaton, corresponding to the
string coupling, in our vacuum. We get

g−1
s = e−φ̂ ≃

√
2s

1
4V− 1

2V ′ 1
2 . (4.27)

Since V ′ is exponentially large, we find that we are at exponentially WEAK string coupling.
The relation of this set-up to its LARGE volume mirror can be understood from the fact that
T-duality acts non-trivially on the dilaton mixing it with metric components. We discuss some
consequences of (4.27) in section 6 where we argue that it can naturally lead to TeV scale
supersymmetry breaking along with an intermediate string scale. Indeed the value of the string
coupling can be considered the key feature of these compactifications.

Finally, we return to the issue of string loop corrections. In order for the above scenario to
hold we require that these are suppressed with respect to the α′ corrections (so that the Kähler
moduli stabilisation is valid) and also with respect to the ξ correction (so that the complex-
structure stabilisation is valid). Here we simply outline an argument following [44, 45] as to
why we expect this to be the case.

Since string loop corrections have only been explicitly computed in torodial models (see
[43, 46] for example), we have no direct calculation of these corrections. However it is still
possible to guess the form of the corrections using the torodial result as in [44]. Further it
was argued in [45] that the corrections can also be understood from a four-dimensional point
of view as corrections suppressed by the gauge-coupling of the brane responsible for them. In
IIB it was argued that these corrections are always suppressed by the CY volume due to the
Weyl rescaling from the string to the Einstein frame. Then there are extra factors of powers
of the size of the cycle wrapped by the brane corresponding to the masses of the exchanged
KK or winding modes. Since winding modes become heavier for larger cycles this will just lead
to extra suppression of the corrections in the cycle volumes. Therefore the leading corrections
in that sense are the KK modes. We are particularly interested in corrections to the LARGE
volume models in IIB (although the following analysis, at least in terms of the relative sizes of
the α′ and gs corrections also holds for KKLT-like scenarios). In that case it was argued in [44]
that they take the form

δKgs ∼
√

us

sV ′ +

√
ub

sV ′ . (4.28)

Here the corrections are given in terms of the corrections to the Kähler potential. We have
translated the IIB result to our IIA language using the dictionary as in section 2. We want to
consider the case where V ′ is exponentially large and have restricted to a toy case where there
are two complex-structure moduli, one exponentially large ub and one small us. On the IIA
side, we can understand the form of the corrections as follows. The suppression in V ′ comes
from the extra factor of g2

s in the loop corrections. The factors in the numerators are the masses
of the KK states. We see that such corrections are subdominant to the α′ corrections since they
are suppressed by (a positive power of) V ′ whereas the α′ corrections are only suppressed by κ.
The second term in (4.28) leads to a correction that is dominant over the ξ correction in the
Kähler potential. However a cancellation in the scalar potential means that it is subdominant in
the potential [44,45]. This result was interpreted from a four-dimensional point of view in [45]
where it was related to a cancellation in the Coleman-Weinberg potential.
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5 Uplifting with D6 branes

In the previous sections we have argued that the scalar potential admits a stable, non super-
symmetric AdS minimum. In this section we attempt to uplift this AdS vacuum to a de Sitter
one. This is particularly interesting when the uplift is performed using D6 branes, which is
probably the best understood possibility, since in this case not including α′ corrections implies
that it is not possible to obtain a de Sitter minimum [31] 15. We show that for our vacua, thanks
to the α′ corrections, this conclusion does not hold and de Sitter minima can be constructed,
provided that the usual tuning requirements on the uplifting sector are imposed.

5.1 The uplifting mechanism

The mechanism that we use is the introduction of D6 branes that form non-trivial angles with
the O6 planes. This is in some cases dual [49] to the magnetised D7-branes uplifts in IIB [50]
and also the D̄3 ones [2]. Throughout our analysis we, for simplicity, neglect any world-volume
fields. The vevs of these fields could play an important role in the uplifting procedure by
compensating the contribution to the effective potential [50]. However, as shown for example
in [51, 52], this need not always to be the case, and in some situations they may actually help
with the fine-tuning needed for the uplift. Either way this is a model dependent issue that we
leave for future work.

We start by recalling that a calibration ω is a form such that its pullback gives the world-
volume of a D6-brane/O6-plane wrapping a cycle [53]. Schematically we can write

φ∗ω =
√

det (φ∗ (g + B2) + F2)d
pσ , (5.1)

where φ∗ is the pull back of the space-time fields to the brane world-volume, and F2 is the
world-volume gauge field strength. We want to consider a D6/O6 plane wrapping a 3-cycle,
then we have [39]

ωO6 = Re
(√

2e
1
2(K

T−Kcs)e−iθΩ
)

= eφ̂2Re (CΩ) . (5.2)

We also have to impose the constraints

φ∗ (J + iB) + 2πiα′F2 = 0 , (5.3)

which imply that φ∗J = 0 (the second calibration condition), and that we can not have any
H-flux without a local source (the Freed-Witten anomaly cancellation condition [54], [55]). This
means that we should not wrap a D6 brane on β0. Once we introduce charges into our setup we
must satisfy the tadpoles constraints (2.27). Consider now a calibrated D6 brane16 wrapping a
generic three-cycle π. Its world-volume action then reads

Swv = µ6

∫

π
Re (2eiθ′CΩ) , (5.4)

15An attractive alternative to D6 branes would be NS5 branes as considered in [47], or even a direct compact-
ification to de Sitter [48], although the latter requires manifolds that are not CY and breaks supersymmetry at
a high scale.

16We consider just a single D6 brane and a single orientifold. The case with multiple branes/orientifolds, at
the level of our analysis, is just given by the appropriate choice of wrapping numbers for their cycles.
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where we have included an angle θ′, since it needs to be calibrated with respect to the same
form as the orientifold, up to a phase. In our conventions, where 2π

√
α′ = 1, we have µ6 = 1

2κ10
.

This is the same factor appearing outside the bulk action and so we can factorise it out and
take µ6 = 1 henceforth. As shown in [53] we should adjust the angle θ′ to maximise the action
so that we end up with

Swv =

∣

∣

∣

∣

∫

π
2CΩ

∣

∣

∣

∣

. (5.5)

We then define

Ω̃π ≡
∫

π
2CΩ , (5.6)

so that the resulting (string frame) scalar potential from reducing the action is

V s
6 =

(

|Ω̃π| + |Ω̃π′ | − 4|Ω̃ω|
)

= 2
(

|Ω̃π| − Re (Ω̃π)
)

+ 2Re (Ω̃π) − 4Re (Ω̃ω)

= 2
(

|Ω̃π| − Re (Ω̃π)
)

− f0h0Re (Ω̃0)

= 2
(

|Ω̃π| − Re (Ω̃π)
)

+ f0Im (W Q) ≡ V s
D + V s

F , (5.7)

Here we included the contribution from the orientifold mirror of the D6 brane wrapped on the
mirror cycle π′. The orientifolds are taken to wrap the cycle ω. In passing from the first to the
second line we have used the fact that since the orientifold is calibrated with respect to CΩ,
it satisfies |Ω̃ω| = Re (Ω̃ω). We also used the fact that the orientifold constraints (2.11) imply
that the real part of CΩ is proportional to the orientifold odd forms and the imaginary part
to the even forms. Going to the mirror three-cycle just changes the phase of Ω̃π and leaves
|Ω̃π′ | = |Ω̃π|. Finally we use the tadpole constraints to eliminate the local sources for the fluxes,
and also the fact that Im (W Q) =

∫

CY 2Re (CΩ) ∧ H3 = −h0Re (Ω̃0). We therefore recover
the local contribution we have been using in sections 3.2 and 4.3, plus an additional D-term
contribution.

We now go on to analyse VD. We want to work in the Einstein frame, so we must rescale
by the Weyl rescaling factor e4D. We can write the potential as in [49]

VD = e4D Im (Ω̃π)
2

Re (Ω̃π)

2
√

1 +
(

Im (Ω̃π)

Re (Ω̃π)

)2
+ 1

(5.8)

In [49] it was shown that only in the case
∣

∣

∣

Im (Ω̃π)

Re (Ω̃π)

∣

∣

∣
<< 1 this can be interpreted as a D-term,

otherwise supersymmetry would be broken non-linearly. Such cases, for example, correspond
to the mirrors of D̄3 in IIB. For the rest of this analysis we will consider only the cases where
the limit is satisfied and this will place some mild constraints on our configurations. Then we
have

VD = e4D Im (Ω̃π)
2

Re (Ω̃π)
. (5.9)
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Figure 1: The AdS minimum from above and below with x = us and y = ln V ′. The yel-
low/orange plane is at V = −2 × 10−16.

To evaluate this we expand the cycle

π = e0α0 + mλαλ + eλβλ , (5.10)

which gives

VD =

(

mλqλ
)2

4
(

V ′ + 1
2ξ′
)2

(e0s + eλuλ)
(5.11)

This will constitute our uplifting term. We note that since qλ and uλ have a factor of s inside
them, the term scales like s−3 which matches the scaling expected from a D6 term.

5.2 Examples

We now wish to study if this type of term in the scalar potential can be used to uplift the AdS
vacua. This will generically depend on a large number of parameters, and so for manageability
purposes we make some simplifications. We consider a simple model with only two complex-
structure moduli. We can take this to be the mirror of P[1,1,1,6,9] with h(2,1) = 2 and h(1,1) = 272,

in which case we have the two moduli ub and uλ̃ = us. In the notation of (4.23) we have α = 1
9
√

2
,

hs = 1 and ξ ≃ 4
3 . We take the gauge group such that as = 1. We also have the four continuous

parameters As, W0, s0 and V0 which are in principle tunable using the 546 RR fluxes at our

disposal. To make the potential neater we take |W0| = 3
√

2|As| and |As| = s
3
2
0

√
2

9(10)
3
2
. With this

we can write the scalar potential as

V =

√
use

−2us

V ′ − 2use
−us

V ′2 +
10

3
2

V ′3 +
103V0

s2
0V ′2

us

e0s0 + ebub + esus
. (5.12)

Here we neglected an overall constant multiplicative factor which does not alter the position
or nature of the minimum. We also set mb = 0 and ms = 1 17. Without the uplift term this

17The case mb 6= 0 will washout the minimum unless also eb 6= 0 in which case it reduces to case 2 in our
analysis.
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potential has an AdS minimum at us ∼ 11 and V ′ ∼ e12 ∼ 105, plotted in Figure 1. The
minimum can be seen as the isolated region below the plane at V = −10−20. Including the
uplift term there are three possible scenarios according to which of {e0, e

b, es} is non-vanishing18.
They all share the feature that the value of V0 and s0 must be tuned so that the uplift term
does not wash out the minimum.

• Case 1: eb 6= 0

In this case the uplift term is

V1 =
103V0

s2
0e

b

us

V ′ 8
3

≡ α
us

V ′ 8
3

. (5.13)

This is plotted in Figure 2(a), where a de Sitter minimum can be seen as the region
below the plane at V = 10−20, but above 0. The value of α required is 1.0323 × 10−2.
The tuning in this number is slightly exaggerated since a de Sitter minimum at a value
above V = 10−20 would still exist for slightly different values. Nonetheless the tuning in
α is a measure of the amount of tuning needed for such an uplift to work. To generate
the order of magnitude for α, we require a large enough vev for the dilaton and/or large
wrapping number (though the exact values will differ according to more general values of
the parameters W0 etc). We can also check that supersymmetry is broken softly since

∣

∣

∣

∣

∣

Im (Ω̃π)

Re (Ω̃π)

∣

∣

∣

∣

∣

∼ s
1
2
0 qs

ebV ′ 2
3

<< 1 . (5.14)

• Case 2: es 6= 0

In this case the uplift term is

V2 =
103V0

s2
0e

s

1

V ′2 . (5.15)

The de Sitter minimum resulting from this is shown in Figure 2(b). It can be seen that
the tuning needed in this case is a few orders of magnitude larger. This is because the
discrepancy between the powers of V ′ in F-terms and D-terms is larger, and must be
compensated by hand. This means that quite a large wrapping number and/or a large
vev for s0. The soft-breaking parameter reads

∣

∣

∣

∣

∣

Im (Ω̃π)

Re (Ω̃π)

∣

∣

∣

∣

∣

∼ s
1
2
0

esqs
∼ s

1
2
0

es
. (5.16)

This can be made small consistently with α being small, by a large enough wrapping
number (e.g. es ∼ s0).

18A combination of parameters not vanishing does not lead to any qualitatively new scenarios.
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(a) The dS minimum, with uplift term VD = αusV
′− 8

3 with α = 1.0323 × 10−2, from above and
below with x = us and y = ln V ′. The yellow plane is at V = 10−20 and the red plane is at 0.

(b) The dS minimum, with uplift term VD = αV ′−2 with α = 2.53504 × 10−5, from above and
below with x = us and y = ln V ′. The yellow plane is at V = 10−20 and the red plane is at 0.

(c) The dS minimum, with uplift term VD = αusV
′−2 with α = 2.31147 × 10−6, from above and

below with x = us and y = ln V ′. The yellow plane is at V = 10−20 and the red plane is at 0.
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• Case 3: e0 6= 0

In this case

V3 =
103V0

s3
0e0

us

V ′2 . (5.17)

The de Sitter minimum resulting from this is shown in Figure 2(c). The tuning is roughly
of the same order as Case 2, but the suppression is enhanced by an extra power of the
dilaton vev. The soft-breaking parameter reads

∣

∣

∣

∣

∣

Im (Ω̃π)

Re (Ω̃π)

∣

∣

∣

∣

∣

∼ 1

e0s
1
2
0

, (5.18)

which can easily be made small.

So we have seen that, given the usual caveats about tuning conditions, it is possible to find
stable de Sitter vacua using only D6 branes in our setup. For complex-structure ‘volumes’ much
larger than the ones we considered, for example V ′ ∼ 1015, the tuning becomes more drastic
and it seems that Cases 2 and 3 would struggle to suppress the uplift term enough. Case 1,
which only has to make up a factor V ′ 1

3 , could in principle allow for a minimum for some values
of the parameters.

6 Conclusions

In this paper we have shown that IIA string theory compactified on CY manifolds admits non-
supersymmetric AdS or dS vacua where all the moduli are stabilised and the string coupling is
exponentially small. The string scale and the supersymmetry breaking scale are schematically
given by

ms ≃
gs√
V

Mp , m 3
2
≃ g2

s |W0|
V Mp . (6.1)

Therefore the exponentially small coupling can naturally generate the TeV scale with gs ∼ 10−7.
This then leads to an intermediate string scale. It is worth noting that although the string
coupling is exponentially small, the exponentially large complex-structure ‘volume’ V ′ combines
with gs to make the physical standard-model couplings, which are given by the four-dimensional
superfields S and Uλ, of appropriate magnitude.

Since these models are mirror to the LARGE-volume IIB compactifications, much of the
phenomenological discussion based around those models will cross over to ours under the mirror
map of section 2. In particular the Kähler moduli inflation scenario of [28] simply maps to
complex-structure moduli inflation (with us the inflaton). In that sense this inflation scenario
can be thought of as general type II inflation.

Although our compactifications can be identified as mirrors to existing IIB constructions,
they can form a base for calculations and scenarios that are difficult to construct on the IIB
side. We have already seen an example of this in section 5 where the IIB dual to the uplifting
term would be more difficult to construct. In general this hope applies more specifically to
the matter sector constructions since for them the IIA/IIB duality is less understood. Perhaps
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being able to study the phenomenology of these models from both sides of the mirror will
increase our understanding of them.
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A The IIB Imaginary-Self-Dual conditions

In this appendix we show that the F-term equations in IIA, that we solved in the main part of
the paper, are equivalent to the ISD condition in the IIB mirror theory. The IIB mirror set-up
has the fluxes

G3 ≡ F3 − iSH3 = −f0α0 + f̃ iαi + fiβ
i − f̃0β

0 + iSh0 β0 . (A.1)

The signs of the fluxes are fixed so that they provide the correct expression for the superpoten-
tial, through the GVW formula W =

∫

G3 ∧ Ω. There is a subtlety here due to the fact that the
IIB complex-structure moduli are defined with an opposite sign prepotential which corresponds
to the minus sign in the interchange between the imaginary parts of the IIB complex-structure
moduli and the Kähler moduli. In this appendix we work with the fields that are the direct
mirrors so that their prepotential and gauge-kinetic matrix is given by (2.2) and (2.6). We keep
the same notation for the fields so that in this appendix T i are the IIB complex-structure fields.
We want to impose the condition

G3 = −i ⋆ G3 , (A.2)

and check that it provides the same conditions that come from the F-term equations on the
IIA side. To analyse the above equation we consider integrals with respect to each component
of the basis which are given by [34,35,56]

∫

αI ∧ ⋆αJ = −
[

(Im N) + (Re N)(Im N−1)(Re N)
]

IJ
,

∫

βI ∧ ⋆βJ = −(Im N−1)IJ ,
∫

αI ∧ ⋆βJ = −
[

(Re N)(Im N−1)
]J

I
. (A.3)

The matrix N is determined by the prepotential as in (2.6). We now go on to consider the
solution to (A.2) for the cases of the large complex-structure limit prepotential (2.2) and the
corrected one (4.2), which should be equivalent to our analysis of the IIA F-terms without and
with α′ corrections respectively.
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A.1 The large complex-structure limit: the mirror to no α
′ corrections

In this set-up the matrix N reads [57]

Re N =

(

−1
3Kijkb

ibjbk 1
2Kijkb

jbk

1
2Kijkb

jbk −Kijkb
k

)

, (A.4)

Im N = −κ

6

(

1 + 4bibjKT
ij −4KT

ijb
j

−4KT
ijb

j 4KT
ij

)

, (A.5)

Im N−1 = −6

κ

(

1 bi

bi bibj + 1
4(KT )ij

)

. (A.6)

Now for the analysis we will use the definitions of the vectors ẽI and m̃I , that we recall here

ẽI =
(

f̃0 + h0σ,−fi

)

, m̃I =
(

−f0, f̃
i
)

. (A.7)

We want to check that the solution (3.6), (3.10), (3.11) solves the ISD equations, where we
constrain the flux combination in (3.10) to vanish. For that solution we can use the following
simple identity, already mentioned in the main part of the paper

(

ẽI − Re NIJm̃J
)

= 0 . (A.8)

We proceed considering the various integrals of condition (A.2) with respect to each basis
component.

1. The integral with respect to βq leads to the condition

f̃ q = if0

[

(Re N)(Im N−1)
]q

0
− if̃ j

[

(Re N)(Im N−1)
]q

j

− ifj (Im N−1)qj + if̃0(Im N−1)0q + Sh0(Im N−1)0q . (A.9)

The real part of this equation reads

f̃ q = −6 s h0

κ
bq , (A.10)

that is satisfied for our configuration using our solution for s. The imaginary part of (A.9)
can be written as

(

ẽI − Re NIJm̃I
)

(Im N−1)Iq , (A.11)

that vanishes using (A.8).

2. The integral with respect to αq leads to the condition

− fq = if0

[

(Im N) + (Re N)(Im N−1)(Re N)
]

0q

− if̃ j
[

(Im N) + (Re N)(Im N−1)(Re N)
]

qj

− ifj

[

(Re N)(Im N−1)
]j

q
+ if̃0

[

(Re N)(Im N−1)
]0

q

+ Sh0

[

(Re N)(Im N−1)
]0

q
. (A.12)
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The real part of this condition is

− fq = s h0

[

(Re N)(Im N−1)
]0

q
. (A.13)

Using (A.8), this can be written as

(Re N)qL m̃L = s h0

[

(Re N)(Im N−1)
]0

q
, (A.14)

or equivalently, using the fact that (Re N)ML is invertible,

m̃L = s h0 (Im N−1)L0 . (A.15)

It is simple to check that this identity is indeed satisfied for our solution. The condition
coming from the imaginary part can be conveniently reassembled in the following way

0 = −Im NqJm̃J

+
[

(Re N)(Im N−1)
]L

q

{

ẽL − Re NLJm̃J
}

. (A.16)

The second line obviously vanishes using (A.8). The first line gives

0 =
2κκiq

3

(

f0b
i + f̃ i

)

, (A.17)

which is satisfied for our solution.

3. The integral with respect to β0 gives the condition

− f0 = if0

[

(Re N)(Im N−1)
]0

0
− if̃ j

[

(Re N)(Im N−1)
]0

j

− ifj (Im N−1)j0 + if̃0(Im N−1)00 + Sh0(Im N−1)00 . (A.18)

The real part reads
f0 = − s h0 (Im N−1)00 , (A.19)

that is satisfied for our solution. It is also immediate to show that the imaginary part is
equivalent to (A.8).

4. The integral with respect to α0 gives the condition

f̃0 − iSh0 = if0

[

(Im N) + (Re N)(Im N−1)(Re N)
]

00

− if̃ j
[

(Im N)(Re N)(Im N−1)(Re N)
]

j0
− ifj

[

(Re N)(Im N−1)
]j

0

+ if̃0

[

(Re N)(Im N−1)
]0

0
+ Sh0

[

(Re N)(Im N−1)
]0

0
. (A.20)

The real part of this is

σh0 + f̃0 = −1

κ
s h0 Kijkb

ibjbk , (A.21)

that is satisfied for our solution. The imaginary part is conveniently reassembled as

− sh0 = −Im N0Jm̃J

+
[

(Re N)(Im N−1)
]L

0

{

ẽL − Re NLJm̃J
}

. (A.22)
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The second line again vanishes using (A.8). The first line reads

sh0 =
κ

6

[

(

1 + 4bibjκij

)

f0 + 4κijb
if̃ j
]

, (A.23)

that is again satisfied for our solution.

This concludes the computation.

A.2 Away from large complex-structure: the mirror to α
′ corrections

In this case the gauge coupling matrix N , obtained from the corrected prepotential (4.2), reads

Re N =

(

−1
3Kijkb

ibjbk + κib
i∆ 1

2Kijkb
jbk + K

(2)
i − 1

2κi∆
1
2Kijkb

jbk + K
(2)
i − 1

2κi∆ −Kijkb
k + 2K

(1)
ij

)

, (A.24)

Im N =

(

g̃ijb
ibj − α −g̃ijb

j

−g̃ijb
j g̃ij

)

, (A.25)

Im N−1 =
1

α

(

−1 −bi

−bi −bibj + αg̃ij

)

, (A.26)

where we have defined the following

∆ = 1 − κ−6

κ−3/2
, g̃ij = κij −

3κiκj

2κ−3/2
, α =

κ−6κ3

6κ−3/2
. (A.27)

For completeness we also include here the derivatives of the corrected Kähler potential

KT
ij̄ = − 3

2κ3

(

κij −
3κiκj

2κ3

)

, (KT )ij̄ = −2κ3

3

(

κij − 3τ iτ j

κ−6

)

. (A.28)

The solution we wish to recover is given by (3.6), (4.5), (4.6). Using (A.24-A.26) it can be
checked that the identity (A.8) still holds. This means that much of the calculation will follow
as in section A.1 and so we just present the results.

1. The first integral is with respect to βq, and yields the following solution for the real
component

f̃ q = −sh0b
q

α
, (A.29)

which is satisfied for our solution. The imaginary part vanishes using (A.8).

2. Now consider the αq integral. The real part reduces to (A.15) which just gives

h0s = αf0 . (A.30)

The imaginary part can be written again as in (A.16) and gives

0 = g̃qi

(

−bif0 − f̃ i
)

, (A.31)

which is satisfied.
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3. The third integral is with respect to β0 and we see that the real condition reduces to the
usual h0s = αf0. The imaginary part again vanishes due to (A.8).

4. The last integral is with respect to α0, and this gives us the real piece

f̃0 + σh0 = −sh0

α

(

Kijkb
ibjbk

6
+ K

(2)
i bi +

κib
i∆

2

)

, (A.32)

which can be checked to be satisfied for our solution. The imaginary part again becomes
the familiar sh0 = f0α.

This concludes the check on the ISD conditions away from the large complex-structure limit.

References

[1] S. B. Giddings, S. Kachru and J. Polchinski, “Hierarchies from fluxes in string compactifications,”
Phys. Rev. D 66 (2002) 106006 [arXiv:hep-th/0105097].

[2] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, “De Sitter vacua in string theory,” Phys. Rev.
D 68 (2003) 046005 [arXiv:hep-th/0301240].

[3] P. Koerber and L. Martucci, “From ten to four and back again: how to generalize the geometry,”
JHEP 0708 (2007) 059 [arXiv:0707.1038 [hep-th]].

[4] K. Behrndt and M. Cvetic, “General N = 1 supersymmetric flux vacua of (massive) type IIA string
theory,” Phys. Rev. Lett. 95 (2005) 021601 [arXiv:hep-th/0403049].

[5] K. Behrndt and M. Cvetic, “General N = 1 supersymmetric fluxes in massive type IIA string
theory,” Nucl. Phys. B 708 (2005) 45 [arXiv:hep-th/0407263].

[6] D. Lust and D. Tsimpis, “Supersymmetric AdS(4) compactifications of IIA supergravity,” JHEP
0502 (2005) 027 [arXiv:hep-th/0412250].

[7] S. Kachru, M. B. Schulz, P. K. Tripathy and S. P. Trivedi, “New supersymmetric string compacti-
fications,” JHEP 0303 (2003) 061 [arXiv:hep-th/0211182].

[8] G. Villadoro and F. Zwirner, “N = 1 effective potential from dual type-IIA D6/O6 orientifolds with
general fluxes,” JHEP 0506 (2005) 047 [arXiv:hep-th/0503169].

[9] T. House and E. Palti, “Effective action of (massive) IIA on manifolds with SU(3) structure,” Phys.
Rev. D 72, 026004 (2005) [arXiv:hep-th/0505177].

[10] A. Micu, E. Palti and P. M. Saffin, “M-theory on seven-dimensional manifolds with SU(3) struc-
ture,” JHEP 0605, 048 (2006) [arXiv:hep-th/0602163].

[11] M. Ihl, D. Robbins and T. Wrase, “Toroidal Orientifolds in IIA with General NS-NS Fluxes,” JHEP
0708 (2007) 043 [arXiv:0705.3410 [hep-th]].

[12] M. Grana, R. Minasian, M. Petrini and A. Tomasiello, “A scan for new N=1 vacua on twisted
tori,” JHEP 0705, 031 (2007) [arXiv:hep-th/0609124].

[13] G. Aldazabal and A. Font, “A second look at N=1 supersymmetric AdS4 vacua of type IIA super-
gravity,” JHEP 0802 (2008) 086 [arXiv:0712.1021 [hep-th]].

30

http://arXiv.org/abs/hep-th/0105097
http://arXiv.org/abs/hep-th/0301240
http://arXiv.org/abs/0707.1038
http://arXiv.org/abs/hep-th/0403049
http://arXiv.org/abs/hep-th/0407263
http://arXiv.org/abs/hep-th/0412250
http://arXiv.org/abs/hep-th/0211182
http://arXiv.org/abs/hep-th/0503169
http://arXiv.org/abs/hep-th/0505177
http://arXiv.org/abs/hep-th/0602163
http://arXiv.org/abs/0705.3410
http://arXiv.org/abs/hep-th/0609124
http://arXiv.org/abs/0712.1021


[14] A. Tomasiello, “New string vacua from twistor spaces,” arXiv:0712.1396 [hep-th].

[15] P. Koerber, D. Lust and D. Tsimpis, “Type IIA AdS4 compactifications on cosets, interpolations
and domain walls,” arXiv:0804.0614 [hep-th].

[16] M. Grana, “Flux compactifications in string theory: A comprehensive review,” Phys. Rept. 423
(2006) 91 [arXiv:hep-th/0509003];

M. R. Douglas and S. Kachru, “Flux compactification,” Rev. Mod. Phys. 79 (2007) 733
[arXiv:hep-th/0610102].

[17] S. Gurrieri, J. Louis, A. Micu and D. Waldram, “Mirror symmetry in generalized Calabi-Yau
compactifications,” Nucl. Phys. B 654 (2003) 61 [arXiv:hep-th/0211102].

[18] J. Shelton, W. Taylor and B. Wecht, “Nongeometric flux compactifications,” JHEP 0510 (2005)
085 [arXiv:hep-th/0508133].

[19] P. G. Camara, A. Font and L. E. Ibanez, “Fluxes, moduli fixing and MSSM-like vacua in a simple
IIA orientifold,” JHEP 0509 (2005) 013 [arXiv:hep-th/0506066].

[20] G. Aldazabal, P. G. Camara, A. Font and L. E. Ibanez, “More dual fluxes and moduli fixing,”
JHEP 0605 (2006) 070 [arXiv:hep-th/0602089].

[21] I. Benmachiche and T. W. Grimm, “Generalized N = 1 orientifold compactifications and the Hitchin
functionals,” Nucl. Phys. B 748 (2006) 200 [arXiv:hep-th/0602241].

[22] M. Grana, J. Louis and D. Waldram, “SU(3) x SU(3) compactification and mirror duals of magnetic
fluxes,” JHEP 0704 (2007) 101 [arXiv:hep-th/0612237].

[23] A. Micu, E. Palti and G. Tasinato, “Towards Minkowski vacua in type II string compactifications,”
JHEP 0703 (2007) 104 [arXiv:hep-th/0701173].

[24] E. Palti, “Low Energy Supersymmetry from Non-Geometry,” JHEP 0710 (2007) 011
[arXiv:0707.1595 [hep-th]].

[25] B. Wecht, “Lectures on Nongeometric Flux Compactifications,” Class. Quant. Grav. 24, S773
(2007) [arXiv:0708.3984 [hep-th]].

[26] V. Balasubramanian, P. Berglund, J. P. Conlon and F. Quevedo, “Systematics of moduli stabilisa-
tion in Calabi-Yau flux compactifications,” JHEP 0503 (2005) 007 [arXiv:hep-th/0502058].

[27] J. P. Conlon, F. Quevedo and K. Suruliz, “Large-volume flux compactifications: Moduli spectrum
and D3/D7 soft supersymmetry breaking,” JHEP 0508 (2005) 007 [arXiv:hep-th/0505076].

J. P. Conlon, “The QCD axion and moduli stabilisation,” JHEP 0605 (2006) 078
[arXiv:hep-th/0602233].

J. P. Conlon, S. S. Abdussalam, F. Quevedo and K. Suruliz, “Soft SUSY breaking terms for chiral
matter in IIB string compactifications,” JHEP 0701 (2007) 032 [arXiv:hep-th/0610129].

J. P. Conlon and D. Cremades, “The neutrino suppression scale from large volumes,” Phys. Rev.
Lett. 99 (2007) 041803 [arXiv:hep-ph/0611144].

J. P. Conlon, “Mirror Mediation,” arXiv:0710.0873 [hep-th].

[28] J. P. Conlon and F. Quevedo, “Kaehler moduli inflation,” JHEP 0601 (2006) 146
[arXiv:hep-th/0509012].

31

http://arXiv.org/abs/0712.1396
http://arXiv.org/abs/0804.0614
http://arXiv.org/abs/hep-th/0509003
http://arXiv.org/abs/hep-th/0610102
http://arXiv.org/abs/hep-th/0211102
http://arXiv.org/abs/hep-th/0508133
http://arXiv.org/abs/hep-th/0506066
http://arXiv.org/abs/hep-th/0602089
http://arXiv.org/abs/hep-th/0602241
http://arXiv.org/abs/hep-th/0612237
http://arXiv.org/abs/hep-th/0701173
http://arXiv.org/abs/0707.1595
http://arXiv.org/abs/0708.3984
http://arXiv.org/abs/hep-th/0502058
http://arXiv.org/abs/hep-th/0505076
http://arXiv.org/abs/hep-th/0602233
http://arXiv.org/abs/hep-th/0610129
http://arXiv.org/abs/hep-ph/0611144
http://arXiv.org/abs/0710.0873
http://arXiv.org/abs/hep-th/0509012


[29] S. H. Henry Tye, “Brane inflation: String theory viewed from the cosmos,” arXiv:hep-th/0610221;

R. Kallosh, “On Inflation in String Theory,” Lect. Notes Phys. 738 (2008) 119
[arXiv:hep-th/0702059];

C. P. Burgess, “Lectures on Cosmic Inflation and its Potential Stringy Realizations,” PoS P2GC,
008 (2006) [Class. Quant. Grav. 24, S795 (2007)] [arXiv:0708.2865 [hep-th]];

L. McAllister and E. Silverstein, “String Cosmology: A Review,” Gen. Rel. Grav. 40 (2008) 565
[arXiv:0710.2951 [hep-th]].

[30] M. P. Hertzberg, M. Tegmark, S. Kachru, J. Shelton and O. Ozcan, “Searching for Inflation in
Simple String Theory Models: An Astrophysical Perspective,” Phys. Rev. D 76 (2007) 103521
[arXiv:0709.0002 [astro-ph]].

[31] M. P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, “Inflationary Constraints on Type IIA
String Theory,” JHEP 0712 (2007) 095 [arXiv:0711.2512 [hep-th]].

[32] B. S. Acharya, F. Benini and R. Valandro, “Fixing moduli in exact type IIA flux vacua,” JHEP
0702 (2007) 018 [arXiv:hep-th/0607223].

[33] P. Candelas and X. de la Ossa, “MODULI SPACE OF CALABI-YAU MANIFOLDS,” Nucl. Phys.
B 355 (1991) 455.

[34] T. W. Grimm and J. Louis, “The effective action of type IIA Calabi-Yau orientifolds,” Nucl. Phys.
B 718 (2005) 153 [arXiv:hep-th/0412277].

[35] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre and T. Magri, “N = 2
supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance,
gaugings and the momentum map,” J. Geom. Phys. 23 (1997) 111 [arXiv:hep-th/9605032].

[36] P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, “A pair of Calabi-Yau manifolds as an
exactly soluble superconformal theory,” Nucl. Phys. B 359 (1991) 21.

[37] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, “Type IIA moduli stabilization,” JHEP 0507
(2005) 066 [arXiv:hep-th/0505160].

[38] F. Denef, M. R. Douglas and B. Florea, “Building a better racetrack,” JHEP 0406 (2004) 034
[arXiv:hep-th/0404257].

[39] T. W. Grimm, “The effective action of type II Calabi-Yau orientifolds,” Fortsch. Phys. 53 (2005)
1179 [arXiv:hep-th/0507153].

T. W. Grimm and J. Louis, “The effective action of type IIA Calabi-Yau orientifolds,” Nucl. Phys.
B 718 (2005) 153 [arXiv:hep-th/0412277].

[40] K. Becker, M. Becker, M. Haack and J. Louis, “Supersymmetry breaking and alpha’-corrections to
flux induced potentials,” JHEP 0206 (2002) 060 [arXiv:hep-th/0204254].

[41] R. Blumenhagen, S. Moster and E. Plauschinn, “Moduli Stabilisation versus Chirality for MSSM
like Type IIB Orientifolds,” JHEP 0801 (2008) 058 [arXiv:0711.3389 [hep-th]].

[42] M. Dine and N. Seiberg, “Nonrenormalization Theorems in Superstring Theory,” Phys. Rev. Lett.
57 (1986) 2625.

[43] M. Berg, M. Haack and B. Kors, “String loop corrections to Kaehler potentials in orientifolds,”
JHEP 0511 (2005) 030 [arXiv:hep-th/0508043].

32

http://arXiv.org/abs/hep-th/0610221
http://arXiv.org/abs/hep-th/0702059
http://arXiv.org/abs/0708.2865
http://arXiv.org/abs/0710.2951
http://arXiv.org/abs/0709.0002
http://arXiv.org/abs/0711.2512
http://arXiv.org/abs/hep-th/0607223
http://arXiv.org/abs/hep-th/0412277
http://arXiv.org/abs/hep-th/9605032
http://arXiv.org/abs/hep-th/0505160
http://arXiv.org/abs/hep-th/0404257
http://arXiv.org/abs/hep-th/0507153
http://arXiv.org/abs/hep-th/0412277
http://arXiv.org/abs/hep-th/0204254
http://arXiv.org/abs/0711.3389
http://arXiv.org/abs/hep-th/0508043


[44] M. Berg, M. Haack and E. Pajer, “Jumping Through Loops: On Soft Terms from Large Volume
Compactifications,” JHEP 0709 (2007) 031 [arXiv:0704.0737 [hep-th]].

[45] M. Cicoli, J. P. Conlon and F. Quevedo, “Systematics of String Loop Corrections in Type IIB
Calabi-Yau Flux Compactifications,” JHEP 0801 (2008) 052 [arXiv:0708.1873 [hep-th]].

[46] C. Angelantonj and A. Sagnotti, “Open strings,” Phys. Rept. 371 (2002) 1 [Erratum-ibid. 376
(2003) 339] [arXiv:hep-th/0204089].

[47] H. Looyestijn and S. Vandoren, “On NS5-brane instantons and volume stabilization,”
arXiv:0801.3949 [hep-th].

[48] E. Silverstein, “Simple de Sitter Solutions,” arXiv:0712.1196 [hep-th].

[49] G. Villadoro and F. Zwirner, “D terms from D-branes, gauge invariance and moduli stabilization
in flux compactifications,” JHEP 0603 (2006) 087 [arXiv:hep-th/0602120].

[50] C. P. Burgess, R. Kallosh and F. Quevedo, “de Sitter string vacua from supersymmetric D-terms,”
JHEP 0310 (2003) 056 [arXiv:hep-th/0309187].

[51] A. Achucarro, B. de Carlos, J. A. Casas and L. Doplicher, “de Sitter vacua from uplifting D-terms
in effective supergravities from realistic strings,” JHEP 0606 (2006) 014 [arXiv:hep-th/0601190].

[52] D. Cremades, M. P. Garcia del Moral, F. Quevedo and K. Suruliz, “Moduli stabilisation and de
Sitter string vacua from magnetised D7 branes,” JHEP 0705 (2007) 100 [arXiv:hep-th/0701154].

[53] K. Becker, M. Becker and A. Strominger, “Five-Branes, Membranes And Nonperturbative String
Theory,” Nucl. Phys. B 456 (1995) 130 [arXiv:hep-th/9507158].

[54] D. S. Freed and E. Witten, “Anomalies in string theory with D-branes,” arXiv:hep-th/9907189.

[55] O. Loaiza-Brito, “Freed-Witten anomaly in general flux compactification,” Phys. Rev. D 76 (2007)
106015 [arXiv:hep-th/0612088].

[56] H. Suzuki, “Calabi-Yau compactification of type IIB string and a mass formula of the extreme black
holes,” Mod. Phys. Lett. A 11 (1996) 623 [arXiv:hep-th/9508001].

[57] J. Louis and A. Micu, “Type II theories compactified on Calabi-Yau threefolds in the presence of
background fluxes,” Nucl. Phys. B 635 (2002) 395 [arXiv:hep-th/0202168].

33

http://arXiv.org/abs/0704.0737
http://arXiv.org/abs/0708.1873
http://arXiv.org/abs/hep-th/0204089
http://arXiv.org/abs/0801.3949
http://arXiv.org/abs/0712.1196
http://arXiv.org/abs/hep-th/0602120
http://arXiv.org/abs/hep-th/0309187
http://arXiv.org/abs/hep-th/0601190
http://arXiv.org/abs/hep-th/0701154
http://arXiv.org/abs/hep-th/9507158
http://arXiv.org/abs/hep-th/9907189
http://arXiv.org/abs/hep-th/0612088
http://arXiv.org/abs/hep-th/9508001
http://arXiv.org/abs/hep-th/0202168

	Introduction
	CY orientifold compactifications without ' corrections
	The Kähler moduli
	The complex-structure moduli
	The fluxes and superpotential

	Moduli stabilisation without ' corrections
	Solving the Kähler moduli F-terms
	The scalar potential
	Reproducing the solution
	Relation with the no-go theorem of Hertzberg:2007wc


	Moduli stabilisation with ' corrections
	The ' corrections
	Solving the Kähler moduli F-terms
	The scalar potential
	The ' and gs expansions
	Including the complex-structure moduli

	Uplifting with D6 branes
	The uplifting mechanism
	Examples

	Conclusions
	The IIB Imaginary-Self-Dual conditions 
	The large complex-structure limit: the mirror to no ' corrections
	Away from large complex-structure: the mirror to ' corrections


