Organic matter sources for tidal marsh sediment over the past two millennia in the Minho River estuary (NW Iberian Peninsula).

J.M. De la Rosa a*, M.F. Araújo b, J.A. González-Pérez a, F.J. González-Vila a, A.M. Soares b, J.M. Martins b,c, E. Leorri d, R. Corbett d, F. Fatela e

a Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC). Av. Reina Mercedes 10, 41012, Seville, Spain
b Instituto Superior Técnico-Instituto Tecnológico e Nuclear. Estrada Nacional 10, 2686-953, Sacavém, Portugal
c Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, 8005-139 Faro, Portugal
d Geological Sciences, East Carolina University. 101 Graham building, Greenville, NC 27858-4353, USA
e Universidade de Lisboa. Faculdade de Ciências, Centro e Departamento de Geologia, Campo Grande, 1749-016 Lisbon, Portugal

*Corresponding author. Tel. +351-219946221; fax: +351-219946185.
E-mail address: jmrosa@irnase.csic.es (Jose M. De la Rosa).
ABSTRACT

Environmental changes during the last 2 millennia in the Minho River tidal marsh (NW Portugal-Spain border) were reconstructed. Changes in the sources of organic matter (OM) delivered to the marsh were evaluated from elemental, isotopic and molecular composition using a 1 m sediment core. Carbon isotopic composition (δ^{13}C) and organic carbon to total nitrogen ratio (C_{org}/N) provided valuable information concerning the origin of the OM. These parameters indicated a major input from land plants, reaching a maximum at 1100–1200 and 1750–1850 AD. These periods match with major flood events in the NW of the Iberian Peninsula, as reported by several authors. A significant reduction in the terrestrial signature occurred at 6–4 cm (ca. 1960–1985 AD), which is contemporaneous with the construction of several major dams on the Minho River. The distribution of selected lipid biomarkers, including n-alkanes, n-fatty acids and n-alkan-2-ones and specific parameters derived from the molecular distributions, were useful for refining bulk geochemical results. Long chain n-alkanes with an odd number of carbons are indicators of soil-and vascular plant-derived terrestrial OM and were dominant throughout the core. In addition, a greater contribution of plankton-derived lipids was observed in the sections corresponding to ca. 1960–1985 AD (6–4 cm) and ca. 100–200 AD (96–94 cm). Although different degradation rates for individual compounds might have partly affected biomarker assemblages, the variations could be attributed to a sharp decrease in the freshwater contribution to the Minho River Estuary (dam construction) and a possible marine highstand, respectively. In addition, several parameters suggested changes in land use (including deforestation and
farming) and probably the effects of mining exploitation during the Roman occupation of the area.

Keywords: Sedimentary organic matter; Minho estuary; tidal marsh; biomarkers; δ^{13}C; geochronology.
1. Introduction

Sheltered coastal environments, such as estuaries, lagoons, bays, rias and tidal marshes commonly preserve thick sequences of sediments, offering the opportunity to investigate not only global alteration, including climate change, but also more local events (Lamb et al., 2006). Such environments are key locations for organic matter (OM) burial, and play an essential role in the global carbon cycle. It is estimated that > 90% of the total organic carbon (TOC) preserved in marine sediments is buried in deposits along the estuarine areas and continental margins in "terrigenous-deltaic" regions near river mouths (Berner et al., 1989). Common to all estuarine areas is a diversity of OM sources, particularly estuarine tidal marshes and tidal flats that receive sediment from several sources, including fluvial- and marine-derived minerogenic sediment and particulate OM, as well as OM from tidal marsh plants and other biota (Meyers and Ishiwatari, 1993).

The northwest of the Iberian Peninsula exhibits most significant correlation with the North Atlantic Oscillation (NAO) in Europe. The correlation suggests that the region is a site of key importance for climate reconstruction in the North Atlantic (Abrantes et al., 2011). The main goal of this study was to reconstruct the history of OM accumulation in a tidal salt marsh in the Minho estuary. This objective is important given the strategic location of the estuary for climatic reconstruction and the lack of information regarding OM sources, transport and fate in the area.

In our study, sedimentary OM was characterized using several complementary organic geochemical methods and indices, including elemental
carbon, nitrogen and sulfur abundance (C, N, S), molar OC to nitrogen and sulfur ratios (C_{org}/N; C_{org}/S) and stable organic carbon isotope (δ^{13}C) values. These parameters have been widely used to determine historical changes in sources of OM in tidal marsh sediments and coastal areas (e.g. Burdloff et al., 2008; Hedges and Oades, 1997; Perdue and Koprivnjak, 2007; Müller and Mathesius, 1999; Thornton and McManus, 1994). Typical atomic C_{org}/N values for fresh marine organisms are within a range of 4–10, much lower than those for terrestrial plants (≥ 20), which contain cellulose, lignin and tannins (Uzaki and Ishiwatari, 1986; Meyers, 1994).

The isotopic ratio of land-derived C_{3} biomass ranges from −23‰ to −34‰, with an average of ca. −27‰, while typical marine end member values are −18‰ to −22‰ for δ^{13}C_{org} (Meyers, 1997; Holtvoeth et al., 2005). Bulk δ^{13}C_{org} and C_{org}/N should therefore reflect the relative amounts of the sources of OM; however, their ability to precisely identify OM sources is uncertain when decomposition processes affect the sedimentary column (Thornton and McManus, 1994). Due to the different response to diagenetic processes by C and N, the C_{org}/N ratio of terrestrial OM tends to decrease, while that of algae tends to increase (Meyers et al., 1984).

In order to overcome the above potential issues in identifying different OM sources, we also employed the distributions of several classes of lipid biomarker compounds. Lipid biomarkers have been widely used as tracers, or proxies, for characterizing the nature and distribution of OM in aquatic systems because they are often source specific (González-Vila et al., 2003; Volkman, 2006). By choosing lipid classes or specific lipids that represent different
sources of OM, it is possible to identify the relative contributions of autochthonous and allochthonous OM input to the sedimentary record over a range of temporal and spatial scales (Wakeham et al., 1991; Meyers, 2003; Rosell Melé, 2003). Among terrestrial biomarkers, straight long chain (≥ C_{21}) alkanes and alkanoic acids are known as major compounds derived from leaf wax. Their abundance and distribution may be used to indicate inputs of land-derived material to a system (Meyers and Ishiwatari, 1993; Ficken et al., 2002).

Using shifts in the elemental and isotopic composition as well as the lipid assemblages isolated from sections of a sediment core from the Minho River estuary, we obtained information recording the origin, dispersal pathways, and alteration and transformation of OM. The chronological framework was established using a combination of techniques (^{210}Pb, ^{137}Cs and ^{14}C).

2. Material and methods

2.1. Study area and sampling

The Minho River originates in Serra da Meira, in the province of Lugo (Spain) and drains into the Atlantic Ocean. It has a high environmental value; in fact its 310 km extent has been considered a biosphere reserve by the UNESCO since 2002. The watershed drains an area of 17080 km^2 and is dominated by granite, greywacke and schist. The river lower estuary is located on the northwest coast of the Iberian Peninsula and has a maximum width of just over 2 km. This high-mesotidal estuary is partially mixed; however, during periods of high flow, it tends to evolve towards a salt wedge estuary. The influence of spring tides extends ca. 40 km upstream. Water flow averages 340
m³ s⁻¹, but the winter peak discharge (December to March) usually exceeds 1000 m³ s⁻¹ and a 100 yr flood recorded 6100 m³ s⁻¹ (Bettencourt et al., 2003). However, the water flow has been drastically reduced during the second half of the past century due to the effect of the construction of several dams (Schmidt et al., 2010).

The lower estuary is very shallow; most of the estuary is exposed during the low water spring tides as a result of widespread siltating. A large tidal flat and tidal marsh surface of around 6 km² have developed in the margins. Previous fieldwork in the Caminha tidal marsh showed this stable accumulative environment to have existed for at least the last 7000 yr, exhibiting ideal conditions for studying the evolution of environmental proxies preserved in its sedimentary record.

In June 2010, several 1 m cores were collected in the estuary with a manual auger corer at 41° 52' 37" N and 8° 49' 28" W (Fig. 1). After core description and photographic documentation, cores were immediately transported to the laboratory and carefully sliced with a ZrO₂ knife into 1 cm sections for geochronology and 2 cm sections for bulk and lipid analysis. Samples for lipid analysis were wrapped in solvent-cleaned Al foil until extraction.

2.2. Analytical work
2.2.1. Elemental analysis

Freeze-dried samples were used for biogeochemical analyses. Total carbon (TC), total nitrogen (TN) and total sulfur (TS) contents were determined
in triplicate on ground and homogenised aliquots using an elemental analyzer (Carlo-Erba EA-1110 microanalyzer). TOC content were measured after pre-treatment with 2M HCl (3 x) to remove carbonate. Total inorganic carbon (TIC) was obtained from the difference between TC and TOC (Nieuwenhuize et al., 1994). The instrumental readings were checked against aliquots of a sulphanilamide standard. The analytical error based on triplicate analyses was within 5% to 8% for TOC, TS and TN.

2.2.2. δ\(^{13}\)C measurements
Carbon (\(^{13}\)C) isotope analysis was performed on decarbonized sediments. An aliquot (ca. 1g) of each core section was ground to a fine powder, homogenized in a ball mill, treated with 2M HCl (3x), and washed and dried (40 °C; 48 h). Analysis was carried out with an elemental analyzer interfaced to a continuous flow isotope ratio mass spectrometer (Sercon 20-20 EA-IRMS; Sercon Ltd.) on triplicate aliquots of each sample (between 1 and 5 mg) packed into tin capsules and combusted in excess oxygen at 1000 °C in a reactor packed with chromium oxide, copper oxide and silver wool. Results are expressed as per mil deviation (‰) from Peedee Belemnite (\(^{13}\)C/\(^{12}\)C, PDB). The reproducibility of the procedure was in the range of 0.1–0.2‰.

2.2.3. Geochronology
Dating recent marsh sediments usually relies on determination (Appleby and Oldfield, 1992) of the vertical distribution of unsupported \(^{210}\)Pb (half life 22.3 yr) Total \(^{210}\)Pb was measured via \(\alpha\) spectroscopy following the methodology of
Nittrouer et al. (1979). An aliquot (ca. 1.5 g) of sediment was spiked with 209Po and partially digested with 8 N HNO$_3$ via microwave heating. 209Po and 210Po in solution were then electroplated onto Ni planchets in dilute acid (modified from Flynn, 1968). 210Pb$_{\text{Excess}}$ was determined by subtracting the 210Pb activity supported by 226Ra from the total 210Pb activity, where the supported 210Pb activity for a given core was assumed to be equal to the uniform background activity found at depth (Nittrouer et al., 1979). The simple model proposed by Robbins (1978) and a constant rate of supply (CRS; Appleby and Oldfield, 1978) were used as they are the most suitable for the region (Irabien et al., 2008; Leorri et al., 2010). Two additional samples (41 cm and 91 cm depth) were analyzed for 14C at Beta Analytic Inc. (USA) to provide a complete chronological framework (Table 1). Sediments were pretreated by acid wash and subjected to accelerator mass spectrometry (AMS) 14C dating. Conventional radiocarbon dates were calibrated using IntCal09 (Reimer et al., 2009).

2.2.4. Lipid extraction and analysis

Freeze-dried sediment (ca. 5 g) was ground in a mortar and free lipids were extracted using Soxhlet apparatus with CH$_2$Cl$_2$:MeOH (3:1, v/v; suprasolv Merck) for 16 h. Elemental S was removed from the extract using activated Cu and the extract was concentrated using a rotary evaporator. Total lipid content was determined in duplicate by gravimetry and expressed relative to TOC. An aliquot of concentrated extract was saponified (3 h, reflux with 0.5 N KOH in MeOH). Neutral and acid fractions were isolated by extraction with hexane before and after acidification to pH <1, respectively. The acid fractions was methylated (trimethylsilyldiazomethane, TMSCHN$_2$) according to Hashimoto et
al. (1981) and silylated with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA; 50 µL, 40 °C, 40 min) before analysis using gas chromatography–mass spectrometry (GC–MS; Hewlett-Packard GCD 5730A).

Separation of acid and neutral compounds was achieved using a SE-52 fused silica column (30 m × 0.32 mm i.d., film thickness 0.25 µm). The oven temperature was programmed from 40 to 100 °C at 30 °C min⁻¹ and to 300 °C at 6 °C min⁻¹. He was the carrier gas at 1 ml min⁻¹. Mass spectra were obtained over m/z 50 to 550 at 70 eV ionizing energy. Individual compounds (n-alkanes, n-fatty acids and n-alkan-2-ones) were identified by displaying traces corresponding to selected ions characteristic for the homologous series (m/z 57, m/z 74 and m/z 58, respectively) and by comparison of mass spectra with spectra in libraries (NIST and Wiley). Most biomarker series occurred in low concentration, so absolute concentrations were subject to considerable inaccuracy. Therefore, only semi-quantitative component abundance was assessed using the SIM traces assuming constant relationship between the reconstructed ion current response and the amount of a component in the corresponding sub-fraction.

3. Climatic variation in the NW of the Iberian Peninsula during the last two millennia

Several authors have studied the deviations in the climatic conditions of the North of the Iberian Peninsula from the last phases of the Holocene until the present. For instance, Martínez-Cortizas et al. (1999) derived a record of Hg deposition in the peat bog of Penido Vello in northwest Spain, which extends to
4000 14C yr before the present. Desprat et al. (2003) studied the climatic variability for the last three millennia in northwest Iberia via high resolution pollen analysis of a sediment core retrieved from the central axis of the Ria de Vigo in south Galicia, whereas Pla and Catalan (2005) analysed chrysophyte cyst data for 105 lakes within the Central and Eastern Pyrenees of northeast Spain to produce a Holocene history of winter/spring temperatures. They found an alternation of cold periods with relatively warm episodes. In the order of their occurrence, the periods were described as the Late Iron Cold Period, ($<$150 BC), which was followed by a warmer and wetter phase, the Roman Warm Period (RWP; 150 BC–450 AD). The period between 450 and 950 AD was again cold and dry, concomitant with the Dark Ages (DAs), that terminated with the onset of the Medieval Warm Period (MWP; 950–1400 AD). The MWP was followed by a phase of high climate variability but under lower temperature, the Little Ice Age (LIA) (1400–1850 AD), which includes the Maunder Minimum (around 1670–1750 AD). The LIA was succeeded by the recent warming (1850 AD to the present). In addition, several strong flooding episodes are documented during these periods and were especially common at times of transitions between periods (e.g. 500–600, 1100–1200 and 1450–1600 AD; Abrantes et al., 2011; Benito et al 1996). During the 18th and 19th centuries, intensive precipitation and thunderstorms were common, alternating with severe droughts, as recorded in other localities from southern and northern Spain (Riera et al., 2004; Benito et al., 2008; Gil-Garcia et al., 2008; Martin-Puertas et al., 2008).
4. Results and discussion

4.1. Chronology and bulk Geochemical parameters

Downcore values for geochronology, elemental (C, N, S), carbon δ^{13}C, lipid content and the atomic ratios C_{org}/N, C_{org}/S for the sediment sections are plotted in Fig. 2.

The core showed an exponential, although variable, decline in 210Pb$_{\text{Excess}}$ with depth and the plot of the natural log of 210Pb was fairly linear. The pattern suggests a relatively constant rate of deposition, allowing us to use the simple model of Robbins (1978). However, an inflexion in the 210Pb$_{\text{Excess}}$ pattern suggests that there could have been a short term fluctuation in net deposition, so the CRS model (Appleby and Oldfield, 1978) was also used.

Leorri et al. (2010) showed a strong variability in sedimentation rate in response to environmental change, spatial distribution and human impact on the Atlantic coast of the Iberian Peninsula. At the Minho site, 210Pb activity showed a general decline with depth And the profile did not suggest any major mixing or disruption in sedimentation. Estimates derived from the simple and CRS models were in agreement in the long term (100 yr) and indicate that the sediments of the uppermost 10 cm were deposited over the last 100 yr. The main difference occurred at 8 cm, where CRS indicated an inflexion in sedimentation rate, i.e. lower values at the bottom of the core. The CRS model was in better agreement with 137Cs and total Pb concentration (see Leorri et al., 2008 for discussion).

The two 14C dates recovered at 41 cm and 91 cm gave 1470 and 250 yr AD (intercept values), respectively. We used the full 2σ error when calculating
the trends: Cal AD 1440 to 1530 (Cal BP 510 to 420)/Cal AD 1560 to 1630 (Cal BP 390 to 320) and Cal AD 220 to 350 (Cal BP 1730 to 1600). The derived sedimentation rate range from 0.5 to 1 mm yr\(^{-1}\). The values are typical for many mesotidal marshes elsewhere in NW Europe (e.g. Cundy and Croudace, 1995) and were supported by results derived from both \(^{210}\)Pb and \(^{14}\)C from nearby cores (Leorri et al., 2010).

The TOC content varied from 14.1\% to 1.9\% (of total wt.). It decreased significantly downcore from 0 cm to 50 cm, being consistent with the effects of diagenesis, and remained relatively constant around 2% in the sections below 60 cm (<1000 AD). Similar trends were observed for TN content, which varied from 1.30 wt.% (1960–1985 AD) to 0.12 wt.% (300–400 AD). The positive correlation between TOC and TN (\(r^2 0.94\)) suggested that N was predominantly fixed in the OM (Sabel et al., 2005). The atomic C\(_{org}\)/N ratio has been widely used to distinguish potential OM origins. Because of the content of peptide material, typical C\(_{org}\)/N values for fresh marine biogenic OM vary between 4 and 10, whereas OM from terrestrial vascular plants has a ratio of 20 and higher because it contains cellulose, lignin and tannins (Uzaki and Ishiwatari, 1986; Meyers, 1994; 1997). The C\(_{org}\)/N ratio in the core (Fig. 2) was mostly >15, attributable to a predominantly terrestrial origin for the sedimentary OM, with some variable contribution of marine OM. Similar values were reported for salt marsh sediments (Alberts and Filip, 1989) and for recent sediments sampled from several estuarine and riverine areas within the Iberian Peninsula (De la Rosa et al., 2011; Polvillo et al., 2009). According to their low C\(_{org}\)/N values, sections corresponding to 1960–1985 AD and 50–250 AD, pointed to a greater
marine contribution than the rest. However, one should be cautious with such an interpretation since diagenetic processes must always be considered (Lehmann et al., 2002). The low C_{org}/N values in the deepest sections of the core could indicate a preferential utilization of C and bacterial immobilization of N, as reported for lacustrine sediments (Meyers and Ishiwatari, 1993). Thus, additional parameters were considered (see below) to confirm these hypotheses.

TIC ranged from 1.9 to 0.1 wt.%, decreasing downcore, with the exception of the section corresponding to 1500–1600 AD (46–44 cm). TS values for the upper 54 cm of (1100–2010 AD) are similar to those reported by Schmidt et al (2009) for recent sediments taken in the coastal area around the Minho river mouth (0.14 to 0.28%). Total S content was higher in the sections corresponding to 50–1050 AD (max. 0.46%; mean 0.37±0.06%). Consequently, very low C_{org}/S values occurred below 60 cm, pointing to an increase in reducing conditions (Hadas et al., 2001) during sediment deposition for that period (> 1000 yr ago). Nevertheless, another factor may have contributed to this significant increase in TS content. The Au and Cu wealth of this Celtic region motivated the Roman conquest in 25 BC. After the domination of the Roman army, the northwestern Iberian Peninsula became the biggest Au producer in the Roman Empire. The arsenopyrite and chalcopyrite ores of Galicia were exploited during the 400 yr of Roman domination of the Iberian Peninsula. Millions of m3 of rock were moved from more than 200 open pits in western Asturias, León and Galicia through elaborate hydraulic mining methods using water supplied by hundreds of km of canals that traverse the mountainous
countryside (Sánchez-Palencia and Suárez, 1988). In this sense, it is known that the transfer of larger quantities of reactive OM to anoxic zones increases sulfate reduction, decreasing considerably the C_{org}/S ratio (Leventhal, 1983). Nevertheless further studies would be needed to confirm this hypothesis.

$\delta^{13}C$ values are neither significantly influenced by sediment grain size nor particularly sensitive to environmental or depositional factors, making them useful indicators in reconstructing past sources of OM (Meyers, 1997). Thus the isotopic difference between OC produced by C$_3$ land plants and marine algae has been used to trace the delivery of OM to sediments of estuarine and coastal areas (Prahl et al., 1994). In our core, the $\delta^{13}C$ value of TOC ranged between –25.0 and –27.4‰, values typically reported for C$_3$ land plant biomass (Meyers, 1994), suggesting a dominantly terrestrial input. The sharp change at 4 cm (1960–1985 AD) towards less negative values (–25.0‰) was accompanied by a decrease in C_{org}/N (12.1). Both are indicative of a greater marine OM input at that period. The change may be the result of a drastic decrease in the Minho river discharge caused by the construction of several dams from the 1960s to the 1970s (E1; Fig. 2). The $\delta^{13}C$ values zigzag in the intervals corresponding to 1850–1750 AD (E2; Fig. 2). This period corresponds to the end of the LIA, in which intensive precipitation, snowfall and thunderstorms were common, alternating with severe droughts, as recorded for other localities from southern and northern Spain (Riera et al., 2004; Gil-Garcia et al., 2008; Martin-Puertas et al., 2008). The most negative values of $\delta^{13}C$ correspond to the period 1700–1500 AD (LIA) and are accompanied by high C_{org}/N values. Both factors indicate the maximum terrestrial contribution during this period. In contrast, the
section at 94 cm depth (100–200 AD) had the second most positive δ^{13}C value of the entire core and a low C_{org}/N ratio, matching with the numerous references to a highstand occurring between 0 and 500 AD, equivalent to the Dunquerkian transgression in northern Europe (Vilas et al., 1991; Devoy et al., 1996; Granja et al., 1996; Martínez Cortizas et al., 1996) affecting Roman settlements (Martínez Cortizas and Costa Casais, 1997; E5; Fig. 2). Other notable δ^{13}C oscillations downcore may indicate temporal changes in the source of OM or climatic alterations (1100 or 700 AD), but modifications caused by decomposition also have to be considered.

The core sections had extractable lipid content between 5.2 % and 16.9 % of the TOC (Fig. 2). A significant inverse correlation was observed between lipid content (%TOC) and δ^{13}C value of TOC from 50 to 0 cm (1300–2010 AD; r = −0.73), suggesting a greater presence of land derived lipid material in the extracts of the upper sections. Because of the significant increase in lipid content for samples corresponding to 1100 and 500 AD (60 and 80 cm respectively), the correlation disappeared in the lowest sections. This result may indicate that environmental conditions enhanced lipid preservation or that punctuated increases occurred in the lipid content of the sedimentary OM due to fast flooding events (E3 and E4 in Fig. 2). The lipid content did not co-vary with the carbonate content. In fact, the low pH and Ca content of Minho estuarine water and marsh sediment interstitial water, resulting from the absence of continental input of carbonate, prevent the development of carbonated fauna in the marsh sediment, including calcareous benthic foraminifera (Moreno et al., 2007; Fatela et al., 2009). Acidification in some
deep parts of the core increased the poor conservation of carbonate, i.e. preventing the presence of macrofauna (González-Vila et al., 2003).

4.2. Lipid biomarker distributions

Fig. 3 shows SIM traces corresponding to \(n \)-alkanes (m/z 57), \(n \)-fatty acids (FAs; m/z 74) and \(n \)-alkan-2-ones (m/z 58) in the uppermost section of the core. These alkyl series have been widely used as part of geochemical proxies for palaeoenvironmental reconstruction (Meyers and Ishiwatari, 1993).

4.2.1. \(n \)-alkanes

The \(n \)-alkane distribution was quite similar through the core, occurring in the \(C_{15} \text{–} C_{34} \) range (Fig. 3a) with a monomodal distribution maximising at \(C_{31} \) or \(C_{29} \) and an odd predominance, which is usually related to the input of wax lipids from higher plants. Several parameters using \(n \)-alkane abundance were used to reconstruct changes in the origin of the sedimentary OM, vegetation type and climate (Fig 4a). A common one is the carbon preference index (CPI), which is used as indication of \(n \)-alkane source. A value \(\geq 5 \) characterizes hydrocarbons from vascular land plants, whereas values close to 1 are thought to indicate greater input from marine microorganisms, petrogenic input and/or recycled OM (Kennicutt et al., 1987). In environmental organic geochemistry, CPI is used to indicate the degree of diagenesis of straight chain geolipids and is a numerical representation of how much of the original biological chain length specificity is preserved in geological lipids (Meyers and Ishiwatari, 1995). CPI values > 3; Fig. 4a) indicated a clear odd/even predominance along the core, confirming a
greater terrestrial OM input. Samples corresponding to 1960–1985 and 100–
200 AD had the lowest $\delta^{18}O$ values (2.4 and 2.8 respectively), suggesting a
greater presence of marine phytoplankton, which may be related to the recent
construction of dams and the marine highstand that occurred at these times (E1
and E5; Fig 2). Higher values were observed during the LIA, consistent with the
increase in continental precipitation and reduced degradation during a cooler
period (Xie et al., 2004). Another parameter is the average chain length of n-
alkanes (ACL a). Vegetation types is the main influence on the chain length of
terrigenous leaf lipids (Poynter and Eglinton, 1990). Leaf lipids derived from
grasslands have on average longer chain length than leaf lipids from plants in
forests (Cranwell, 1973). The ACL values of C_{27}–C_{33} homologues (Bray and
Evans, 1961) varied between 29.6 and 30.4 (avg., 30.1; Fig. 4a). Both the CPI
and ACL oscillated during the end of the LIA, probably indicative of the above
mentioned changing conditions (E2). They reached a maximum during the LIA,
particularly during the Maunder minimum 1600–1700 AD which, according to
previous studies, points to higher grass contribution (Juan et al., 2008).

Typically, grass and herbs have a high concentration of C_{31} n-alkane, while
trees, especially pines, are rich in C_{29}, but also show an important content of
C_{27}. Therefore, the ratio C_{31}/C_{27} can be a proxy for reflecting shifts in vegetation
from an open grass-dominated system to trees and forest landscape (Cranwell,
1973; Meyers and Ishiwatari, 1993). The C_{31}/C_{27} values in Fig. 4a indicate a
progressive reduction in the forest area during the RWP, probably produced by
changes in land use that occurred then (deforestation and intensification of
cultivation), which is consistent with the progressive increase in ACL a and
CPIo/e. A sharp increase in grass contribution during the LIA (max. C\textsubscript{31}/C\textsubscript{27}) confirmed the outcome from CPIo/e and ACL\textsubscript{al}. The terrigenous/aquatic ratio of \textit{n}-alkanes (TAR\textsubscript{al}) is valuable for determining changes in relative contributions of OM from land and aquatic flora although it may over-represent the absolute amount from terrigenous sources (Meyers, 1997). The values ranged (Fig. 4a) from 3.8 (1960–1985 AD) to 15.1(1600–1700 AD), which again pointed to a significant reduction in continental discharge during the 1960s and 1970s (E1), locating the maximum terrestrial signature during the LIA (Fig. 2). In addition, the relative increase in TAR\textsubscript{al} around 1100 AD is contemporaneous with large magnitude floods reported for the Minho River in the course of the early MWP (Benito et al., 1996; Abrantes et al., 2011; E3 in Fig 2).

4.2.2. FAs

The FAs ranged from C\textsubscript{14}–C\textsubscript{32} with a strong even predominance (CPIe/o 3.1 to 6.1) and C\textsubscript{max} at C\textsubscript{26} (Figs. 3b, 4b). In addition, the monounsaturated FAs ascribed to marine sources including bacteria and diatoms (Volkman et al., 1980; Krüge and Permanyer, 2004) were scarce. It is well known that FAs are more sensitive to degradation and modification than most types of biogenic lipids and some are more susceptible to diagenesis than others; comparison between different components can therefore help distinguish diagenetic effects from source changes. Whereas the distributions in algae and bacteria maximize at shorter chain length (C\textsubscript{12}–C\textsubscript{18}; Cranwell et al., 1987), C\textsubscript{16} acids in particular have been reported as ubiquitous in the biosphere, being found in land plants, algae, bacteria and other microorganisms (Meyers, 1997). Longer chain (C\textsubscript{22}–
homologues, present in all the samples, might be related to the waxy coating of land plant-derived sources (Almendros et al., 1996), flowers and pollen (Meyers and Ishiwatari, 1993). Parameters derived from the distribution of FAs were consistent with the n-alkane behaviour. Maxima corresponding to the CPI\(^{e/o}\), ACL\(_{fa}\) (C\(_{24}–C_{30}\)) and TAR\(_{fa}\) for the LIA and around 1100 AD (early MWP; E3), contrasted with the reduced values for 1960–1985 AD and 200–400 AD (Fig. 4b). The progressive increase through the RWP could be related to deforestation and the intensification of human impact during that period.

4.2.3. n-Alkan-2-ones

A homologous series of n-alkan-2-ones (methyl ketones) from C\(_{15}\) to C\(_{31}\) was detected in all the sections (Fig. 3c). The n- and exhibited a strong odd predominance (CPI\(^{o/e}\)ket 2.9–4.4; Fig. 4c) with a maximum at C\(_{27}\). The ACL values for the C\(_{25}–C_{35}\) n-alkan-2-ones ranged from 27.0 to 27.9 (Fig. 4c). A similar distribution has been reported to occur in many sedimentary environments, including marine and lacustrine sediments (Volkman et al., 1983; Meyers and Ishiwatari, 1993), soils, glacier ice and palaeosols (Xie et al., 2003), and aerosols (Abas and Simoneit, 1996). Methyl ketones are usually formed by microbially mediated \(\alpha\)-oxidation of n-alkanes (Cranwell et al., 1987) or \(\beta\)-oxidation and decarboxylation of n-FAs (Volkman et al., 1983), but have also been reported to occur in higher plants, microalgae and phytoplankton (Hernandez et al., 2001). For example, those maximizing at C\(_{27}\) are typical for several Juncus species (Ortiz et al., 2011) growing in the study area, suggesting a direct biological input from higher plants. The ACL and CPI values
displayed trends somewhat similar to the same parameters for n-alkanes and FAs throughout the sequence from the present until the early MWP. However, the opposite trend was observed for samples corresponding to the start of the MWP and the RWP. This could suggest a change in the dominant source of n-alkan-2-ones, such as the microbial oxidation of n-alkanes. The ratio $C_{25}/C_{27 \text{ket}}$ has been used as an indicator of a marine contribution, the higher the value the greater the marine contribution (Hernández et al., 2001). Overall low $C_{25}/C_{27 \text{ket}}$ values (<1) were observed through the core (Fig. 4c), consistent with a strong terrigenous influence. Sections at 1960–1985 and 100–200 AD showed higher values of the $C_{25}/C_{27 \text{ket}}$, in good agreement with δ^{13}C, C_{org}/N and CPI data (Figs. 2 and 4a), indicating a greater marine vs. planktonic input during these periods (E1 and E5; Fig. 2).

5. Conclusions

This study provides a comprehensive set of bulk geochemical indicators in combination with geochronology analysis and lipid assemblage to evaluate the changes in the predominant OM sources in a 1m core from the Minho tidal marsh. Radiocarbon dating revealed that the sediment sequence spans the past ca. 2000 yr. Sedimentation rate varied from ca. 0.5 to 1 mm yr$^{-1}$ reflecting the regional trend for this type of environment.

The main conclusions can be summarized as:

(i) δ^{13}C, TOC, TN, C/N and the distribution of n-alkyl biomarkers show that the OM in the core is primarily derived from terrestrial sources, reaching a maximum terrestrial signature during the Little Ice Age.
C_{31}/C_{27al}, CPI^{s/e} and ACL_{al} parameters indicate that grass vegetation dominated during this period.

(ii) Samples corresponding to the period 1960–1985 show low C_{org}/N ratio and heavier δ^{13}C values, as well as low CPI, ACL and TAR parameters, indicating a significant increase in marine input. This is likely due to the drastic reduction in the Minho River discharge associated with the construction of several major dams.

(1) (iii) Alternation in the C_{org}/N and δ^{13}C values through the 18th and 19th centuries is consistent with fluctuations in the n-alkyl parameters. They reveal common intensive precipitation alternating with severe droughts.

(2) (iv) High C_{org}/N, lipid content, ACL and TAR values at ca. 1100 AD suggest punctuated increases in the continental discharges, which is contemporaneous with major flood events reported for that period in the area.

(3) (v) The progressive increase in C_{31}/C_{27}, TAR_{al} and ACL_{al} values during the Roman Warm Period are probably produced by changes in land use practices that occurred at these times (deforestation and intensification of cultivation). High TS and very low C_{org}/S values could be derived from the mining exploitation during the Roman domination.

(4) (vi) Low C_{org}/N, CPI^{s/e} and high C_{25}/C_{27 ket} values suggest a significant increase in the contribution of marine phytoplankton at 100–200 AD,
which may be related to the marine highstand during the early Roman Warm Period, as reported by several authors.

Acknowledgements

We acknowledge the funding by the Foundation for Science and Technology (FCT) of Portugal for J.M. M's PhD Grant (SFRH/BD/45528/2008) and for the WestLog Project (PTDC/CTE-GIX/105370/2008). E.L. was awarded a Ralph E. Powe Junior Faculty Enhancement Award. This is a contribution to the IGCP Project 588 and to the Geo-Q Research Unit (Aranzadi). We would also like to thank Y. Xu and P.A. Meyers their careful review and the valuable comments.

Guest Associate Editor – V. Grossi

References

Appleby, P.G., Oldfield, F., 1992. Application of 210Pb to sedimentation studies. In:
Ivanovich, M., Harmon, R.S. (Eds.), Uranium Series Disequilibrium. Oxford

Publication 115, 95–98.

Palaeoflood and floodplain records from Spain: Evidence for long-term climate

atmospheric oxygen over Phanerozoic time. Palaeogeography, Palaeoclimatology,
Palaeoecology 73, 97–122.

Bettencourt, A., Ramos, L., Gomes, V., Dias, J.M.A., Ferreira, G., Silva, M., Costa, L.,

Bray, E.E., Evans, E.D., 1961. Distribution of n-paraffins as a clue to recognition of

Burdloff, D., Araújo, M.F. Jouanneau, J.M., Mendes, I., Monge Soares, A.M., Dias,

potential contributors to lacustrine sediments–II. Organic Geochemistry 11, 513–
527.

Juan, H., MeiXun, Z., Li, L., PinXian, W., HuangMin, G., 2008. Sea surface temperature and terrestrial biomarker records of the last 260 ka of core MD05-

Figure captions

Fig. 1. Location of study area. Dark grey area, Caminha tidal marsh. C, core location (CP W1).

Fig. 2. Downcore plots of geochronology and bulk characteristics. E 1, damp and dry period; E 2, dry-flood events; E 3 and E 4, floods; E 5, marine highstand.

Fig. 3. Reconstructed ion chromatograms of (a) n-alkanes (m/z 57), (b) n-FA methyl esters (m/z 74) and (c) n-alkan-2-ones (m/z 58) in 0–2 cm section of core. Numbers on peaks refer to chain length.

Fig. 4. Parameters from n-alkyl compounds. CPI $^{o/e}_{al}$, Carbon Preference Index = Σ area C odd/Σ area C even; ACL, average chain length; TAR al, terrigenous to aquatic ratio of n-alkanes = (area C$_{27}$ + C$_{29}$ + C$_{31}$/area C$_{15}$ + C$_{17}$ + C$_{19}$);

C$_{31}$/C$_{27}$-alk = area C$_{31}$/area C$_{27}$ of n-alkanes; CPI $^{e/o}$, Carbon Preference Index = Σ area C even / Σ area C odd; TAR fa, terrigenous to aquatic ratio of n-FAs (C$_{24}$ + C$_{26}$ + C$_{28}$)/(C$_{12}$ + C$_{14}$ + C$_{16}$); C$_{25}$/C$_{27}$ ket = area C$_{25}$/area C$_{27}$ of n-alkan-2ones.
\textbullet{} C - Site location of sediment core
Table 1
Radiocarbon data.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Laboratory code</th>
<th>Depth (cm)</th>
<th>Analysis</th>
<th>Conventional age</th>
<th>2 sigma calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 41</td>
<td>Beta-304385</td>
<td>41</td>
<td>AMS-Standard delivery</td>
<td>380 +/- 30 BP</td>
<td>Cal AD 1440 to 1530 / Cal AD 1560 to 1630</td>
</tr>
<tr>
<td>CP 91</td>
<td>Beta-304386</td>
<td>91</td>
<td>AMS-Standard delivery</td>
<td>1760 +/- 30 BP</td>
<td>Cal AD 220 to 350</td>
</tr>
</tbody>
</table>