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and Fernando Falo1,3

1 Departamento de Fı́sica de la Materia Condensada, Universidad de Zaragoza,
C/Pedro Cerbuna, 12 50009 Zaragoza, Spain
2 Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza,
C/Pedro Cerbuna, 12 50009 Zaragoza, Spain
3 Instituto de Biocomputación y Fı́sica de Sistemas Complejos, Universidad de
Zaragoza, C/Pedro Cerbuna, 12 50009 Zaragoza, Spain
E-mail: afiascon@unizar.es

New Journal of Physics 14 (2012) 023004 (12pp)
Received 16 July 2011
Published 2 February 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/2/023004

Abstract. We present a model of an ATP-fueled molecular machine which
pushes a polymer through a pore channel. The machine acts between two
levels (working–waiting), and the working one remains active for a fixed
time giving a constant force. The activation rate of the machine can be put
in relationship with the available ATP concentration in the solution, which
gives the necessary energy supply. The translocation time shows a monotonic
behaviour as a function of the activation frequency, and the velocity follows
a Michaelis–Menten (MM) law that arises naturally in this description. The
estimation of the stall force of the motor follows a corrected MM law which
yet is to be checked in experimental investigations. The results presented here
agree with recent biological experimental findings.
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1. Introduction

In recent years there has been significant progress in the experimental and theoretical study of
transport mechanisms of molecules inside cells and/or through cell membranes [1]. This effort
is now attracting more and more attention from researchers in different scientific disciplines. The
increasing interest in this subject is related not only to the intrinsic importance of understanding
the basic mechanisms of the living systems, but also to the enormous improvement in
technological capabilities at the nanometre length scale. These, on the one hand, allow us to
detect and measure mechanisms at the nanoscale and, on the other, open up the possibility of
constructing from scratch structures (with both natural and synthetic materials) able to imitate
biological functioning [2]. In this context, the passage of biomolecules through nanopores is
ubiquitous, in both biological and nanotechnological processes. Examples of these two types
are the passage of mRNA through nuclear pores [3] and the translocation of DNA in graphene
pores [4].

In most cases, translocation is driven by constant fields in the pore or by the difference
in chemical potential between the two sides of the membrane. However, in some cases the
translocation is assisted by an ATP-based molecular motor [5]. This is the case of DNA
bacteriophages in which the incoming DNA has to overcome substantial pressure inside the
virus capsid. This makes this kind of motor possibly the most powerful of those known. In this
type of motor, ATP hydrolysis fuels the process.

In this paper, we model the translocation process of a one-dimensional (1D) chain
pushed by a molecular motor activated by ATP absorption. The motor is able to drive
with a constant force a polymer chain in one direction while in its activated state. The
polymer diffuses freely otherwise [6, 7]. The work reveals the Michaelis–Menten (MM)
behaviour of the polymer velocity and relates it to the MM enzymatic reaction, according to a
microscopic reinterpretation of the MM kinetics, which is a very important topic of investigation
[8–10].

We will also study the behaviour of the motor against a pulling force, the motor stall force,
and its ability to package the polymer in a finite region, as a first approach to a capsid effect.

The aim of this paper is to present a simple model that captures the main physical
ingredients of the process. Remarkably, the model is able to well describe some experimentally
observed results and make new predictions. The model could also be applied to different kinds
of systems. In this spirit, we do not pretend here to give a detailed description of a particular
molecular motor.
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Figure 1. Scheme of the dichotomous pushing force acting on a polymer chain
compound by N monomers. TM is the working time of the motor, supposed
fixed. T is the mean waiting time in the inactive state. The motor acts on a
region of length LM, where the motor action can be expressed by the linear
potential −η(t)FMx (with η = 1 for the active state and η = 0 for the inactive
one), indicated in the middle figure by two dotted lines.

2. The model

The polymer is modelled as a 1D chain of N dimensionless monomers connected by harmonic
springs [11]. The total potential energy is Vhar =

k
2

∑N−1
i=1 (xi+1 − xi − d0)

2, where k is the elastic
constant, xi the position of the i th particle, and d0 the equilibrium distance between adjacent
monomers. Throughout this paper, d0 = 1 and k = 1.

The translocation is helped by the presence of an ATP-activated molecular motor. It has
spatial width LM and we set at x = 0 its right edge (see figure 1). The motor is characterized
by a fixed working time TM which follows the ATP absorption, which, in turn, occurs after
a mean waiting time T , depending on the very ATP concentration. In this sense the ATP
molecules act on the motor as a shot noise contribution able to switch on its activity. The
motor exerts a dichotomous force FMη(t) on the particles inside the motor (x ∈ [−LM, 0]),
where η(t) is 1 during the working time and 0 otherwise. As shown in [12], the ATP absorption
follows an exponential distribution of waiting times: the probability for an ATP adsorption in a
time between t ′ and t ′ + dt ′ after the last activity is proportional to e−t ′/T . Thus, the activation
probability of the motor is given by Pt ′ = 1 − e−t ′/T with t ′ being the motor residence time in
its inactive state.

The dynamics of the i th monomer of the chain is described by the following overdamped
Langevin equation:

ẋi = −V ′

har + FMηi(t) + ξi(t), (1)

where the damping (considered the same for all the monomers, which feel the viscosity
independently of each other) is included in the normalized time. In the above dimensionless
equation, d0 is taken as the unit of length, the force is expressed in units of kd0 and the energy is
expressed in units of kd2

0 . ξi(t) are the Gaussian uncorrelated thermal fluctuations which follow
the usual statistical properties 〈ξi(t)〉 = 0 and 〈ni(t)n j(t + s)〉 = 2Ddi jd(s) with (i, j = 1 · · · N ).
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3. Energy supply

The energy used by the motor to provide the driving is given by the ATP hydrolysis. In
our model, each ATP hydrolysis just activates the motor for a fixed working time TM. This
description avoids more complex details that are beyond the scope of this paper.

As a consequence of the ATP absorption, the motor changes its conformational state and
exerts a mean force FM during a fixed time TM = 1/ν0. After that time, the motor returns to its
inactive state. A new force is applied when the next suitable ATP quantity is absorbed. It happens
after a mean time T = 1/ν, which follows an exponential distribution of waiting times. That
way in our description the activation frequency is proportional to the ATP concentration [13]:
ν ∝ [ATP]. The hypothesis that the motor works for a fixed time and that the statistics of the
arrival of the ATP molecules happens in an exponential distribution appears realistic in good
approximation as clearly shown by different experimental works [9, 10, 12, 14, 15].

With this definition the MM law arises naturally from the model. The motor duty ratio, the
fraction of time that it is active, is given by

TM

TM + T
=

ν

ν0 + ν
=

[ATP]

kM + [ATP]
, (2)

which is an MM law. The only hypothesis included in the derivation of the last equality is that
the motor activation rate ν is proportional to the ATP concentration, kM = [ATP]ν0/ν being the
Michaelis constant.

The relationship between the mechanical description presented and the MM law is deeper
than only the statistical ansatz ν ∝ [ATP]. In the MM enzymatic reaction,

E + S −→
k1 Z −→

k2 E + P, (3)

the rate k1 represents the probability of forming the compound Z per unit of time and per
unit of S ([ATP]), and k2 gives the probability of forming the product P per unit of time. In our
mechanical and individual case (single motor and single ATP event) Z represents the ATP bound
to the motor, which occurs with frequency ν (∼ k1[ATP]), while P represents the motor action,
which is completed within a time TM = 1/ν0 (ν0 ∼ k2). These relationships are in agreement
with the definition of the Michaelis constant kM = k2/k1.

4. Results

We have numerically solved the Langevin equation (1). We are mainly interested in the
behaviour of the translocation time τ and velocity v as a function of the motor activation
frequency ν. We will compare our results to some theoretical predictions derived below. For
every computed point we performed at least Nexp = 10 000 numerical experiments (for low
frequency up to 50 000) using a stochastic Runge–Kutta algorithm with a time step dt = 0.01.
The polymer is a compound of N monomers and starts with all the spring at the rest length
and the last monomer of the chain at xN = 0, just at the exit of the motor. The noise intensity
is fixed at the value D = 0.01 and the intensity of the force is FM = 0.1. We have chosen
LM/d0 = 5.5.
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Figure 2. log–log plot of the mean first passage time τ as a function of the mean
frequency of the fluctuating force. Top inset: mean velocity, following the MM
law given by equation (5). Bottom inset: the mean number of particles inside the
motor during its active state. The thermal noise intensity is D = 0.01 and k = 1.

Polymer translocation. We now study the mean translocation time and velocity of the polymer
driven by the motor. With respect to the polymer velocity, by summing up the N terms of
equation (1) and averaging in time, we obtain for the centre of mass of the chain the mean
velocity v:

v =
FM

N

N∑
i=1

〈ηi(t)〉 =
FM

N

non
mot(ν)

1 + ν0/ν
. (4)

Here non
mot(ν) is the mean number of monomers inside the motor during its activity, a number that

is expected to depend weakly on ν. Thus, the mean velocity of the polymer depends on the force
felt by the non

mot monomers inside the machine which operates for fraction of time ν/(ν0 + ν), and
the polymer shows an MM law for the velocity weakly moderated by the function non

mot(ν). Note
that this velocity goes to zero as 1/N for a large chain as expected for a motor which acts on a
small number of monomers and a polymer which moves in a dissipative media.

We also wish to mention that equation (4) is also valid in other interesting situations,
for instance, systems with random distributions of TM values with small dispersion around its
mean value or the case of a minimum threshold time for the motor activation, which effectively
imposes a maximum cutoff frequency in the system (in this case 1/ν = Tthres + T ).

Figure 2 shows the main observables of the system and their frequency dependence. The
translocation time τ is computed as the mean first passage time, i.e. the average over the Nexp

realizations of the time taken by the centre of mass of the chain to reach the position x = 0. It
is observed that this time decreases monotonically as ν increases and reaches a limit value for
large enough values of ν (T goes to zero and the motor is ‘on’ most of the time). The relation
between translocation velocity v and time τ is not trivial at all, as can be seen in [16] and [17].
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Figure 3. Translocation time and velocity (inset) for different values of the
elasticity of the chain k. Lines in the inset show the fit to v = v0

HR/(1 + bν0/ν)

where b = 1 for k > 0.5.

The physics of the problem is regulated by the mean number of monomers in the motor
during the working time, non

mot, a number directly related with the elasticity of the chain. As
seen in the inset, for the parameters used this number is close to LM/d0 and does not change
importantly in all of the frequency range covered. Thus, as predicted by equation (4) the polymer
velocity follows an MM law (see the inset of figure 2):

v ' v0
HR/(1 + ν0/ν), (5)

with v0
HR being the high-frequency limit (v0

HR = 0.0450 in the plotted case, which is close to
0.0458 = FMnM/N with FM = 0.1, N = 12 and nM = LM/d0 = 5.5). Equation (5) allows for a
direct experimental fit once the velocity at high ATP concentration (the high rate limit of our
system) is measured. With respect to the low-frequency limit, we can see from the equation that
v goes to zero as v ' v0

HR(ν/ν0) ' (FMnM/N )(ν/ν0).

Elastic constant. In order to better understand how the elasticity of the chain acts on the
translocation dynamics, we have computed the mean velocity and first passage time (v and
τ ) for different values of the elastic constant between monomers k (see figure 3). We note that
a similar behaviour is observed for the different values considered. As expected, a smaller k
gives a lower velocity, the polymer enlarges and the mean number of monomers in the machine
diminishes. At low k, non

mot changes significantly with ν and v shows deviations with respect to
the predictions of equation (5) but can be nicely fitted by a slightly modified law (see the caption
of figure 3). For high k (k > 1) we reach the rigid chain limit of the system.

Translocation in the presence of a pull force. A set of simulations has been performed by
applying a pull force Fp on the left extremum of the chain, acting against the motor (see figure 4).
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Figure 4. A pull force Fp is applied at the chain to measure the stall force of the
motor.

The initial condition is set with the polymer centre of mass in the centre of the machine. The
velocity of the centre of mass is measured waiting for the exit on the left or on the right of the
potential region.

In this case, the mean velocity is given by

v =
FM

N

non
mot(ν; Fp)

1 + ν0/ν
−

Fp

N
, (6)

where the last term Fp/N modifies equation (4) by taking into account the presence of an
external force acting against the machine. There we emphasize that the presence of a pulling
force also modifies the value of non

mot with respect to the unforced value.
Assuming again a weak dependence on ν and Fp for non

mot, we can rewrite the previous
equation as

v '
v

p
HR

1 + ν0/ν
+

v
p
LR

1 + ν/ν0
, (7)

where v
p
L R = −Fp/N is the low-frequency limit of v and v

p
HR the high-frequency one, v

p
HR =

(FMnon
mot;HR − Fp)/N .
Figure 5 (lower inset) shows our numerical results for the polymer velocity in the presence

of a pull and it allows for a comparison against the theoretical predictions. As seen in the figure,
the polymer mean velocity can be understood in terms of equation (7). Figure 5 shows the
excellent agreement between this equation and the numerical calculations once the low and high
ATP concentrations (low and high frequency) values are determined. The value of v

p
HR present in

that equation can be evaluated experimentally by using the values of the velocity curves for high
ATP concentrations [15]. A rough estimation can also be given by v

p
HR ' (FMLM/d0 − Fp)/N .

We have also studied the frequency dependence of non
mot(ν; Fp). As visible in the top inset

of figure 5, this quantity depends weakly on ν for all the pulling forces and decreases slightly
with Fp for all the frequencies. Then the velocity of the polymer shows the expected MM-type
behaviour for all the different pull forces used in the calculations (Fp = 0.1, 0.22, 0.34). We
have verified numerically that we can consider non

mot(ν, Fp) ' non
mot;HR(Fp) ' non

mot;HR(0) − aFp.
In our case a ' 2.35 and non

mot;HR(0) ' 5.59, obtained through a fit procedure of non
mot;HR(Fp), the

high rate values of non
mot(ν, Fp).

Stall force. We will study now the stall force Fstall of the system, which is the value of the pull
force Fp for which the polymer velocity is zero. In formulae

Fstall = Fp(v = 0) = FM
non

mot(ν, Fp)

1 + ν0/ν
' FM

non
mot;HR(Fp)

1 + ν0/ν
. (8)
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Figure 5. Stall force as a function of the frequency of the dichotomous driving
and prediction of equation (10). The insets show, for four values of Fp, non

mot(ν)

(upper inset) and the mean velocity (lower inset) computed (symbols) and
predicted (lines) by equation (7).

Here we have used the weak frequency dependence of non
mot as suggested by the inset of figure 5.

A simple approximation for non
mot;HR(Fp) is to assume that non

mot;HR = LM/d0. As discussed
above, a more realistic one is to take the linear dependence non

mot;HR(Fp) ' non
mot;HR(0) − aFp.

Substituting the latter expression into equation (8), we obtain

Fp = FM

non
mot;HR(0)

1 + ν0/ν
− FM

aFp

1 + ν0/ν
. (9)

By solving with respect to Fp and introducing Fstall, we obtain

Fstall '
FHR

stall

1 + bν0/ν
, (10)

where b = 1/(1 + aFM) and FHR
stall ' bFMnon

mot;HR(0) is the high-frequency stall force.
Figure 5 shows our numerical results for the polymer stall force problem and compares

them to our theoretical predictions. We find excellent agreement with the predictions of our
equation (10), where b ' 0.81 and FHR

stall ' 0.453. These numbers results from the values of
a ' 2.35 and non

mot;HR(0) ' 5.59 obtained above.
In this model, the stall force is not weakly dependent on the frequency ν, but changes from

0 to 4.5FM in the range of rate variation of figure 5. Thus an experimental investigation can
easily verify the stall force frequency dependence by lowering the ATP concentration in the
surroundings of the motor. This way the working model can be verified and tested and also
compared with different models5.

5 We refer in particular to the outcomes of a similar motor model assisted by both a sinusoidal time
dependence [16] and a pure dichotomous driving [17]. Besides the non-trivial behaviours of FStall as a function
of the frequency, a very weak variation of its values is observed there.
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Figure 7. Scheme of the motor pushing the polymer inside the capsid of length
LCaps.

Stall force for different k. We have made a number of simulations to study the dependence of
the stall force on the elasticity constant k. The results are plotted in figure 6 where the stall force
is drawn as a function of the frequency ν for various values of k. We can observe that the stall
force increases with k and shows a saturation behaviour at high k (see the curves for k = 5 and
k = 10) similar to that of the velocity (inset of figure 3).

The MM behaviour predicted by equation (10) is observed for all the curves. The inset of
the figure shows the behaviour of the coefficients F k,HR

stall and b of the equation. As expected, the
rigid chain (high k) follows an exact MM law, b = 1 in equation (10).

Polymer packing. One of the recent most relevant activities in the field is the study of the
translocation features in the DNA packing problem driven by molecular motors [12, 14, 15].
One example is the φ29, a bacteriophage virus that is able to inject its DNA in a bacteria in
order to replicate, and then repack it in its capsid. Remarkable experiments [14] have measured
the force of the motor as a function of the number of monomers entered in the capsid. The model
here depicted is able to qualitatively reproduce the results reported there.

We performed a set of calculations where the chain is pushed into a limited portion of
space. Figure 7 shows the scheme of the motor of length LM that pushes the polymer inside a
region of length LCaps. The polymer starts with the last monomer on the right at the position
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entering the capsid (Nin). This curve resembles the experimental outcome
reported in [14]. The length of the capsid is LCaps = 8 and the number of
monomers is N = 36. Insets: (a) trajectory of the centre of mass xcm with (b)
a small portion showing stops; (c) chain velocity as a function of Nin. The
activation rate of the motor for the calculations presented in the insets is ν = 1.

x = 0. This particle (N th monomer in the figure) cannot pass the wall on the right. Once there,
the polymer begins to compress and the pressure on the particles inside the capsid increases
more and more, avoiding in some cases the completion of the translocation process. To consider
excluded volume effects and maintain the relative order of the monomers, a repulsive only
Lennard–Jones potential has been taken into account in the model: VLJ(r) = 4ε[(σ

r )12
− (σ

r )6]
for r 6 21/6σ and 0 otherwise. We used ε = 1 and σ = 0.1.

Figure 8 plots Fin, the mean force acting on the last monomer entering the capsid, as
a function of the total number of monomers entered. The capsid width is LCaps/d0 = 8 and
the chain length is N = 36 monomers. It shows that, until the size of the entered polymer
is approximately equal to the size of the capsid, the force grows very slowly. Once the last
monomer (N ) touches the wall of the capsid, the force inside grows rapidly with a saturating
trend at a high number of monomers. The inset (c) of the figure plots the polymer mean
velocity against the number of monomers in the capsid. We find a behaviour similar to that
experimentally observed in [14]. It shows that the model introduced here can depict qualitatively
the packing features of the φ29 motor despite its simplicity.

Biological values. The model we present here is a simplification of both a real polymeric
chain and a molecular motor: in the example used here, the DNA and the motor of the φ29
bacteriophage.

The model is, in principle, adaptable to any translocation process mediated by ATP-
based motors, provided that a proper scaling of the measurable quantities can be done. The
experimentally possible value of the working time of the motor is TM = 10 ms, of the affinity
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constant kM ' 30 lM [12] and of the saturation velocity vmax ' 103 DNA base pairs s−1
=

70 nm s−1 [15]. The saturation velocity sets the vHR value in our model, and the frequency
at the MM concentration corresponds to ν = ν0 = 1/TM. Finally, the stall force value found
experimentally in the high-frequency limit is F exp

Stall = 57 pN [14]. Using this value we can
estimate FM ≈ 12 pN. In the same way the energy consumed per cycle can be obtained for
a large ATP concentration as W = non

motvmax FMTM. With the parameters used, W ≈ 12 kTroom,
which is less than the energy provided by an ATP molecule, i.e. about 20 kTroom.

5. Discussion

In this paper, we have introduced a simple model for a molecular motor that consumes ATP and
produces mechanical work pushing a polymer chain.

Other simple models have been used to describe translocation features of DNA. For
instance, in the works of Linke and co-workers, a 1D polymer chain joined together by an FENE
potential is studied [18, 19]. The chain moves aided by a flashing extended ratchet potential. By
contrast, our potential acts in a limited region of space, which is a more realistic approach to
translocation through a pore.

In our paper, we calculate the mean translocation time and the velocity of the polymer as
a function of the activation frequency of the motor. The latter shows very good agreement with
the experiments and follows a clear MM dependence on the ATP concentration. We see that
such MM laws arise in a natural way in the description of the system as a consequence of the
kinetics of a machine which remains active for a certain given time. It appears that the working
time average of the molecular motors that use ATP is actually the origin of the MM law in
ATP-motor-assisted dynamics.

We have also studied the behaviour of the polymer in the presence of a pulling force
and obtained analytical expressions for the stall force of the system as a function of the ATP
concentration. Such expressions, a corrected MM equation, show excellent agreement with our
computed results. Finally, the force inside the capsid and the velocity of the chain as a function
of the amount of polymer packed have also been evaluated, showing good qualitative agreement
with the experiments.

We have studied a 1D model. Polymer translocation experiments are usually performed
with the help of optical traps. That way, the polymer (DNA or RNA) is held almost completely
stretched out. With respect to the capsid effect, the confinement introduced in the model
describes a saturating pressure inside the capsid without taking into account specific geometrical
details and polymer recoil effects. For these two reasons the 1D model is a good enough first
approach to study the process.

In addition to the fact that technological improvements now allow very precise
investigations at the nanoscale, the microscopic working details of the bacteriophage motors
are not completely understood. The model is close to one of the two mechanisms proposed
recently in [12], where the force acts by means of steric interactions, without chemical bonds
with the DNA. Since the DNA packing motor φ29 is a well-studied motor protein with several
intriguing and unexplained features, we have compared our results to experiments with this
motor. In general, we found good agreement. However, a detailed model for φ29 should include
many other aspects and is beyond the scope and purpose of this paper. Among these aspects we
can mention a precise modelling of the inactive stage, the inclusion of more complex waiting
time statistics and the addition of existing structural data.
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The results presented here describe the general features of a motor which actuates with
a mean force during its cycle. In this sense the qualitative results reported here need some
adjustments of the parameters if applied in concrete cases and can be applied to a wide class
of ATP-based motors, independently of the inner functioning of the very motor. This paper
shows that our model could be a good starting point to develop detailed descriptions of different
motors.
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