PATENTE DE INVENCIÓN

<table>
<thead>
<tr>
<th>N.º</th>
<th>ES</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FECHA DE PRESENTACIÓN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 de marzo de 1977</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prioridades</th>
<th>N.º</th>
<th>FECHA</th>
<th>PAÍS</th>
<th>Clasificación Internacional</th>
<th>Patente de la que es Divisoria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TÍTULO DE LA INVENCIÓN

"PROCEDIMIENTO DE FABRICACIÓN DE LAS COLUMNAS GAS-CROMATOGRAFICAS MAS IDONEAS PARA EL ANÁLISIS DE LA FRACCIÓN MAS VOLATIL DE AROMA DE LOS VINOS, BRANDIES, WHISKIES, RONES, HOLANDAS Y VINAGRES"

SOLICITANTE (S)

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

DOMICILIO DEL SOLICITANTE

Serrano, 150 Madrid-6

INVENTOR (ES)

TITULAR (ES)

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

REPRESENTANTE

D. JAVIER TRUEBA GUTIERREZ

20 JUL. 1978

Concedido el Registro de acuerdo con los datos que figuran en la presente solicitud y en el contenido de la memoria adjunta.
MEMÓRIA DESCRIPTIVA

La complejidad del aroma de los productos de fermentación y la circunstancia de que las sustancias que lo integran poseen características físicas y químicas muy similares, encontrándose algunas de ellas en cantidades traza y otras en gran cantidad (p. ej. etanol), hace que su análisis cualitativo y cuantitativo presente grandes dificultades.

La técnica analítica que más ventajas ofrece es la de Cromatografía de Gases habiendo de realizarse en unas condiciones de trabajo adecuadas. Condiciones que se refieren a: características de la columna (material, forma y dimensiones del tubo, naturaleza del soporte y de la fase estacionaria, cantidad de fase estacionaria y sistema de relleno), a la temperatura del horno, a la naturaleza y flujo del gas portador, y a las características del detector.

De entre los parámetros apuntados es sin duda uno de los más importantes el que se refiere a la naturaleza y cantidad de fase más adecuadas para lograr la separación total de los componentes propios del aroma de los productos de fermentación. Además, los fases que se recomienden para tal fin han de ser capaces de separar también otras sustancias en número determinado, que reúnan las características exigibles a los buenos patrones internos con vistas a permitir el análisis cuantitativo afectado de errores mínimos.

Los componentes de la fracción más volátil del aroma de los productos citados en el título, que es preciso identificar y cuantificar, son los que se enumeran a continuación en donde también se indican las sustancias patrón interno más idóneas.

1. - Acetaldéhido
2. - Propionaldéhido
3. - Acetato de metilo
4. - Formato de etilo
5. - Etanol
6. - Acetato de etilo
7. - Propionato de metilo (patrón interno)
8. - Propanol-1
9. - Propionato de etilo
10.- Acetato de propilo
11.- Butanol-2
12.- Dietil acetal
13.- 2-metil-propanol-1
14.- Pentanol-3 (patrón interno)
15.- Acetato de sec butilo
16.- Acetato de iso butilo
17.- Butanol-1
18.- Butirato de etilo
19.- Acetato de butilo
20.- 3-metil-butanol-1
21.- 2-metil-butanol-1
22.- 4-metil-pentanol-2 (patrón interno)
23.- Acetato de iso pentilo
24.- Propionato de propilo (patrón interno)

Ninguna de las fases estacionarias existentes en el mercado y que cubren un rango de polaridad comprendido entre la del Escualeno y la del Carbowax 400 es capaz por sí sola, utilizada como fase simple, de realizar la separación exigida, si se tiene en cuenta que en las muestras citadas la cantidad de Etanol presente es grande (8-40%). Por esta razón debe recurrirse a fases mixtas realizadas mediante mezclas de fases de naturaleza y composición determinadas.

Siguiendo la pauta indicada en un trabajo anterior ("Mixed columns made to order in Gas Chromatography. Isothermal analysis" M.J. Molera J.A. García Domínguez y J. Fernández Biarge (1969) J. of Chromatog. Sci. 7, 305-312) del que son autores algunos de los que constituyen el equipo inventor de este trabajo, objeto de Patent, se ha modificado el Programa Fortran allí indicado para aplicarlo a los datos cromatográficos obtenidos con 4 fases simples comerciales de distinta polaridad.

Ello nos ha permitido hallar dos tipos de columnas de fase mixta y de distinta composición que trabajando independientemente o en paralelo, uno de cada tipo, proporcionan las separaciones deseadas en un tiempo límite de 100 minutos. Ambos tipos de columnas se denominan Tipo A y Tipo B y responden a las siguientes mez-
clas de fases: a) Fases mixtas tipo A: Escualano/Carbowax 400; Di-2-Etil-Hexil-Sebacato/Carbowax 400; Escualano/Di-2-etil-Hexil-Sebacato/Carbowax 400. y b) Fases mixtas tipo B: Ucon LB 550X/Carbowax 400; Escualano/Ucon LB 550X/Carbowax 400; Di-2-Etil-Hexil-Sebacato/Ucon LB 550X/Carbowax 400; Escualano/Ucon LB 550X/Di-2-etil-Hexil-Sebacato/Carbowax 400, siendo el diámetro interno de 2 mm y el externo de $\frac{1}{8}$.

Modo de operar

2 trozos de tubo de acero inoxidable de 2 mm de diámetro interno y $\frac{1}{8}$, de diámetro externo de longitudes comprendidas entre 4-6 m y 6-10 m se limpián interiormente según los procedimientos comúnmente empleados para la preparación de columnas gas-cromatográficas.

Cantidades suficientes de Chromosorb G, HP lavado a los alcalis y a los ácidos y alquilado se sumergen en distintas soluciones, de cada una de las fases integrantes de la nueva columna, en el solvente que a continuación se cita, a razón de 2,5 partes de fase por 100 partes de soporte. Utilícese como solventes el cloruro de metileno para el Carbowax 400 y para el Di-2-etil-hexil-sebacato; el metanol para Ucon LB 550X y el tolueno para el escualano. Se evapora el solvente aplicando un calor suave y moviendo las gramos de soporte con cuidado para que la película sea uniforme y no se deterioren estos. Una vez que se dispone de lotes de soporte recubierto con cada una de las distintas fases, se mezclan partes de cada lote en las proporciones adecuadas, según sea la columna que se desea preparar, a razón de unos 2,5 gramos de soporte total recubierto, por metro de tubo a empacar.

También pueden prepararse mezclas de dos o más fases, disueltas en el solvente más indicado según una concentración total de 2,5 partes de fase por 100 partes de soporte. El soporte se sumerge en dicha solución y el disolvente se elimina según el procedimiento indicado anteriormente.

El empaquetado se realiza mediante presión de 3 kgs. aplicada con ayuda de una corriente de N₂ y de un dispositivo adecuado.

Las columnas se acondicionan antes de su uso como es habitual, estando la temperatura de operación, recomendada para el analista, comprendida entre 40°C y 75°C.
REIVINDICACIONES

Se reivindica como de nueva y propia invención la propiedad y explotación exclusiva de:

1) "PROCEDIMIENTO DE FABRICACION DE LAS COLUMNAS GC
VOLATIL DEL AROMA DE LOS VINOS, BRANDIES, WHISKIES, RONES, HOLANDAS Y VINAGRES", caracterizado por el empleo de fases mixtas, resultantes de mezclas dobles, triples o cuádruples de: Escualano, Di-2-etil-hexil-sebacato, Ucon LB 550X y Carbowax 400, en todas las proporciones posibles.

2) Un procedimiento, según reivindicación 1, y caracterizado además por el empleo de dos columnas de fase mixta mezcla de las anteriores trabajando a una temperatura del horno comprendida entre 40-75°C.

3) Un procedimiento, según reivindicaciones anteriores, y caracterizado además porque las longitudes de las columnas de fase mixta más idóneas para la separación de acetaldéhido, propionaldehído, acetato de metilo, formiato de etilo, acetato de etilo, etanol, propanol-1, propionato de etilo, acetato de propilo, butanol-2, distilacetal, 2-metil-propanol-1, butanol-1, 3-metil-butanol-1, 2-metil-butanol-1, y acetato de iso pentilo, entre sí y de los restantes componentes del aroma, están comprendidas entre 4.0 y 6.0 m para las mezclas:
 Escualano/Carbowax 400
 Di-2-Etil-Hexil- Sebacato/Carbowax 400
 Escualano/Di-2-Etil-Hexil- Sebacato/Carbowax 400

4) Un procedimiento, según reivindicaciones anteriores, y caracterizado además porque las longitudes de las columnas de fase mixta más idóneas para la separación de: Acetaldehído, Propionaldehído, Acetato de Metilo, Formiato de Etilo, Acetato de Etilo, Etonol, Butanol-2, 2-Metil-Butanol-1, Acetato de sec Butilo, Acetato de iso Butilo, Butirato Etilo, Acetato de Butilo, y Acetato de iso Pentilo, entre sí y de los restantes componentes del aroma, están comprendidos entre 6.0 y 10.0 m para las mezclas:
Ucon LB 550X/Carbowax 400
Escualano/Ucon LB 550X/Carbowax 400
Di-2-Etil-Hexil-Sebacato/Ucon LB 550X/Carbowax 400
Escualano/Ucon LB 550X/Di-2-Etil-Hexil-Sebacato/Carbowax 400

5) Un procedimiento, según reivindicaciones anteriores, y caracterizado además por el empleo, en paralelo o independientemente de dos columnas de distinta capacidad de separación para la separación total de: Acetaldehído, Propionaldehído, Acetato de Metilo, Formiato de Étilo, Etanol, Acetato de Étilo, Propanol-1, Propiónato de Étilo, Acetato de Propilo, Butanol-2, Dietilacetal, 2-Metil-Propanol-1, Acetato de sec Butilo, Acetato de iso Butilo, Butanol-1, Butirato de Étilo, Acetato de Butilo, 3-Metil-Butanol-1, 2-Metil-Butanol-1 y Acetato de iso Pentilo.

6) Un procedimiento, según reivindicaciones anteriores, y caracterizado además por el empleo de las sustancias patrón siguientes: Propiónato de Metilo, Pentanol-3, 4-Metil-2-Pentanol y Propiónato de Propilo.

7) "PROCEDIMIENTO DE FABRICACION DE LAS COLUMNAS GAS-CROMATOGRAFICAS MAS IDONEAS PARA EL ANALISIS DE LA FRACCION MAS VOLATIL DEL AROMA DE LOS VINOS, BRANDIES, WHISKIES, RONES, HOLAN-DAS Y VINAGRES", tal y como se describe en el cuerpo de esta memoria y reivindicaciones que consta de 6 páginas escritas por una sola cara.