Drosophila Araucan and Caupolican Integrate Intrinsic and Signalling Inputs for the Acquisition by Muscle Progenitors of the Lateral Transverse Fate

Marta Carrasco-Rando¹, Antonio S. Tutor¹, Silvia Prieto-Sánchez¹, Esther González-Pérez¹, Natalia Barrios¹, Annalisa Letizia², Paloma Martín¹, Sonsoles Campuzano¹, Mar Ruiz-Gómez¹*

¹Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Madrid, Spain, ²Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain

Abstract

A central issue of myogenesis is the acquisition of identity by individual muscles. In *Drosophila*, at the time muscle progenitors are single out, they already express unique combinations of muscle identity genes. This muscle code results from the integration of positional and temporal signalling inputs. Here we identify, by means of loss-of-function and ectopic expression approaches, the Iroquois Complex homeobox genes *araucan* and *caupolican* as novel muscle identity genes that confer lateral transverse muscle identity. The acquisition of this fate requires that Araucan/Caupolican repress other muscle identity genes such as *slouch* and *vestigial*. In addition, we show that Caupolican-dependent *slouch* expression depends on the activation state of the Ras/Mitogen Activated Protein Kinase cascade. This provides a comprehensive insight into the way Iroquois genes integrate in muscle progenitors, signalling inputs that modulate gene expression and protein activity.

Introduction

In *Drosophila* as in vertebrates the proper function of the muscular system relies on the generation of a stereotyped pattern of discrete muscles and their intimate connection with the nervous system, which together control the adequate release of contraction power to fulfill the functional requirements of the organism. The formation of a muscle pattern is therefore of great importance and consequently many efforts have been devoted to solve the central problem of the acquisition of muscle identity. The embryonic *Drosophila* muscle pattern comprises thirty elements in each abdominal hemisegment (Figure 1G). Each muscle is a syncytial fibre whose unique characteristics, i.e., position, size, attachment to tendon cells, innervation and pattern of gene expression allow its unambiguous identification [1,2]. Muscle specification is a stepwise process that ensures the local singling out of a population of myoblasts, the founder myoblasts, each of them containing the necessary information to give rise to a unique muscle. The origin of founder myoblasts can be traced to late embryonic stage 10 when groups of mesodermal cells (the promuscular clusters) start expressing the proneural gene * lethal of scute* and acquire myogenic competence [3]. Opposing activities of Notch and Receptor Tyrosine Kinase signalling pathways ensure that only one cell in the cluster will segregate as a muscle progenitor [4]. This will divide asymmetrically to generate two sibling founder myoblasts or a founder myoblast and an adult muscle precursor [3,5,6]. The unselected cells of the promuscular clusters, by activation of the Notch signalling pathway, will initiate the expression of the transcriptional regulator Myoblasts incompetent (also called Gleeceful and Lame duck) and become fusion competent myoblasts that by fusing to founders will give rise to multinucleated fibres [7–9]. Regarding muscle identity, each progenitor and founder exhibits a specific code of gene expression that confers to muscles their unique characteristics. The components of these codes are accordingly named muscle identity genes [reviewed in [2,10,11]]. The identity code is transmitted to all the nuclei in the syncytium through the process of myoblast fusion [12]. According to their patterns of expression muscle identity genes can be grouped into three categories. Type I includes genes expressed by progenitors and whose expression is maintained in sibling founders and muscles. Examples are *apterous, ladybird* (lb) and *Pox meso* (*Poxm*) [13–15]. Type II identity genes are expressed in progenitors but differentially regulated in sibling founders, being lost from one of them and the corresponding muscles. Examples are *Krüppel* (*Kr*), *even-skipped* (*eve*), *collar* and *slouch* (*slou*) [3,4,16–18]. And finally type III refers to genes expressed by progenitors and founders of muscles sharing common characteristics. *vestigial* (*vg*), expressed by all internal muscles, is the only known member of this class [12,19]. Regarding the onset of their expression a few muscle identity genes, such as *Kr*, *eve* and *collar*, are already expressed in the promuscular cluster, before the segregation of muscle progenitors [4,16,18,20] whereas other genes, like *Connectin* (*Cnn*),
initiate their expression in already segregated progenitors [4,16,18,20].

In this study we identify *araucan (ara)* and *caupolican (caup)*, two members of the Iroquois gene complex (Iro-C), as novel type III muscle identity genes. The Iro-C genes encode homeoproteins conserved throughout the animal kingdom. They are organized in genomic clusters of three paralogous genes, one in the case of *Drosophila* and usually two in most vertebrates [21]. They participate in a wide variety of developmental processes, mainly related to the specification and patterning of diverse territories of the body, including the lateral mesonotum and dorsal cephalic region of *Drosophila*, the neural ectoderm of *Xenopus* and cranial placode derivatives of zebrafish [22–30]. Here we show by means of genetic approaches that *ara* and *caup* function redundantly in the specification of the lateral transverse (LT) muscles, since in the absence of both genes LT1–4 muscles loose their LT fates and acquire those of other muscles.

At present there is compelling evidence that muscle progenitors can integrate positional and temporal signalling inputs. This promotes the expression of unique combinations of muscle identity genes, which confers on them specific fates. Up to now, very little was known of how this integration takes place at a molecular level and how a particular code is translated into a specific muscle fate. Here we show that the acquisition of the lateral transverse muscle fate requires the repression mediated by *Araucan* and *Caupolican*, two homeoproteins of the Iroquois Complex, of other muscle identity genes, like *slouch* and *vestigial*. The repressor or activator function of the Iroquois proteins depends on the activity of the Ras signalling pathway. Therefore, our work places Iroquois genes at a nodal point that integrates signalling inputs and regulates protein activity and cell fate determination.
Ara and Caup are required for specification of lateral transverse muscles

During imaginal development Ara and Caup can functionally substitute each other in all territories where their function has been investigated [22,23,28]. Thus, to analyse their role in embryonic myogenesis and evaluate the possible contribution of mirror to any phenotype we might find, we used three deficiencies: Df(3L)iroDFM3, which removes both ara and caup, (and probably affects mirror regulation, [23,28]), Df(3L)iroEGP6, which removes ara and caup without affecting mirror and its regulatory region, and Df(3L)iroK35ps, which only removes mirror [42]. Whereas Df(3L)iroK35ps embryos did not show any detectable phenotype in the lateral region (not shown), a distortion of the lateral larval muscle pattern (visualised with antibody MAC141 to Tropomyosin) was found in both Df(3L)iroK35ps and Df(3L)iroKp8 embryos (Figure 3A–3C). In more than 95% of cases muscles with LT morphology were absent (Figure 3E). Instead, some fibres with abnormal orientation appeared in the lateral and ventral regions, but never inserted at the LT attachment sites (asterisks in Figure 3B and 3C). The loss of LT muscles was further verified by loss of expression of the specific LT muscle marker CG13424, recently renamed lateral muscles scarcer (lms) [43] at stage 15 and the absence of Con expression in the lateral somatic mesoderm (Figure S1). Both DT1 and SBM fibres developed with normal morphologies (Figure 3A–3C and Figure S1). To examine the individual contribution of ara and caup to the phenotype we resorted to embryos mutant for only one of these genes (ara in araF209, [28], or caup in iroEGP D1, [42]). The larval muscle pattern was normal in both mutants (not shown). Thus, similarly to imaginal development, ara and caup appear to play redundant roles during embryonic myogenesis.

The absence of muscles with LT morphology in ara/caup mutants could be due to a failure of otherwise well specified muscles to find the right insertion to tendon cells, due to ectodermal requirement of Iro-C genes, or to a misspecification of the muscles. Two independent results indicated that Iro-C genes are required autonomously in the mesoderm to specify the LT fate. First, the

Figure 1. Pattern of expression of ara and caup during myogenesis. Wild type embryos of the indicated developmental stages were hybridized with caup (A, A’, B, B’, C, E, F) riboprobes or sectioned after anti-Caup antibody staining (A’, A”, B”, C’, D, D’, E’). (A-A”) caup is expressed in the visceral mesoderm at early stage 11 (arrowheads, A and A’ show the same embryo with different focus as shown in the inset). (B-B”) At mid stage 11 caup is expressed in the visceral mesoderm (arrowheads) and in the lateral ectoderm (arrows). Asterisks in A and B point to the primordium of the proventriculus. A””, B” close-ups of the images shown in A” and B”, respectively. (C-C’) Early stage 12/late stage 11 embryos. (C) caup is expressed in the lateral ectoderm (arrowhead) and in groups of mesodermal cells (arrow). (C’) Cross-section showing caup expression in ectodermal cells (Ec), visceral mesoderm (Vms) and promuscular clusters (Cl). (D, D’) At stage 12 caup is expressed in individual muscle progenitors (P in D) and slightly later in both founders (Fs) derived from the division of progenitors (D’). (E-E’) At stage 13 Caup is detected in a lateral stripe of ectodermal cells (arrowheads in E, E’, Ec in E’) and in muscle precursors (arrows in E, E’, M in E’). (F) Stage 15 embryo showing expression of ara in the ectoderm and in mature muscles. (G) Stage 15 embryos doubled stained with anti-Caup (green) and antibodies against Con, Slou or Ladybird (red). caup is co-expressed with Con in LT1–4 muscles, with slou in DT1 and with lb in SBM. The drawing scheme summarises the wild type patterns of expression of caup (green), slou (red), lb (yellow) and Con (black contour line) in relation to the wild type complement of abdominal muscles. For muscle nomenclature see [1].

doi:10.1371/journal.pgen.1002186.g001
Figure 2. Onset of Caup expression in muscles in relation to other muscle identity genes. All images show a detail of an embryonic wild-type abdominal hemisegment stained with antibodies against Caup (green) and different muscle identity proteins. Images show a ventral view of the embryo, with the exception of B and C that correspond to lateral views. (A–C) Stage 11 embryos. (A) caup and Kr (red) are co-expressed in a lateral transverse promuscular cluster (CLTS). (B–C) caup is co-expressed with Kr (blue) in progenitors of LT muscles (PDT1/DO3, B) and with slo/s59 (red) in DT1/DO3 progenitor (PDT1/DO3, C). (D) Late stage 12 embryo co-expressing caup and lb in the SBM founder (F_{SBM}). (E) Stage 12 embryo showing co-expression of caup with slo/s59 (red) in DT1 founder (F_{LT1}) and with Kr (blue) in LTs founders (F_{LT1-4}). The position of LL1, LL1sib and VA1–3 founders (F_{LT1-4}, F_{LT1sib}, F_{VA1-3}) and the ventral adult muscle precursor are also indicated. (F) Schematic representation of ara/caup expression in the LTs, DT1 and SBM lineages (SBM lineage as revised in [17]). LaPs, lateral adult muscle precursors; PC, promuscular cluster; P, muscle progenitor; Fs, founder myoblasts. doi:10.1371/journal.pgen.1002186.g002

Figure 3. Muscle phenotypes of iro-C mutant embryos. (A–D) Latero-ventral region of stage 16 wild-type (A), Df(3L)iro^{DFM3} (B), Df(3L)iro^{EGP6} (C) and stage 15 Df(3L)iro^{DFM3} mef2-GAL4:UAS-ara (D) embryos stained with anti- Tropomyosin antibody (green). The position of ventral wild-type LT muscle tips and LT attachment sites are marked with arrowheads and brackets, respectively. Note the absence of muscles with LT morphology and insertions at LT attachment sites, and the presence of morphologically normal DT1 and SBM muscles (arrows) in the mutant backgrounds (B, C). Asterisks indicate morphological abnormal latero-ventral muscles in these embryos. This phenotype is rescued by mesodermal ara expression with the pan-mesodermal driver mef2-GAL4 (D). (E) Quantification of phenotypes produced by the loss of ara/caup in LT muscles. * Refers to changes in shape, orientation or attachment sites; n, numbers of hemisegments analysed (stages 14–16); -, not determined. doi:10.1371/journal.pgen.1002186.g003
normal development of LT muscles in \text{Df}^{(2L)5} embryos devoid of \text{iro-C} gene expression at the ectoderm (Figure S2 and [44]). And second, the rescue of the muscle phenotype of \text{Df}^{(3L)iro^{DMS5}} embryos by Ara supplied exclusively in the mesoderm (using myocyte enhancer factor 2 (\text{myf2})-\text{GAL4} as driver, Figure 3D).

All progenitors and founders segregate in \text{Df}^{(3L)iro^{EGP6}} mutant embryos

We next examined whether the loss of LT muscles was due to either a failure in the segregation of muscle progenitors (absences and/or duplications) or to an early transformation of the fate of LT progenitors. To discern between these possibilities we combined the reporter line \text{rP298}, which expresses \text{β-galactosidase} in all progenitors and founders [32,45] with \text{Df}^{(3L)iro^{EGP6}}. We focussed on the previously well-established muscle lineages labelled by \text{Slou}/\text{Df(3L)iroDFM3} and \text{DO3} (expressing \text{the dorsalmost lateral mesoderm we find the sibling founders DT1 and DO3 (expressing slou)} and its sibling (expressing \text{Kr}). Immediately below segregate the four LT founders (expressing \text{Kr}). Moreover, it seemed that the only muscles affected by the lack of \text{Ara} and \text{Caup}, which are maintained only in \text{VA2} (Figure 5B and 5D), and antibodies to \text{Kr} (blue) antibodies. \text{ßgal staining} is used as a marker for \text{VA1} and \text{VA2} founders (Figure 5A and inset below). This code of muscle identity gene expression is similar to that of \text{VA1} and \text{VA2} founders (Figure 5A), suggesting an early transformation of LT3–4 to VA1–2 muscles.

\text{Ara} and \text{Caup} implement LT muscle fate by repression of muscle identity genes in progenitors

The absence of all muscles with LT morphology in \text{ara/caup} mutant embryos prompted us to examine whether, in addition to the putative transformation of LT3–4 towards VA1–2, there was a similar change of fate for LT1–2. LT progenitors express \text{Kr}, \text{caup}, and \text{Con} and \text{lms}, \text{P}_{\text{LL1/LTI1/A}} expresses \text{Kr} and \text{vg}, and \text{P}_{\text{VA1/2}} \text{Kr}, \text{slou}, \text{Con} and \text{Poxm} (Figure 5A and 5B). Using a combination of these markers we found in the lateral region of \text{Df}^{(3L)iro^{DMS5}} embryos an ectopic muscle that expressed \text{Kr}+\text{Vg}, the code of LL1 (LL1*, Figure 5C) and an ectopic muscle \text{VA2} (VA2* in Figure 5E–5G). This change of muscle identity could take place in founders or at the progenitor state. If this were the case, we anticipated that both \text{LT} and \text{VA} founders would show the same number of identifiable founders (Figure 4B and 4B+). There were however significant differences in terms of patterns of gene expression. Namely, the presumptive LT3–4 founders now expressed \text{slou} in addition to \text{Kr} (Figure 4B and 4B+ and inset below).

\text{Ras/MAPK cascade modulates the regulation of slou by Caup in Schneider-2 cells}

Our data suggested that Ara/Caup might act as repressors of \text{slou} in the \text{Drosophila} mesoderm. Therefore we decided to investigate whether \text{slou} might be a direct target of Ara/Caup.
An “in silico” search of a previously reported slou cis-regulatory region [46] identified two putative Iro binding sites (BS) at positions +129 (BS1) and +21642 (BS2), relative to the transcription start site, which match the consensus ACAN 2–8TGT ([47] and Figure 6A). We cloned this regulatory region in a Luciferase reporter vector and measured Luciferase activity in Drosophila Schneider-2 (S2) cells transiently transfected with this construct and increasing amounts of HA-tagged Caup. Contrary to expectations, we found that addition of Caup-HA increased the basal Luciferase activity driven by the slou regulatory region in a dose dependent manner (blue bars in Figure 6B), indicating that Caup acts as a transcriptional activator of slou under these conditions. The reported regulation of the chicken Irx2 factor by MAPK (that switches it from repressor to activator) could explain this result [48]. Since Western Blot analysis of S2 lysates using an antibody against diphospho-extracellular-signal related kinase (dpErk) showed the MAPK pathway to be active in S2 cells (Figure 6C), and we have obtained experimental evidence showing the presence of phosphorylated Caup in S2 cells with constitutively active MAPK pathway (N.B, A.S.T and S.C, manuscript in preparation), we hypothesized that the activation effect of Caup in S2 cells could be due to the Ras/MAPK cascade turning Caup from transcriptional repressor into activator. Indeed, the inhibition of the Ras/MAPK pathway by the PD98059 MAP-erk kinase-1 (MEK1) inhibitor induced a Caup-dose dependent decrease in Luciferase activity driven by the slou regulatory sequences (Figure 6B, red bars). This result could not be attributed to a direct effect of the inhibitor over the slou promoter, since its addition did not modify the basal Luciferase activity of the construct (Figure 6B).

To test whether Caup-dependent transcriptional regulation relied on a direct interaction of Caup with the slou regulatory region we performed electrophoretic mobility shift assays (EMSA) with in vitro translated Caup and wild-type and mutated Caup-BS. These assays indicate efficient binding of Caup to BS1, which is abolished by BS1 mutation and deletion (Figure 6D). In contrast, Caup appears not to bind BS2 under these experimental conditions (not shown).

Next we examined the functional relevance of BS1 and BS2 in the Luciferase reporter assay. Deletion of BS2 had no major effect on Caup-dependent luciferase expression compared to the wild-type promoter (Figure 6E and 6F compare with Figure 6B). This result suggested that Caup does not bind to BS2 (as indicated by the EMSA data). Unexpectedly, deletion of BS1 resulted in a more efficient activation of luciferase expression than that driven by the wild type regulatory region (Figure 6E). This suggested that binding of Caup to BS1 somehow impaired transcription. Note that the activation of luciferase driven by the BS1 mutated regulatory region was still dependent on the MAPK pathway (Figure 6E and 6F). This suggests that such activation appears to

Figure 5. Muscle fate transformations in Df(3L)iroDM3 embryos. (A) Summary of identity codes for promuscular clusters (Cl), progenitors (P) and muscles missing or duplicated in ara/caup mutants, indicated by a colour code. (B) Schematic drawings of the body wall muscles in wild type abdominal hemisegments, depicting the muscles that express the marker indicated on top. (C) Stage 14 Df(3L)iroDM3 embryo showing a duplication of L1 fate in the lateral region, pointed by an arrow (L1*). As shown in the corresponding schemes, LL1 is the only muscle that co-expresses Kr (green) and vg (red) in the lateral region. (D, E) Double-staining with anti-Kr (green) and anti-Slou/SS9 (red) antibodies in stage 14 wild-type (D) and Df(3L)iroDM3 (E) embryos, showing duplication of VA2 fate in the mutant embryo that co-expresses Kr and slou/SS9 (VA2*). (F) At stage 14 two VA2-like muscle precursors expressing Kr and Poxm and two Poxm-expressing VA1-like precursors are observed in Df(3L)iroDM3 embryos. (G) The duplicated muscles are clearly visualised at stage 15, when Poxm expression is still clear in VA1 but fading in VA2 muscles. Note the presence of two muscles expressing higher levels of Poxm (green, VA1 and VA1*) next to two fibres co-expressing low levels of Poxm and slou/SS9 (red) in a Df(3L)iroDM3 embryo. doi:10.1371/journal.pgen.1002186.g005
depend on the binding of a MAPK-dependent phosphorylated protein, which we hypothesize might be Caup, to a so far unidentified binding site. Thus, the analysis in S2 cells confirmed the relevance of BS1, but not of BS2 on Caup-dependent regulation.

Additionally, we have analysed the evolutionary conservation of these putative Caup-BS among several Drosophila species (Figure S3). Notably, BS1 is located in a highly conserved region and its sequence is identical across the melanogaster group, whereas neither BS2 nor the adjacent sequences are conserved. These data further reinforce the relevance of BS1 for Caup-dependent regulation.

Our results are thus consistent with a direct effect of Caup on slou regulation. However, it cannot be ruled out the possibility of the existence in vivo of a transcription factor, acting downstream of ara/caup, that could repress slou through BS1 or through a still unidentified regulatory sequence of slou.

Caup integrates in vivo inputs from the Ras/MAPK cascade for its regulation of slou

To further examine in vivo the regulatory activity of Caup on slou (Figure 7B, 7C), we ectopically expressed caup or ara in VA1–3 using Con-GAL4 and checked whether they would repress slou in the VA2 muscle. This was indeed the case (Figure 7B, 7D, 7F–7F) and not shown). Loss of slou expression caused by ectopic caup reproduced the morphological defects in VA2 previously described in slou mutants (Figure 7F–7F and [17]). To analyse whether the morphological effect of Caup on muscle VA2 development was only due to Caup-dependent repression of slou, we forced the expression of both genes using the Con-GAL4 driver. In this experimental condition Caup was unable to repress UAS-slou expression and the VA2 muscle and its morphology seemed unaffected (Figure 7F–7G).

Once verified the repressor activity of Caup on slou during myogenesis, to analyse the regulatory potential of BS1 in vivo we generated transgenic flies harbouring the wild-type or the BS1 deleted version of the slou regulatory region. The wild-type regulatory region only partially reproduced the slou endogenous expression, as it drove lacZ expression in the CNS but not in the muscles (not shown and Figure S4). In contrast, the construct lacking BS1 behaved congruently with our S2 cells results, since it drove ectopic expression of lacZ in the lateral muscles (Figure S4).

Curiously, up-regulation of lacZ was found in the 4 lateral muscles and not only in the ones that show slou expression in the absence of Ara/Caup (Figure 4B). Thus we interpret that this construct, while missing some of the regulatory sequences required for slou mesodermal expression, it contains those required for Caup mediated repression in the mesoderm. In addition, the absence of
strict correlation between the phenotypes of deletion of BS1 and lack of Ara/Caup, might indicate the ability of other transcription factor(s) to regulate slou expression in LT1–2 through BS1.

To investigate whether the effect of the MAPK cascade on the transcriptional activity of Ara/Caup found in the S2 cell assay is also at work during myogenesis we examined whether there is a correlation between MAPK signalling and Caup transcriptional regulatory activity. We looked at the state of activation of this pathway in the LT promuscular cluster, where Ara/Caup repress slou, and found that it did not appreciably express dpErk (Figure 7H). Therefore, a repressor activity of Ara/Caup correlates in vivo with the absence of MAPK signalling. Next, we tested whether forced activation of the MAPK pathway in the mesoderm could interfere with the repressor activity of endogenous Caup in LT promuscular clusters. This was indeed the case, since activation of the MAPK pathway using twist-GAL4; 24B-GAL4 to drive the activated form of Ras85D (rasV12) allowed co-expression of caup and slou in this cluster (Figure 7I). Similarly,
late co-expression of *ras*¹₁² and *caup* (Con-Gal4 driver) blocked the repression activity of Caup on *slou* (Figure 7D and 7E). Finally, to test whether MAPK signalling not only prevented Caup-dependent repression of *slou* but also converted Caup from repressor to activator, we looked at the expression of *slou* after early pan-mesodermal Caup expression (me22-GAL4). As shown in Figure 7J, Ara was indeed able to ectopically activate *slou* in *Drosophila* epidermal growth factor receptor (DER)-dependent eve-expressing muscles.

Discussion

The study of myogenesis in *Drosophila* has increased the understanding of how the mechanisms that underlie the acquisition of specific properties by individual muscles are integrated within the myogenic terminal differentiation pathway. Thus, the current hypothesis proposes that distinct combinations of regulatory inputs lead to the activation of specific sets of muscle identity genes in progenitors that regulate the expression of a battery of downstream target genes responsible for executing the different developmental programmes (reviewed in [2,10,38]). However, the analysis of the specific role of individual muscle identity genes and of their hierarchical relationships is far from complete since the characterisation of direct targets for these transcriptional regulators is very scarce [36,37].

Here, we report the identification of *ara* and *caup*, two members of the Iroquois complex, as novel type III muscle identity genes. We find that the homeodomain-containing Ara and Caup proteins are necessary for the specification of the LT fate. *ara/caup* appear to be bona fide muscle identity genes. Indeed, similarly to the identity genes *Kr* and *slou* [17,18], absence of *ara/caup* does not interfere with the segregation of muscle progenitors or their terminal differentiation, but modifies the specific characteristics of LT1–4 muscles, which are transformed towards VA1, VA2, LL1 and LL1 sib fates. These transformations may be due in part to the up-regulation of *slou* and *vg* in the corresponding muscles. Thus, a recent report [50] shows that forced expression of *vg* in LT muscles induces changes in muscle attachments similar to the ones observed in LT1 in *ara/caup* mutant embryos. However, it should be stressed that although in *ara/caup* mutants LT muscles are lost in more than 95% of cases, they are not completely transformed into perfect duplicates of the newly acquired fates. For instance, while the specific LT marker *lms* is lost in 91% of cases, ectopic *slou* expression is detected in only 75% of cases. These partial transformations might be due to differences in the signalling inputs acting in the mesodermal region from where these muscles segregate (see below). Our unpublished data also showed that forced pan-mesodermal expression of *ara/caup* alter the fates of many muscles both in dorsal and in ventral regions without converting them into LT muscles (i.e., they do not ectopically express *lms*). Similarly, *Kr* and *slou* ectopic expression is not sufficient to implement a certain muscle fate [17,18]. The failure to recreate a given muscle identity by adding just one of the relevant muscle identity proteins reveals the importance that cell context, that is, the specific combination of signalling inputs and gene regulators present in each cell, have in determining a specific muscle identity.

Our analysis of the myogenic requirement of *ara/caup* has revealed several features about how these genes act to implement LT fates. Thus, although they are expressed in six developing embryonic muscles, only four of them, LT1–4, are miss-specified in the absence of Ara/Caup. The remaining two, DT1 and SBM, seem to develop correctly, according to morphological as well as molecular criteria. It is worth noting that the requirement for *ara/caup* genes in these six muscles correlates with the onset of their expression. Thus, in the affected LT1–4 muscles Ara/Caup can be first detected at the earliest step of muscle lineages, that is in the promuscular clusters. In contrast, in the unaffected muscles *ara/caup* start to be expressed later, in the DT1/DO3 progenitor and the SBM founder. This suggests that in muscle lineages *ara/caup* have to be expressed very early to repress *slou* and *vg* to implement the LT fate. Several data support this interpretation. For instance, the observation that *ara/caup* are co-expressed with *slou* in DT1, whereas they repress *slou* in LT3–4, may be related to the fact that *slou* expression precedes that of *ara/caup* in the DT1 lineage. Should this be so, one would expect that ectopic expression of *ara* using the early driver me22-GAL4, would repress *slou* in DT1, as it actually does (Figure S5), whereas this repression is not evident using the late driver Con-GAL4. Furthermore, the hypothesis of the relevance of the timing of muscle identity gene expression for muscle fate specification might also apply to the case of *slou*, where a similar correlation between the strength of the loss-of-function *slou* phenotypes in specific muscles and the onset of *slou* expression has also been found [17].

It should be stressed that the generation of the LT code depends not only on the early presence of Ara/Caup on the promuscular clusters but also on the absence (or strong reduction) of DER/Ras activity at that precise developmental stage and location (Figure 8). There is a dynamic regulation of MAPK signalling in the lateral mesoderm. Caup-expressing muscles develop from DER-independent clusters whereas the duplicated muscles observed in *ara/caup* mutants derive from progenitors that segregate very near the LT progenitors [3], but originate in DER-dependent promuscular clusters that are specified slightly later in development [4,51]. Furthermore we have observed both in vivo and in cell culture that low MAPK activity is required for Caup-dependent *slou* repression. Therefore, we interpret the role of Ara/Caup in the implementation of LT fate as follows (Figure 8). At mid stage 11 in the myogenic mesoderm, groups of mesodermal cells acquire myogenic competence as a result of interpreting a combinatorial signalling code that reflects their position along the main body axes, as well as the state of activation of different signalling pathways [4]. Accordingly, these clusters initiate the expression of *lethal of scute* and a unique code of muscle identity genes, as has been shown in great detail for *eve* expression in the dorsal mesoderm [34,35]. In the case of the dorso-lateral mesoderm this code includes *ara/caup* and *Kr* and implements the LT fate. Since the level of activation of the Ras/MAPK cascade is low in these clusters, Ara/Caup will behave as transcriptional repressors, preventing the activation of *slou* or *vg* in LT1–2 and LT3–4 clusters, which would be otherwise activated in this location. Thus, Ara/Caup implement the LT fate by repressing the execution of the alternative fates (*Kr*+, *slou*+, *Con*+, *Pox*+ and *Kr*+, *vg*+) that would give rise to duplicates of *VA1/VA2* and *LL1/LL1sib* respectively, and by allowing a different identity gene code (*Kr*+, *Caup*+, *Con*+, *lms*+) that generates the LT fate.

Slightly later the Ras/MAPK pathway becomes active at the dorsolateral region (Figure 8). This changes the combinatorial signalling code and coincides with a change in the muscle identity genes expressed by the promuscular clusters that segregate from this position, which now accumulate *Kr* but not Ara/Caup. Progenitors born from them will express either *slou* or *vg* and give rise to VA1–2 and LL1/LL1sib fates, all DER-dependent [51].

Our S2 cells experiments suggest a molecular mechanism by which the Ras/MAPK pathway modulates the transcriptional activity of Ara/Caup on *slou*. Thus, low MAPK activity and direct binding of Caup to BS1 site of the *slou* gene would favour strong repression of *slou*. BS1 could be embedded in a silenced regulatory element or its binding to Caup may block transcription of the downstream located *lac* gene. On the contrary, Caup-
dependent activation of Slou would be dependent on MAPK signalling. We hypothesize that MAPK-dependent Caup phosphorylation could modulate its interaction with different transcriptional co-factors or/and its binding site affinity.

Furthermore, our in vivo evidence indicates a repressor function of presumably non-phosphorylated Caup on Slou since forced activation of the Ras pathway allows co-expression of Slou and Caup. On the other hand, the ectopic expression of Slou induced by caup-over-expression is suggestive of a possible activator function of phosphorylated Caup.

The role of IRO proteins in cell fate specification is conserved in both vertebrates and invertebrates (reviewed in [52]). Here we have shown that the interplay between MAPK signalling and IRO activity found in vertebrate neuroepithelium [48] is also at work in Drosophila myogenesis. We have also identified a potential direct target of Ara/Caup, Slou and propose it as a candidate gene to be regulated by Ara/Caup. In both cases the genes subordinated to ara/caup encode transcription factors that might in turn regulate the expression of other genes, genes that must be repressed in LT muscles. Furthermore, we have shown that the activation of Ara/Caup in LT and VA muscles in order to acquire the LT fate. These results, therefore, provide insights into the way Ara/Caup control lateral muscle identity and on the role of signalling pathway inputs to modulate the activity of these transcription factors, with consequences in their downstream targets. It also highlights the importance that the specific combination of muscle identity genes, their hierarchical relationships and their temporal activation have in determining the identity of a given muscle cell, very alike to what is at work during the acquisition of neural fates [53].

Materials and Methods

Drosophila stocks

The following stocks were used: Df(3L)iro⁹⁵⁶ [28], Df(2L)5 [54], Df(3L)341 [41], Df(3L)179 [42], rP298 [32], mef2-GALA [55], Con-GALA [56], twist-GALA; 24B-GAL-4 (a gift from M. Baylies), UAS-ara, UAS-caup [28], UAS-caup-HA (N. Barrios, unpublished) and UAS-ara [52]. Ectopic expression of Caup together with the activated form of Ras alleviates Caup-dependent Slou repression in the VA2 muscle.

In situ hybridisation, immunohistochemistry, and microscopy

Whole-mount in situ hybridisation with digoxygenin-labelled RNA probes and immunocytochemistry were performed as described previously [56]. Stained embryos were embedded in Araldite and sectioned (3 μm) following standard procedures. The following primary antibodies were used at the indicated dilutions: rabbit anti-Caup (1:50) [23], guinea pig anti-Kr (1:500) [59], mouse anti-Lh (1:15), rabbit anti-Posm (1:10) [14], rabbit anti-S59 (that recognises Slou, 1:50) [3], rabbit anti-Allen (1:500) [60], mouse anti-Cons (1:10) [61], rabbit anti-Vg (1:500) [62], rabbit anti-Tropomyosin (MAC141; 1:100; Babraham Tech), rabbit anti-Myosin (Myo; 1:300) [63], rat anti-HA (1:1000; Roche), rabbit anti-B-Gal (1:5000; Cappel) and mouse anti-dpErk (1:50; Sigma). Images were obtained with confocal microscopes MicroRadiance (BioRad) and LSM510META (Zeiss) and analysed using the software Zeiss LSM Image or LaserSharp and Adobe Photoshop 7.0. In most cases the figures correspond to z-projections of series of confocal sections.

Cell culture and transfections

The 5′-upstream region of Slou (from −1828 to +153 nt) was amplified via PCR and cloned in pGLHS43 vector, a modified version of the pGL2-basic vector (Luciferase reporter plasmid, Promega), obtained after substitution of the SV40 promoter by the *Drosophila* heat-shock 43 minimal promoter (a gift from A. Baonza). The putative Caup BS1 and BS2 were deleted using the “Quick Change” site-directed mutagenesis kit (Stratagene, SantaClara, CA). The sequences of the primers used to delete BS1 were 5′-GGGTCTTAAATCGCCGTTGTTGTGCGCCTGTTGGCGCATGCAATAAG-3′ and its reverse complement and for BS2, 5′-GTGGCTTGAATAGCTGAATAG-3′.
CCATATACATATGTGTGCATGTATGCATAGTGAGTGG -3' and its reverse complement. pAC5.1-Caup-HA plasmid was obtained after cloning caup ORF with an HA tag in the Drosophila expression vector pAC5.1 (Invitrogen). Drosophila S2 cells were cultured in Insect-Xpress medium (Lonza) supplemented with 7% fetal bovine serum and grown at 25°C. For Luciferase assays S2 cells were seeded at a density of 2×10^5 and co-transfected with 1 μg of the different firefly Luciferase reporter constructs DNA, 30 ng of control plasmid (expressing Renilla Luciferase driven by the promoter of Drosophila RpIII128, [64]) and either 0, 0.25, 0.5 or 1 μg of pAC5.1-Cau polican-HA plasmid per well using Nucleofector Technology (Lonza). Luciferase activity in the cell extracts was measured using Dual-Glo Luciferase assay system (Promega) following the manufacturer's protocol. Briefly, 20 μl extract was added to 100 μl F-luc assay reagent, mixed gently for 5 s and placed in a luminometer. After counting F-luc activity for 10 s, 100 μl stop-and-glo reagent was added to the tube, mixed gently for 5 s and placed in the luminometer for R-luc count. The R-luc activities were used as internal control to correct for the difference in transfection efficiency of different reporter plasmids. Therefore, F-Luc/R-Luc activities were used for data analysis. To investigate whether the MEK/ERK pathway was involved in transcriptional regulation driven by the slou promoter, S2 cells were treated or not with 50 μM PD-98059 (Sigma) for 2 hrs before Luciferase activity measurement. All data reported are means from three or four independent experiments, each performed in triplicates. Primary antibodies used in immunoblots were mouse anti-dpErk (1 μg/ml; Sigma), rat anti-HA (200 ng/ml; Roche) and mouse anti-β-tubulin (1:5000; Developmental Studies Hybridoma Bank).

Generation of slou reporter transgenic lines

The 5’-upstream region of slou used in S2 cells in the Luciferase reporter assays (both the wild type sequence and that missing the putative Caup BS1) were subcloned at the EcoRI site of the C4PLZ enhancer tester plasmid that contains a weak P-element reporter assays (both the wild type sequence and that missing the promoter region was analyzed by EMSA. Pairs of single-stranded, Cyc3 and unlabeled 40-mer oligonucleotides with 20 ng of labelled probe. Protein–DNA complexes were resolved by 6% non-denaturing polyacrylamide gel electrophoresis. Gel fluorescence was analyzed in a Typhoon Scanner (GE healthcare).

Electrophoretic mobility shift assay

Caup binding activity to the slou promoter region was analyzed by EMSA. Pairs of single-stranded, Cyc3 and unlabeled 40-mer oligonucleotides containing the wild-type putative Caup binding sites BS1, BS2 and their mutant or deleted versions were allowed to anneal to generate double-stranded probes. Sequences of primers used in Figure S6 for BS1 and in Dataset S1, Caup protein was synthesized in vitro by using the coupled transcription/translation rabbit reticulocyte lysate system (TNT Promega). The indicated amount of μl of TNT reaction mixture was incubated with 20 ng of labelled probe. Protein–DNA complexes were allowed to form at room temperature for 30 min in a total volume of 20 μl of binding buffer (50 mM HEPES, pH 7.5, 10 mM MgCl2, 10 mM KCl and 1 mM DTT). After incubation, free DNA and protein–DNA complexes were resolved by 6% non-denaturing polyacrylamide gel electrophoresis. Gel fluorescence was analyzed in a Typhoon Scanner (GE healthcare).

Supporting Information

Dataset S1 Sequences of primers used in EMSA to analyse binding of Caup to BS2. Pairs of 40-mer oligonucleotides containing the wild-type putative Caup binding sites BS2 and their mutant or deleted versions are shown. (DOCX)

Figure S1 Pattern of expression of muscle marker genes in Df(3L)slou^DfM3 embryos. (A-D) RNA in situ hybridisation with brn probes of stage 13 (A, B) and stage 15 (C, D) yw (A, C) and Df(3L)slou^DfM3 (B, D) embryos, showing the normal early onset of brn expression in the lateral region of abdominal segments in the mutant embryos (B, compare to A) and its absence of expression at later stages (D, compare to C). (E, F) Lateral view of stage 14 yw (E) and Df(3L)slou^DfM3 (F) embryos stained with anti-Con antibodies, showing the absence of Con-expressing lateral muscles (asterisk in F) and the presence of Con-expressing DT1, VA2 and ectopic VA2 (VA2* in F) in Df(3L)slou^DfM3 embryos (F, compare to E). (G, H) Lateral view of stage 15 yw (G) and Df(3L)slou^DfM3 (H) embryos stained with anti-Lb antibodies to show the presence of lb-expressing SMB in Df(3L)slou^DfM3 embryos (H, compare to G). (TIF)

Figure S2 Regulation of caup expression during embryogenesis. (A, B) Lateral view of stage 15 wild-type (A) and Df(2L)5 (B) embryos stained with anti-Alien (green) and anti-Caup (red). Note that in Df(2L)5 embryos despite the absence of Caup ectodermal expression (asterisk in A), apodema specification (labelled by Alien) and Caup mesodermal expression (arrowheads) are indistinguishable from wild-type embryos. (TIF)

Figure S3 Caup BS1 but not BS2 of slou cis-regulatory region is evolutionary conserved between Drosophila species in the melanogaster group. The slou cis-regulatory region used in this study was compared between drosophilids using the VISTA Browser tool of VISTA tools for comparative genomics (http://genome.lbl.gov/vista/index.shtml). We found a high degree of similarity in this region between D. melanogaster and other members of the melanogaster subgroup (D. simulans, D. yakuba and D. erecta) and only partial similarity with more distant species like D. annassae (melanogaster group) and D. pseudoobscura (obscura group). BS1 is located in a highly conserved region and its sequence is identical across the melanogaster group, whereas BS2 is located in a region of low conservation and not found in any of the related species. Significant similarities on slou coding and cis regulatory regions were only found between Drosophila melanogaster and the closer drosophilid species D. simulans, D. yakuba, D. erecta and D. annassae. No homology was found using the BLAST tool (http://blast.ncbi.nlm.nih.gov/Blalt.cgi) with Anopheles gambiae,Apis mellifera,Xenopus tropicalis,Danio rerio,Mus musculus and Homo sapiens. (TIF)

Figure S4 Deletion of Caup BS1 promotes lac-β expression in LT muscles driven by slou cis-regulatory region. Lateral views of stage 15 slou-lac-β (A, A') and A9S-lac-β (B) embryos stained with anti-Caup (green), anti-β-gal (red) and anti-Mo (blue) antibodies. Note absence of lac-β expression in LT muscles of A9S-lac-β embryos (arrows in A, A') and co-expression of caup and lac-β in LT muscles of A9S-lac-β embryos (arrows in B). (TIF)

Figure S5 Repression of slou by ectopic expression of Ara. Lateral views of stage 15 wild-type (A) and mef2-GAL4:UCAS-ara (B-B') embryos stained with anti-Trophomyosin (red) and anti-slou (green) antibodies. (A) Note slou expression in DT1, VA2 and VT1 muscles (arrows). (B) Early expression of ara with the panmesodermal driver mef2-GAL4 represses slou in DT1, VA2 and VT1 in many segments (arrows). A few muscles maintain slou expression (asterisks). (TIF)
Acknowledgments

We are grateful to J. Modolell, J.F. de Celis, J.L. Gómez-Skarmeta, and members of our laboratories for helpful discussions and constructive criticism on the manuscript. We thank Sonia Velazquez for technical assistance; Eva Caminero and Mar Casado from the CONSOLIDER transgenic and stock platforms for their technical support; and A. Baonza, M. Calleja, S. Carroll, M. Noll, D. Kosman, D. Kiehart, M. Baylies, and K. Jagla for contributing reagents, antisera, and flies.

Author Contributions
Conceived and designed the experiments: MC-R AST SC MR-G. Performed the experiments: MC-R AST SP-S NB AL PM MR-G. Analyzed the data: MC-R AST SC MR-G. Wrote the paper: SC MR-G.

References

