1	Transcriptomics throughout the life cycle of Leishmania infantum: high
2	down-regulation rate in the amastigote stage.
3	
4	Pedro J. Alcolea ¹ (<u>pjalcolea@cib.csic.es</u>)
5	Ana Alonso ¹ (<u>amalonso@cib.csic.es</u>)
6	Manuel J. Gómez ² (gomezrmj@inta.es)
7	Inmaculada Moreno ³ (<u>im@isciii.es</u>)
8	Mercedes Domínguez ³ (<u>mdominguez@isciii.es</u>)
9	Víctor Parro ² (<u>parrogv@inta.es</u>)
10	Vicente Larraga ¹ (<u>vlarraga@cib.csic.es</u>)
11	
12	1. Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de
13	Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle
14	Ramiro de Maeztu, 9, 28040, Madrid, Spain.
15	
16	2. Laboratorio de Bioinformática y Laboratorio de Ecología Molecular, Centro de Astrobiología,
17	Instituto Nacional de Técnica Aeroespacial "Esteban Terradas" (INTA)-CSIC, Carretera de
18	Ajalvir, Km 4, 28850, Torrejón de Ardoz, Spain.
19 20	3. Servicio de Inmunología, Centro Nacional de Microbiología, Virología e Inmunología
21	Sanitarias, Instituto de Salud Carlos III, carretera de Majadahonda-Pozuelo, km 2,
22	Majadahonda, Madrid, Spain.
23	
24	*Corresponding author. Tel.: +34 918373112. Fax: +34 915360432. Email: vlarraga@cib.csic.es
25	
26	

27 Note: supplementary data associated with this article.

28 ABSTRACT

29	Leishmania infantum is the causative agent of zoonotic visceral leishmaniasis in the
30	Mediterranean Basin. The promastigote and amastigote stages alternate in the life cycle of the parasite,
31	developing inside the sand-fly gut and inside mammalian phagocytic cells respectively. High-
32	throughput genomic and proteomic analyses have not focused their attention on promastigote
33	development, though partial approaches have been made in L. major and L. braziliensis. For this
34	reason we have studied the expression modulation of an ethiological agent of visceral leishmaniasis
35	throughout the life cycle, which has been performed by means of complete genomic microarrays. In
36	the context of constitutive genome expression in Leishmania spp. described elsewhere and confirmed
37	here (5.7%), we have found a down-regulation rate of 68% in the amastigote stage, which has been
38	contrasted by binomial tests and includes the down-regulation of genes involved in translation and
39	ribosome biogenesis. These findings are consistent with the hypothesis of pre-adaptation of the
40	parasite to intracellular survival at this stage.
41	
42	Key words: Leishmania infantum, life cycle, genomic DNA microarrays, amastigote, down-
43	regulation.
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	

56 1. INTRODUCTION

57 Leishmania infantum is the ethiological agent of zoonotic visceral leishmaniasis in 58 Mediterranean areas. Domestic dogs are the main reservoir of the parasite (Alvar et al., 2004) and an 59 increase in co-infection with HIV has been registered (Pasquau et al., 2005). The dimorphic life cycle 60 of the parasite consists of promastigote development to an infective stage inside the gut of 61 phlebotominae sand-flies followed by transmission to the definitive mammalian host dermis and 62 survival of non-motile amastigotes inside phagocytes (reviewed in (Handman, 2001)). Promastigote 63 development inside the vector gut was mimicked in axenic culture (Neal and Miles, 1963; Lemma and 64 Schiller, 1964; Steiger and Steiger, 1976, 1977; Berens and Marr, 1978) and the biology of the 65 promastigote stage has been widely studied, but only under these conditions. On the other hand, 66 amastigotes from mammalian phagocytes are not widely recognised as being equivalent to axenic 67 amastigotes, a controversial issue (e.g. (Gupta et al., 2001; Debrabant et al., 2004)) which was 68 resolved by the finding of considerable differences between axenic and intracellular amastigotes in the 69 gene expression profile (Holzer et al., 2006; Rochette et al., 2009). Therefore, lesion-derived 70 amastigotes and in vitro-cultured macrophage-derived amastigotes are generally more suitable for the 71 study of parasite biology. Nevertheless, noticeable infection rates have been reported for axenic 72 amastigote experimental models (Debrabant et al., 2004).

73 Comparing expression profiling of amastigotes with logarithmic (Akopyants et al., 2004; 74 Almeida et al., 2004; Holzer et al., 2006; Leifso et al., 2007) and stationary phase promastigotes 75 (Akopyants et al., 2004; Almeida et al., 2004; Saxena et al., 2007; Srividya et al., 2007; Rochette et 76 al., 2009) has been performed using microarray technology. However, surprisingly gene expression 77 modulation during promastigote differentiation has not aroused much interest as only three expression 78 profile analyses have been performed by partial genome microarrays so far. Namely, 188 (Saxena et 79 al., 2003) and 22 (Almeida et al., 2004) differentially regulated genes were found for logarithmic vs. 80 stationary phase promastigotes (heterogeneous populations) and 36 (Akopyants et al., 2004) for 81 procyclic vs. metacyclic promastigotes in L. major. Subsequently, 22 differentially regulated genes 82 have been found in L. braziliensis promastigotes (Depledge et al., 2009). We reported the first 83 procyclic vs. metacyclic promastigote transcriptomic analysis by means of whole-genome shotgun

84 DNA microarrays which produced 300 differentially regulated genes in a species causing visceral 85 leishmaniasis (Alcolea et al., 2009). A reduced number of differentially regulated genes has also been 86 described elsewhere (Holzer et al., 2006; Cohen-Freue et al., 2007; Leifso et al., 2007), which supports 87 the hypothesis of constitutive gene expression in *Leishmania* spp. with changes in gene expression 88 modulation in a reduced number of genes. In order to assess gene expression profiles throughout the L. 89 infantum life cycle, we have given the results of microarray hybridization assays for transcriptome 90 comparison of stationary vs. logarithmic phase promastigotes (S/L), stationary phase promastigotes vs. 91 intracellular amastigotes (S/A) and logarithmic phase promastigotes vs. intracellular amastigotes 92 (L/A). As a result, a set of differentially regulated genes has been found throughout the life cycle of 93 the parasite in a variety of biochemical and physiological processes (transport, movement and 94 cytoskeletal functions, sugar and lipid metabolism, oxidative phosphorylation, amino acid and 95 polyamine metabolism, DNA replication, gene expression, protein maturation and secretory pathway). 96 The differential regulation pattern of the HASP/SHERP cluster is consistent with specificity for the 97 stationary-phase but not the metacyclic stage, except for HASPB, which is up-regulated in 98 amastigotes. Previously, these and other genes were reported to be metacyclic specific, but transcript 99 analysis was only for heterogeneous populations in the stationary phase instead of purified procyclic 100 and metacyclic subpopulations (Saxena et al., 2003; Almeida et al., 2004). Consequently, specific 101 markers for the metacyclic stage have yet to be found, so the terms metacyclic and stationary phase 102 promastigote should be used rigorously. For this reason, a comparison between procyclic-metacyclic 103 (Alcolea et al., 2009) and logarithmic-stationary phase promastigote expression profiles is described in 104 this study, which should be useful to distinguish between such terms.

In the context of constitutive genome expression in *Leishmania* spp. (Holzer et al., 2006; Cohen-Freue et al., 2007; Leifso et al., 2007), transcriptomic analysis results suggest a greater downregulation rate in the amastigote stage with respect to logarithmic phase promastigotes provided that the set of down-regulated genes is notably greater and contains a wide variety of ribosomal constituents and translation initiation factors. In this study we have performed binomial contrasts for gene modulation data sets contained in this manuscript and published elsewhere for several *Leishmania* spp. that confirm a significantly greater down-regulation rate in amastigotes. These findings have led us to conclude that down-regulation prevails over up-regulation in the amastigote stage and supports a previously reported hypothesis (Depledge et al., 2009) about the limited dynamic modulation of gene expression for the adaptation of amastigotes to the intraphagolysosomal environment.

116

117 2. MATERIAL AND METHODS

118

119 2.1 Promastigote culture and amastigote isolation from in vitro infected macrophages.

120 L. infantum isolate M/CAN/ES/98/10445 (zymodeme MON-1) was cultured in RPMI 1640 121 supplemented with L-glutamine (Cambrex, Karlskoga, Sweden), 10% heat inactivated foetal bovine 122 serum (HIFBS) (Cambrex) and 100 µg/ml streptomycin – 100 IU/ml penicillin (Cambrex) (complete 123 medium) at 27 °C and a starting density of 2 x 10^6 promastigotes/ml. Experiments were performed on three replicate early passage (9th for replicate 1 and 3 and 8th for replicate 2) axenically cultured 124 125 preinocula, originally obtained from the gut of experimentally infected sand-flies, axenized and frozen 126 for storage as described (Moreno et al., 2007). Cell density was assessed daily and promastigotes were 127 recovered on days 2 and 7 and washed in PBS by centrifugation at 2000g for 10 min.

U937 human monocyte-like cell line was cultured at 37 °C in a 5% CO₂ atmosphere at a 128 129 starting density of 10⁵ cells/ml in complete medium and harvested at 250g after 72 h. Cells were then 130 stimulated with 20 ng/ml phorbol 12-myristate 13-acetate (PMA) in complete medium for 72 h (Minta 131 and Pambrun, 1985). After washing mildly with RPMI supplemented with L-glutamine (Cambrex), 132 adhered cells were recovered by shaking the flask vigorously 10-20 times in the presence of 0.5g/l 133 trypsin, 0.2g/l EDTA (Trypsin-Versene, Cambrex). The trypsin was subsequently inactivated by 134 adding one volume of complete medium and then the cells were harvested. Macrophage infections were performed by incubating 20 x 10⁶ promastigotes/ml:10⁶ macrophages/ml at 37 °C for 2 h in 135 136 complete medium. This incubation was carried out in a water bath and tubes were mildly agitated at 15 137 min intervals. After that, the mixture was centrifuged at 250g for 10 min and incubated in fresh 138 complete medium for 2 hours in the presence of 5% CO₂. This step was repeated after 16 hours and 139 incubations continued until 72 h. After infected macrophage recovery, amastigotes were obtained by

140 macrophage lysis with 0.5% SDS in RPMI with vigorous agitation for 1 min followed by 141 centrifugation at 13000g for 1 min (Hart et al., 1981). Aliquots of the infected macrophage culture 142 were fixed for modified Giemsa staining and indirect immunofluorescence assays (IFA) before 143 macrophage lysis. In order to perform IFA, cells were fixed with acetone:methanol (1:1) at -20 °C for 144 10 min at a density of 2 x $10^{4}/5$ µl drop. Then, they were incubated with SIM 6.11.2.1. monoclonal 145 anti-gp63 IgG, SIM 110 monoclonal IgG antibody against soluble leishmanial antigens (SLA), anti-146 rabbit complement factor H antibody or PBS at 37 °C for 30 min in a hydration chamber, washed three 147 times by mild agitation in PBS for 10 min, incubated with fluorescein isotiocyanate (FITC)-conjugated 148 goat anti-mouse IgG (Serotec, Raleigh, NC) and 0.1% Evans' Blue (Fisher, Pittsburgh, PA). Washes 149 were repeated and preparations mounted with 90% glycerol. Negative controls were anti-rabbit 150 complement factor H monoclonal IgG and PBS.

151

152 2.2 Microarray hybridization assays, analysis of selected clone sequences and validation.

153 Genomic DNA was isolated from non-infected U937 cells as described (Alcolea et al., 2009) 154 and directly labelled with Cy5 (350 µM dATP, dCTP, dGTP and (1/3 Cy5-dUTP + 2/3 dTTP)) using a GenomiPhiTM DNA amplification kit (GE Healthcare). RNA isolation, quality assessment and 155 156 amplification, labelled cDNA synthesis, L. infantum random genome microarray hybridization, 157 normalization of raw data, statistical analysis, clone sequencing, assembling and mapping of DNA 158 sequences and validation by qRT-PCR were performed as described previously (Alcolea et al., 2009). 159 Briefly, hybridization experiments were as follows: Cy5-labelled cDNA from stationary-phase 160 promastigotes (day 6) vs. Cy3-labelled cDNA from logarithmic-phase promastigotes (day 2) (S/L); 161 Cy5-cDNA from stationary-phase promastigotes (day 6) vs. Cy3-cDNA from amastigotes (S/A); and 162 Cy5-cDNA from logarithmic-phase promastigotes (day 2) vs. Cy3-cDNA from amastigotes (L/A). 163 U937 Cy5-labelled DNA was hybridized following the same procedure. LOWESS per pin algorithm 164 was used to normalize medians of raw fluorescence intensity values and ratios after background 165 substraction. The criteria for a given spot to be considered as differentially regulated were: (i) $F \ge 1.7$ 166 $(Cy5/Cy3 \text{ ratio if } Cy5 > Cy3) \text{ or } \le -1.7 (-Cy3/Cy5 \text{ ratio if } Cy3 > Cy5), (ii) total relative fluorescence$

167 intensity value > 5000 FU and (iii) p < 0.05 (adjusted by FDR). The ends of the selected clones were 168 sequenced with m13-pUC18 oligonucleotides and aligned with the L. infantum genome project 169 sequence in General Feature Format (GFF) deposited in a GBrowse database. Forward and reverse 170 reads were mapped to define the boundaries of the clones in the genome. Depending on mapping and 171 assembling outcomes, clones were classified as type a (congruent alignments, one single pair of 172 alignments), type b (congruent alignments, more than one pair of alignments) and type c (uncongruent 173 alignments or lack of one insert end read). Clones containing more than one gene sequence and type c174 clones needed to be analysed by qRT-PCR by the SYBR-Green method to sort out which genes are 175 differentially regulated (Alcolea et al., 2009). Reaction and quantification protocol and primers are 176 provided in Table S1. Glimmer 3.0 annotations were performed when clones were mapped against a 177 genomic sequence that did not contain any annotated gene. Stage-specifically regulated genes were re-178 annotated and analysed with BLAST2GO to establish a molecular function and biological process GO 179 term distribution among them according to α -score (Conesa et al., 2005).

180

181 2.3. Binomial test.

182 Differential regulation of genes is a dichotomous variable defined by two categories: down-183 regulation and up-regulation. Transcriptome analysis by means of DNA microarray hybridization and 184 proteome approaches are independent random samplings carried out simultaneously for hundreds or 185 thousands of genes and proteins from the same genome and proteome respectively. Therefore, this 186 variable follows a binomial distribution B (n, p), in which the defining parameters are n = number of 187 trials and p = probability of one out of the two events; let p be the probability of down-regulation and 188 q = 1-p the probability of up-regulation. The null hypothesis of absence of significant differences 189 between the number of up- and down-regulated genes (H₀: $p_0 = q_0$) in a given set of differentially 190 regulated genes is suitable for contrasting by means of a binomial test. When np > 10 and nq > 10, B (n, 191 p) can be approximated to a normal distribution $N(np, (npq)^{1/2})$ according to the Laplace-De Moivre 192 theorem. This distribution can be typified by a standard normal N(0, 1) when n > 50, in which $Z = [(p - 1)^{-1}]$ 193 $p_0/(p_0q_0/n)^{1/2}$]. When these procedures are not permitted, an exact binomial test can be applied: 194 calculate $P(X \ge r) = [P(X = r) + P(X = r + 1) + ... + P(X = n)]$, where r is the number of times the event

with probability p occurred and P(X = r) = $[n!p^rq^{n-r}]/[r!(n-r)!]$. See the table of frequencies in Table S2. The fold-change cutoff described in 2.2 was applied to all the differentially regulated gene data sets prior to contrasting them with the hypothesis using the binomial test.

198

199 **3. RESULTS AND DISCUSSION**

200 *3.1. Overview of the microarray hybridization analysis.*

201 The infection of differentiated U937 cells with promastigotes to obtain intracellular 202 amastigotes was checked by gp63 IFA and the absence of contaminant promastigotes by promastigote 203 surface antigen (PSA or gp46) IFA (Fig. 1). Randomly sheared genomic DNA from the host cells was 204 hybridized with L. infantum genomic microarrays in order to be able to discard cross-hybridizing spots 205 in the subsequent microarray analysis. Because of the efficient amastigote isolation procedure based 206 on mild macrophage lysis (Hart et al., 1981), cross-hybridization was not found under the 207 hybridization conditions described (Fig. S2), considering the intensity cutoff value (see 2.2.) after the 208 substraction of the local background median. S/L, S/A and L/A high throughput transcriptomic 209 analyses have been carried out by hybridizing of labelled cDNAs from the main life cycle stages with 210 shotgun genomic microarrays as previously described (Alcolea et al., 2009) (Figs. 2, S1 and S2). 20% 211 differentially regulated gene outputs have been validated by qRT-PCR. As in previous reports, we 212 have observed a correlation between qRT-PCR, microarray analysis and co-regulation of adjacent 213 genes in some of the clones by means of this technique, which is consistent with a limited rate of RNA 214 co-regulation, as already reported (Saxena et al., 2007).

215 We have detected 222 differentially regulated genes throughout promastigote differentiation 216 (S/L), 210 in S/A differentiation and 303 in the amastigote-to-promastigote transition (L/A) (Fig. 2 217 and 3). Previously, we compared procyclic and metacyclic promastigote homogeneous subpopulations 218 in the stationary phase (Alcolea et al., 2009) but now we have come to realize by means of Venn 219 diagrams that metacyclic promastigotes up-regulate a distinct set of genes rather than the whole 220 population in the stationary phase, as well as stationary phase procyclics compared to logarithmic 221 phase promastigotes (all procyclics) (Fig. 3A). When considered together with the HASP/SHERP 222 cluster expression profile (see below), it becomes clear that the term metacyclic promastigote should

223 be more rigorously cited in literature and more clearly distinguished from the term stationary phase 224 promastigote. The degree of differentiation is higher in purified metacyclic fractions than in 225 heterogeneous populations of stationary phase promastigotes. Nevertheless, the transcriptome 226 information extracted from both stages is complementary. Gene sets described in this report and in the 227 procyclic-metacyclic transcriptome analysis (Alcolea et al., 2009) have been grouped according to 228 their annotated functions (Table 1). Differentially regulated genes with a more or less known function 229 are described as non-redundant in tables 2-4. In Tables S3-S8 the following are described: conserved 230 hypothetical genes, hypothetical genes of unknown function, unknown genes, pseudogenes and 231 unresolved clones (containing more than one gene annotation and/or type c clones (Alcolea et al., 232 2009) or lacking gene annotations). We have observed a higher rate of hypothetical proteins and 233 unknown genes up-regulated in the amastigote stage. Additionally, some clones presumably contain 234 differentially regulated genes that have not yet been annotated in the L. infantum genome sequence 235 project (Tables S4, S6 and S8). This fact has been observed in all the experiments and strongly 236 suggests that gene annotation of the L. infantum genome is still not complete and therefore, 237 oligonucleotide microarrays do not represent all genes.

238 To some extent, there is a similarity in the expression profile of some genes between in vitro-239 cultured macrophage infection-derived amastigotes and temperature plus pH shift-induced amastigote-240 like forms as previously described (Alcolea et al., 2010), which confirms the relevance of these factors 241 in the differentiation of promastigotes to amastigotes. Nevertheless, axenic and intracellular 242 amastigote expression profiles have been described as being considerably different (Holzer et al., 243 2006; Rochette et al., 2009) despite the similarities found. With respect to promastigote 244 differentiation, only four reports have been published (Saxena et al., 2003; Akopyants et al., 2004; 245 Almeida et al., 2004; Alcolea et al., 2009), and in all of them the analysis of the procyclic-metacyclic 246 promastigote expression profile has been carried out with whole-genome microarrays and in a species 247 that cause visceral leishmaniasis.

248

249 *3.2. Gene expression modulation throughout the life cycle of Leishmania infantum.*

250 Microarray hybridizations with logarithmic and stationary phase promastigote cDNAs have 251 been reported only in four studies (Saxena et al., 2003; Akopyants et al., 2004; Almeida et al., 2004; 252 Depledge et al., 2009), and even then only the procyclic stage of promastigote development has been 253 considered in the majority of amastigote vs. promastigote transcriptome analyses (Holzer et al., 2006; 254 Leifso et al., 2007; Srividya et al., 2007; Rochette et al., 2009). Our description of the transcriptome 255 variation in the life cycle of the L. infantum is illustrated in Figs. 4, 5, S3 and S4. Biological processes 256 and molecular functions from the GO database were annotated on genes with BLAST2GO software, 257 and this analysis has provided an overview of the transcriptome variations (Figs. 4 and S3). Activities 258 related with gene expression seem to be more activated in stationary phase promastigotes with respect 259 to the two other stages analysed, provided that α -score values indicate that biological processes such 260 as translation and ribosome biogenesis biological processes are highly represented at this stage with 261 respect to logarithmic phase promastigotes (S/L) and intracellular amastigotes (S/A). These terms are 262 related to structural constituents of ribosomes and molecular functions like RNA binding. On the other 263 hand, the dividing stages of the parasite that survive in their respective hosts after the establishment of infection up-regulate genes related to cellular biosynthetic processes and other metabolic processes. 264 265 There are few GO annotations made on genes up-regulated in the amastigote stage due to the more 266 reduced numbers found and the significant proportion of genes of unknown function among them (Fig. 267 S3).

268 DNA packaging, epigenetics, replication and nucleotide metabolism. Genes from the four 269 histone families have been found to be differentially regulated. Some of them and histone deacetylase 270 (H-deAc) are up-regulated in L/A, while other histone genes show different regulation patterns (see 271 more details in Supplementary data file 3), which suggest different epigenetic regulation mechanisms 272 between the promastigote and the amastigote stage. Structural maintenance of chromosome 3 protein 273 gene (smc3) is down-regulated in S/L and is involved in chromosome organization during cell 274 division. With regards to DNA replication, we have detected the up-regulation in S/A of a 275 minichromosome maintenance complex protein (mcm) involved in replication initiation and down-276 regulation in S/L of DNA polymerase I α catalytic subunit (cDNAPol I α B) and mitochondrial DNA polymerase I protein D (mPol ID). Furthermore, mPol ID is up-regulated in L/A and consequently, its 277

278 greatest transcript levels are reached in logarithmic-phase promastigotes, which suggests a greater 279 genome replication rate at this stage.

280 Adenosine kinase domain-containing nucleoside diphosphate kinase b genes (Ndkb) are up-281 regulated in S/A and were previously found to be up-regulated in the procyclic subpopulation with 282 respect to the metacyclic from the population in stationary phase (Alcolea et al., 2009). Another 283 differentially regulated gene involved in nucleotide metabolism is the phosphoribosyl pyrophosphate 284 synthetase gene (PRPPS), which is specifically down-regulated in S/A. Regarding tandemly 285 positioned 3'-nucleotidase/nuclease (3'NT/Nase) genes, up-regulation has been detected in S/A. This 286 gene is specifically down-regulated by the effect of temperature increase combined with medium 287 acidification (Alcolea et al., 2010). Likewise, its overexpression in logarithmic-phase promastigotes 288 and absence in amastigotes have been described elsewhere (Sopwith et al., 2002). PRPPS down-289 regulation and Ndkb plus 3'NTase/Nase up-regulation in S/A are consistent with a higher purine 290 nucleoside uptake combined with a higher rate of nucleoside triphosphate biosynthesis in stationary 291 phase promastigotes, which is probably related to a higher genome replication rate.

292 Gene expression, protein maturation and transport and secretory pathway. The following four 293 genes are differentially regulated at the transcriptional and post-transcriptional levels: DNA-directed 294 RNA polymerase II subunit 9 gene which is down-regulated in S/L; U5 RNA-splicing factor that is 295 up-regulated in S/L (suggesting changes in small nucleolar RNA (snRNA) processing in stationary-296 phase promastigotes); a component of a nucleolar small ribonucleoprotein (snRNP) which is up-297 regulated in L/A; and splicing factor 3A that is down-regulated in L/A. At the translational level, 16 298 ribosomal component transcripts and 4 genes involved in translation initiation (initiation factors IF2 299 and IF2 α , IF3s8 and IF5a) are up-regulated in L/A. Despite 12 ribosomal proteins being up-regulated 300 in S/L and 23 in S/A, none of the translation regulation factors up-regulated in L/A have been found to 301 be differentially regulated at this stage. However, an eukaryotic translation initiation factor (EIF) and a 302 GTP-binding elongation factor from Tu family (EF-Tu) are down-regulated (further details in 303 Supplementary data file 3), which suggests changes in the global gene expression rate at the level of 304 protein biosynthesis.

305 Endoribonuclease L-PSP (pb5) is involved in single-stranded mRNA cleavage according to 306 GO and we have found its up-regulation in L/A and S/A. Previously, L-PSP (pb5) was found to be 307 significantly down-regulated in mature amastigotes (Rosenzweig et al., 2008) and may be involved in 308 specific post-transcriptional regulation of gene expression. The functional characterization of L-PSP 309 would be helpful for understanding gene expression regulation in trypanosomatids. The P1/S1 310 nuclease gene may be involved in specific gene expression regulation during the amastigote stage, as it 311 is down-regulated in S/A. Several minicircle sequences are up-regulated in S/L, in L/A and in 312 metacyclic PNA⁻ compared to procyclic PNA⁺ stationary phase promastigotes (Alcolea et al., 2009). 313 As a consequence, the RNA editing process seems to increase in differentiated stages of the life cycle: 314 metacyclic promastigotes and amastigotes.

315 Peptidyl-prolyl cis-trans isomerases prevent adenosine kinase domain (and consequently 316 Ndkb) aggregation (Sen et al., 2007) and accelerate protein folding by catalyzing the cis-trans 317 isomerization of proline imidic peptide bonds in oligopeptides (Chakraborty et al., 2004). Two FKBP-318 type (FKBP) and a cyclophilin-type (Cph) peptityl-prolyl cis-trans isomerase are up-regulated in L/A 319 and were also found as up-regulated in stationary phase procyclic promastigotes (Alcolea et al., 2009). 320 In other words, the parasite down-regulates these genes in the ongoing differentiation process, which 321 suggests that protein refolding and oligomerization via peptidyl-prolyl cis-trans isomerases is more 322 relevant in developing promastigotes.

323 In the dolichol-anchored oligosaccharide biosynthetic process, the first UDP-activated 324 monosaccharide residue is added by the enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-325 acetylglucosamine phosphotransferase (UDP-NAGDPT) (EC 2.7.8.15), which is down-regulated in 326 amastigotes (L/A and S/A). This finding indicates that N-glycosylation of proteins is less abundant in 327 amastigotes than in promastigotes. Two genes indirectly involved in protein glycosylation are also 328 differentially regulated, namely phosphomanomutase (PMM) which is up-regulated in S/A, and 329 glucose-6-phosphate N-acetyl transferase (GNAT) that is also up-regulated in S/A but down-regulated 330 in S/L. The N-acetylglucosaminylphosphatidylinositol de-N-acetylase gene (NAGPID) is up-regulated 331 in L/A and is involved in the second step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in 332 all eukaryotes (Doering et al., 1989), which anchors lipophosphoglycan (LPG) in Leishmania spp.

333 (reviewed by (Ilgoutz and McConville, 2001)). Indeed, the LPG biosynthetic protein 2 (lpg2) is up-334 regulated in L/A. Apart from that, the α subunit of the protein farnesyltransferase gene (FNTA) is 335 down-regulated in S/L, which suggests that prenylation is less common in stationary than in 336 logarithmic phase promastigotes. In addition, an isoprenylcysteine methyltransferase (ICMT) gene has 337 been found to be down-regulated in S/A.

With regard to vesicle coating, the syntaxin gene (Sx) is down-regulated in S/L whereas a clathrin heavy chain gene (clathrin-H), an adaptor complex subunit medium chain 3 (Apcx3) and a vesicle-associated membrane protein gene (*vamp*) are up-regulated in L/A. *vamp* is also up-regulated in S/A and down-regulated in S/L. Sx, clathrin-H, Apcx3 and *vamp* expression profiles suggest that vesicle trafficking activity reaches its greatest intensity in immature promastigotes, which would be consistent with the up-regulation of already mentioned genes involved in LPG and protein maturation in that stage which respect to amastigotes and/or stationary phase promastigotes.

345 Hexose metabolism, oxidative phosphorylation and transport. Two tandemly positioned 346 glucose transporter genes (GT) are up-regulated in S/L, S/A and L/A. Consequently, glucose uptake is 347 expected to reach its highest levels in stationary-phase promastigotes. GT down-regulation is 348 specifically induced by the exposure to concomitant temperature increase and acidification (Alcolea et 349 al., 2010). Regarding the subsequent Embden-Meyerhoff pathway, fructose 1,6-bisphosphate aldolase 350 (ALD) and 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (PGM^{BPI}) have been found 351 to be up-regulated in S/A. ALD, PGM^{BPI} and glycosomal malate dehydrogenase (gMDH) genes were 352 also found to be repressed by temperature plus pH shift (Alcolea et al., 2010). On the other hand, we 353 have detected the down-regulation in L/A of a catabolite regulation-dependent PGM gene. As far as 354 the Krebs cycle (TCA) is concerned, GDP-forming succinyl-CoA ligase (SCL) is up-regulated in S/A. 355 Conversely, a 4-methyl-5-(beta-hydroxyethyl)-thiazole monophosphate synthesis protein (MPET) is 356 up-regulated in L/A and down-regulated in S/L. This gene is required for thiamine pyrophosphate 357 (TPP) biosynthesis and acts as an important cofactor precursor for the pyruvate dehydrogenase 358 complex (PDH). It was previously found to be down-regulated in metacyclic vs. procyclic 359 promastigotes (Alcolea et al., 2009). This means that the highest expression levels of METP are 360 reached in procyclic/logarithmic-phase promastigotes. Gluconeogenesis activation is expected to take

361 place in stationary-phase promastigotes, because glycosomal phosphoenolpyruvate carboxykinase 362 (gPEPCK) is up-regulated in S/L. Furthermore, two genes involved in glycogen biosynthesis are up-363 regulated in S/A, specifically phosphoglucomutase (PGluM) and glycogen sintase kinase (GSK).

364 The mitochondrial inner membrane ADP/ATP translocases 1 and 2 (ANC1 and ANC2) are up-365 regulated in L/A. ANC1 and ANC2 carry ATP from the mitochondrial matrix into the inter-membrane 366 space and transports ADP back (Cozens et al., 1989). Moreover, two distinct non-ligated ATPase 367 subunit 9 genes (F₀s9) are up-regulated in L/A. These genes are involved in ATP synthesis coupled to 368 the respiratory electron transport chain according to the annotations made with BLAST2GO, PFAM 369 and InterPro databases (see Supplementary data file 3). In addition, three respiratory electron transport 370 chain complex III components are differentially regulated throughout the parasite life cycle, namely 371 cytochrome c oxidase complex subunits V (coxV), VI (coxVI) and VIII (coxVIII). Subunits coxV and 372 coxVIII are up-regulated in L/A, coxV is down-regulated in S/L and coxVI is up-regulated in S/A. 373 These facts suggest a decrease in respiratory electron transport chain and oxidative phosphorylation 374 activities in amastigotes with respect to logarithmic-phase promastigotes. Other ATPase genes are also 375 differentially regulated, as well as several ABC transporter genes (further details in Supplementary 376 data file 3). For instance, the sodium stibogluconate resistance protein (SbGRP) and multidrug 377 resistance protein (MRP) are down-regulated in amastigotes. Other kinds of transporters are also 378 differentially regulated in the life cycle, specifically, a vacuolar-type proton-translocating 379 pyrophosphatase (vH⁺-PPase) that is up-regulated in S/A, Tim17 which is up-regulated in L/A, and an 380 amino acid permease gene that is up-regulated in S/L and down-regulated in S/A (see details in 381 Supplementary data file 3).

Porphyrin biosynthesis. Leishmania parasites are auxotrophes for porphyrins, although the last three enzymes of porphyrin biosynthetic pathway are coded in the genome of the parasite. Amastigotes uptake phorphyrins from the host cell by protein endocytosis or as a free group (McConville et al., 2007), while logarithmic-phase promastigotes up-regulate coproporphyrinogen III oxidase (C(III)O) and protoporphyrinogen oxidase (PO) genes, but not ferrochelatase. In fact, C(III)O and PO are up-regulated in L/A, S/A and down-regulated in S/L. As a consequence, the highest transcript levels of both genes are reached in stationary-phase promastigotes. The combined exposure to temperature increase and pH decrease is sufficient for their down-regulation (Alcolea et al., 2010).
These observations suggest that promastigotes synthesize porphyrins from a precursor inside the gut of
the sand-fly vector thus highlighting the importance of heme group biosynthesis in that environment
for survival.

393 Aminoacid and polyamine metabolism and redox homeostasis. Cystathionine γ -lyase (CGL), 394 involved in Cys, Ile, Thr and Ser metabolism, is down-regulated in S/L. CGL reaction product L-395 cystathionine connects with methionine metabolism, in which S-adenosyl-L-methionine decarboxylase 396 (SAMDC) is S/A-up-regulated. SAMDC is responsible for the rate limiting reaction of S-adenosyl-397 methionine decarboxylation into S-adenosyl-methioninamine in the biosynthetic pathway of 398 polyamines in mammals and nematodes (Da'dara and Walter, 1998). Additionally, the putrescine 399 biosynthetic agmatinase gene is up-regulated in S/A and L/A. Products of the previous reactions, S-400 adenosyl-methioninamine and putrescine, are the substrates for spermidine synthase (SpS), which is 401 down-regulated in S/L. A spermidine molecule is coupled to two glutathione molecules in the 402 trypanothione molecule. The trypanothione reductase gene (TR) is down-regulated in L/A, as well as 403 by the combined effect of temperature and pH shift (Alcolea et al., 2010). Consequently, these data do 404 not clarify if there is preferential regulation of polyamine or of any amino acid biosynthetic pathway in 405 L. infantum. In order to better understand these findings, the generation of knockout parasites for these 406 genes could be helpful, and especially for grouping genes with the same expression pattern (CGL and 407 SpS; SAMDC, agm and NdKb).

408 Lipid metabolism. The triacylglycerol (TAG) lipase (TGL) and lipase precursor-like genes are 409 located in tandem and are down-regulated in S/L. Two other different lipase genes show different 410 expression patterns, one being down-regulated in S/A and the other one in L/A. In spite of this, all 411 these TGL develop triacylglycerol lipase activity according to GO analysis and catalytic activity 412 annotation EC 3.1.1.3., which could be explained by the preferential regulation of each TGL isoform 413 for each of the main developmental stages. In a previous characterization of temperature and pH 414 influence on differentiation (Alcolea et al., 2010), we detected the up-regulation of one of these TGLs. 415 FA from TAG degradation could be destined either to β -ox and to prostaglandin or sphingolipid 416 biosyinthesis processes. The prostaglandin F synthase gene (PGFS) is down-regulated in S/L and up417 regulated in S/A and was also found as down-regulated in both PNA⁻ (metacyclic) promastigotes 418 (Alcolea et al., 2009) and temperature-pH-generated amastigote-like forms (Alcolea et al., 2010), 419 which support the previous suggestion of a prostaglandin F2 α role as a competence factor for 420 promastigotes inside the sand-fly vector (Kabututu et al., 2002). In sphingolipid biosynthesis, 421 dihydroceramide is reduced to ceramide by sphingolipid δ -4 desaturase, a gene down-regulated in S/L 422 but up-regulated in L/A, in S/A and in axenically-cultured amastigotes obtained by a combined 423 temperature and pH shift (Alcolea et al., 2010). As a result, L. infantum promastigotes reach their 424 highest levels of sphingolipid δ -4 desaturase transcripts in the logarithmic phase, which suggests an 425 increase in inositol phosphoceramide glycan-based anchoring of surface proteins during this stage. As 426 observed previously (Alcolea et al., 2010), there is a lack of correlation between PGFS/sphingolipid δ -427 4 desaturase down-regulation and TGL up-regulation in amastigotes. Conversely, these three genes are 428 up-regulated in the logarithmic phase with respect to stationary phase promastigotes, which is 429 consistent with a preferential destination of FA from TGL-mediated degradation to these pathways 430 and a higher biosynthetic rate of prostaglandins and sphingolipids in logarithmic phase promastigotes. 431 The 3-hydroxymethylglutaryl-CoA reductase gene (3-HMG-CoA reductase) has been found to be 432 down-regulated in L/A and is specifically up-regulated by temperature plus pH shift (Alcolea et al., 433 2010). C8-sterol isomerase is down-regulated in S/L. No differential regulation of any other gene 434 involved in ergosterol biosynthesis has been detected in promastigotes and amastigotes. Meanwhile, 435 the lathosterol oxidase gene is up-regulated in S/A, as well as by temperature and pH shift (Alcolea et 436 al., 2010).

437 *Proteolysis.* Various protease genes are up-regulated in the differentiated stages (see 438 Supplementary data file 3). Furthermore, several proteins related to ubiquitin-proteasome protein 439 degradation machinery are differentially regulated in the life cycle progression. The proteasome α 2 440 subunit takes part in ubiquitin-dependent protein catabolic processes and presents threonine-type 441 endopeptidase activity. With regards to our findings, this gene and the ubiquitin-conjugating enzyme 442 E2 gene (UBC2) are up-regulated in L/A in agreement with previous reports (Rosenzweig et al., 443 2008). Proteins destined to proteasome-mediated degradation are ubiquitinylated by ubiquitin ligase

444 (E3) after conjugation of E2 with ubiquitin. Two ubiquitin-like genes (Ubq) are also up-regulated in 445 L/A and a distinct ubq in S/L. Considered together, these data suggest that ubiquitin labelling for 446 protein degradation increases with amastigote to promastigote differentiation, except for the third ubq 447 isoform mentioned. Ubiquitin molecules may act as rapid markers for protein degradation and also as 448 chaperones for correct protein folding (Rawlings and Barrett, 1994), a possibility that would offer a 449 feasible explanation for distinct expression regulation patterns found in different ubq genes. Different 450 patterns have been found for another proteasome complex-related genes such as proteasome regulatory 451 non-ATPase subunit LinJ07_V3.1300 (rS-non-ATPase) and proteasome β3 subunit (LinJ28_V3.0110) 452 genes which are down-regulated in S/L and and cysteine peptidase, ClanCA, family C12 (UHC-C12) 453 that is up-regulated in S/L. UHC-C12 shows ubiquitin C-terminal phosphohydrolase activity (EC. 454 1.4.19.12) for the release of ubiquitin residues from tagged proteins. Further research on the regulation 455 of proteasome-mediated degradation would be useful for studying the relationship between 456 differentiation and protein degradation throughout the Leishmania spp. life cycle.

457 Signal transduction and cell cycle regulation. Despite the fact that both logarithmic phase 458 promastigotes and amastigotes are dividing forms, the differences found between both stages in the 459 gene expression pattern of a cdc-2 related kinase and three mitogen activated protein kinase (MAPK) 460 genes suggest a different division rate or cell cycle regulation or both (see details in Supplementary 461 data file 3). Some proteins involved in signal transduction processes have been found to be 462 differentially regulated. Firstly, a beta propeller protein (β -prop) and an ADP-ribosylation factor 463 (ADPrf) are up-regulated in L/A. β-prop is a transducin because it contains a G-beta repeat structure 464 (PF00400) and ADPrf has GTP binding and small GTPase activity (GO). Moreover, protein 465 phoshatase 2C (PP2C) and catalytic subunit of PP1 (cPP1) are up-regulated in L/A and cPP1 is also 466 up-regulated in S/A but down-regulated in S/L. Adenylate cyclase and five protein kinase (PK) genes 467 including GSK have also been found to be differentially regulated (Supplementary data file 3). 468 Calcium-dependent cysteine-type endopeptidase (C2cp, µ-calpain) (E.C. 3.4.22.52) is up-regulated in 469 metacyclic promastigotes (Alcolea et al., 2009), L/A and S/A, thus lending support to the suggestion 470 that the highest C2cp transcript levels are reached in the metacyclic stage as would be expected and 471 indicating its possible involvement in morphological changes. Two other peptidase genes involved in 472 signal transduction have been found to be differentially regulated, specifically, the presenilin-like 473 aspartic peptidase gene from A22A family (A22Aap) which is up-regulated in S/A and serine 474 peptidase E from S51 family (SerP51) in S/L as mentioned above.

475 Cytoskeleton and movement. Three paraflagellar rod components (PAR4, PFR and PFR1D) 476 are up-regulated in L/A. PFR and PFR1D are structural components of the flagellar macromolecular 477 complex and bind calmodulin while PAR4, also up-regulated in S/A, is involved in flagellum 478 biogenesis and organization according to GO analysis. A set of dynein genes have also been found to 479 be differentially regulated. Among flagellar dynein light chain DLC1 family members, we have 480 detected the up-regulation in L/A and the down-regulation in S/L of dynein light chain lc6 flagellar 481 outer arm type 1 (DynLC6) and a dynein light chain (DynLC). Two non-flagellar dyneins have also 482 been detected as being up-regulated in L/A. Firstly, a dynein light chain protein from the Tctex-1 483 family (DLCTctex-1), and secondly a light chain 2b of cytoplasmic dynein (Dyn2bLC7_18.1010), 484 which belongs to the Roadblock/LC7 family (PF03259) and is involved in vesicle and organelle 485 transport inside the cytoplasm by microtubule de/polymerization. Two more dynein genes of unknown 486 location are differentially regulated. One is a dynein heavy chain gene (DynH) that is up-regulated in 487 S/A and the other is a dynein-associated roadblock protein-like protein (DynLC7) which is down-488 regulated in S/L. An α -tubulin and a microtubule-associated protein with unknown function (MTap) 489 are up-regulated in L/A. On the other hand, an actin gene is down-regulated in L/A and S/A. As 490 mentioned above, C2cp is up-regulated in S/L, S/A and L/A and is involved in cytoskeletal 491 remodelling. Finally, a centrosome-associated caltractin gene is up-regulated in S/L. To sum up, some 492 genes related with the flagellar and paraflagellar structures are down-regulated in amastigotes.

Surface molecules and genes of unknown function. The hydrophilic surface protein (HASP)/SHERP cluster located in chromosome 23 is differentially regulated during the progression of the life cycle of the parasite. The HASPA1 hydrophilic surface protein of unknown function is upregulated in S/L, S/A and L/A, with the resulting highest expression level in stationary phase promastigotes. The HASPB gene is down-regulated in S/A but and was found to be up-regulated in temperature/pH-induced amastigote-like forms (Alcolea et al., 2010), whereas HASPA2 is up-

499 regulated in S/L. SHERP genes LinJ23_V3.1210/30 (both located between HASPA1, HASPA2 and 500 HASPB) are up-regulated in S/L and the latter is also up-regulated in S/A. No differences were 501 detected between procyclic (PNA⁺) and metacyclic (PNA⁻) stationary-phase promastigotes (Alcolea et 502 al., 2009). Despite previous statements (Saxena et al., 2003), all the data suggest that these genes are 503 not adequate markers for metacyclic promastigotes, because they are not strictly specific to the stage. 504 Conversely, they are stationary phase promastigote markers, except for HASPB. In addition to surface 505 molecules coded by HASP/SHERP cluster, three surface antigen-like proteins of unknown function 506 (SALp) are differentially regulated: one of them is up-regulated in L/A and S/A and down-regulated in 507 S/L; another SALp is up-regulated in L/A, whilst SALp2 is down-regulated in L/A. With regards to 508 the A2-A2rel cluster, the A2 gene is down-regulated in L/A and S/A. This gene was spotted as a 509 control on the genomic microarrays and it is up-regulated in the amastigote stage as expected. The 510 3'a2rel gene is also down-regulated in L/A and S/A and it has been found to be up-regulated in S/L. 511 5'a2rel-related is up-regulated in S/A. A2rel genes flank the A2 gene and are not exclusive to the 512 amastigote stage, as a difference with A2 gene, only found to be up-regulated in amastigotes and 513 temperature plus pH shift-induced amastigote-like forms (Alcolea et al., 2010).

514 Several genes from the amastin-tuzin clusters are differentially regulated. Some amastin genes 515 are not amastigote-specific in spite of their up-regulation during this stage. The function of these genes 516 has not been characterized to date so their characterization together with knowledge of their 517 expression modulation would contribute to the understanding of their role in the parasite's physiology. 518 Finally, the high rate of hypothetical and unknown gene up-regulation in amastigotes reported in this 519 study and elsewhere (e.g. (Rochette et al., 2009)) is specially intriguing.

520

521 *3.3. Gene down-regulation prevails over up-regulation in the amastigote stage.*

In 2007, Leifso *et al.* concluded that the genome of *Leishmania* spp. is constitutively expressed, given their own finding of only $\approx 3\%$ differentially regulated genes in a microarray-based transcriptomic analysis of an *L. major* amastigote expression profile referred to the logarithmic phase promastigote stage (Leifso et al., 2007). Prior to this, however, the data obtained in an expression profiling of *L. major* and *L. mexicana* amastigote-to-promastigote (Holzer et al., 2006) pointed to the

527 same differential regulation rate. Both analyses were performed by means of oligonucleotide 528 microarrays covering the entire set of annotated genes in the L. major genome project, which are 529 suitable for global gene expression modulation estimation, when compared with low coverage 530 oligonucleotide, shotgun genomic microarray transcriptomic or proteomic approaches (Table 5). 531 Subsequent studies of the expression profiles of metacyclic promastigotes and temperature-pH shift-532 induced axenic amastigotes with whole-genome shotgun genomic DNA microarrays (Alcolea et al., 533 2009; Alcolea et al., 2010) also highlighted the constitutive expression of the L. infantum genome, 534 which has been further confirmed in the analysis reported in this study by means of the same 535 microarrays for logarithmic, stationary phase promastigotes and intracellular amastigotes. A higher 536 rate of differential regulation in axenic amastigotes was found by means of oligonucleotide 537 microarrays with complete coverage of annotated genes in the L. infantum genome project (Rochette et 538 al., 2009), although the intensity value cutoff was not considered in that microarray analysis nor in the 539 L. mexicana and L. major reports (Holzer et al., 2006; Leifso et al., 2007). This fact must be taken into 540 account as it may have led to an overestimation of the differential expression rate.

541 In the context of the hypothesis of constitutive gene expression in Leishmania spp., the 542 differential expression profile that we have found for genes involved in translation (see Gene 543 expression, protein maturation, secretory pathway and nucleotide metabolism subsection in the 544 previous section) supports the suggestion that translation is less active in intracellular amastigotes than 545 in promastigotes, with the greatest levels of gene expression in logarithmic-phase promastigotes. 546 Furthermore, this reduced translational activity is consistent with the initial observation of a smaller 547 number of up-regulated than down-regulated genes in amastigotes referred to logarithmic- and 548 stationary-phase promastigotes (dL/A and uL/A, respectively). Considering the completeness of the 549 genomic DNA microarrays used for this transcriptomic analysis, the results suggest that down-550 regulation prevails over up-regulation in amastigote differentiation. The specific numbers of 551 differentially regulated genes found is 224 up-regulated vs. 80 down-regulated in L/A and 129 up-552 regulated vs. 81 down-regulated in S/A (Tables 2-4; summarized in tables 1 and 5 and Fig. 3). In 553 addition, data sets contrasting sharply the variety of down-regulated genes with the very limited 554 amount of up-regulated genes in amastigotes have been published previously elsewhere, except for

555 some analyses performed by partial genome approaches (reviewed in Table 5). On the basis of these 556 observations, we were able to subject the null hypothesis of lack of significant differences between up-557 and down-regulation in amastigotes to a binomial test. Individually, six reports on the expression 558 profile of the amastigote stage compared with logarithmic or stationary phase promastigotes or both in 559 several Leishmania spp. showed a highly significant predominance of down-regulated over up-560 regulated genes in amastigotes (reviewed in Table 5). More up-regulated genes in amastigotes were 561 found in two out of three partial transcriptomic analyses carried out in L. major (Akopyants et al., 562 2004; Leifso et al., 2007), while fewer up-regulated genes were described in another report on the 563 same species (Almeida et al., 2004). According to the binomial test outcome, none of these differences 564 are statistically significant. This was not the case of the higher number of up-regulated proteins found 565 in a partial proteomic and transcriptomic analysis in L. infantum (McNicoll et al., 2006), for which we 566 have only calculated significance of the differences found in the protein set. This was because of the 567 lack of independence in sampling of the transcripts reported, as only transcripts corresponding to the 568 outcomes of the proteomic analysis were analysed. Higher but statistically non-significant amastigote-569 like (axenic amastigote) down-regulation rates have been observed (Table 5) for previous data sets 570 (Rochette et al., 2009; Alcolea et al., 2010). The outputs were respectively: lack of statistical 571 significance of the differences between up- and down-regulated gene sets; predominance of down-572 regulation; and greater abundance of up-regulation. To summarize, statistically significant higher 573 down-regulation rates have been found for intracellular amastigote stages, with two exceptions, and 574 lack of significant differences in axenic amastigotes. Interestingly, the only high throughput proteomic 575 approach performed in the genus Leishmania (Rosenzweig et al., 2008) revealed a data set in which 576 the down-regulation rate in amastigotes is significantly greater (Table 5). All the intracellular 577 amastigote expression profiles described by high throughput transcriptomic and proteomic analyses 578 are consistent with the predominance of down-regulation.

579 Intraspecies binomial tests were also performed, as microarray and proteomic data mining are 580 equivalent to independent sampling procedures from unknown populations of genomic sequences and 581 protein sets in terms of expression rate. In spite of the exceptions described, the intraspecific binomial 582 tests have revealed highly significant differences between up-regulation and down-regulation in *L*. 583 major, L. mexicana, L. donovani and L. infantum amastigotes, both including and excluding axenic 584 amastigotes. Therefore, the binomial tests performed for each individual data subset and the 585 intraspecific sets point to a significantly higher frequency of down-regulation in amastigotes. The 586 interspecific global binomial test has revealed very significant differences between down- and up-587 regulated genes in amastigotes, with a clear predominance of down-regulation. A global test was also 588 performed by separating L/A and S/A comparisons in order to exclude a possible influence of 589 promastigote differentiation, but the null hypothesis was rejected again with a very low p-value. These 590 statistical analyses of differential regulation rates and down-regulation in amastigotes of a 591 considerable set of genes related with gene expression regulation clearly show that the down-592 regulation rate is higher than the up-regulation rate in intracellular amastigotes whether at the post-593 transcriptional or the post-translational level. These findings provide additional evidence in support of 594 the hypothesis of amastigote preadaptation for intracellular survival in addition to the limited dynamic 595 modulation of gene expression at the post-transcriptional level (Depledge et al., 2009) in different 596 Leishmania spp. including the L. (Leishmania) subgenus causative of both human cutaneous and 597 visceral leishmaniasis in the Old and New World.

598

599 ACKNOWLEDGEMENTS

We would like to thank Alfredo Toraño and Merecedes Moreno for their unconditional support and Marina Postigo for her excellent technical assistance. This work has been supported by the Ministerio de Educación y Ciencia (MEC) project AGL2003–06152-C02–01 and the internal budget of the Centro de Astrobiología. PJA wishes to thank the CSIC for the I3P-BPD2003–1 fellowship and AA thanks the CSIC for the JAE-Doc027 (2008) contract.

605

606 **REFERENCES**

Akopyants, N.S., Matlib, R.S., Bukanova, E.N., Smeds, M.R., Brownstein, B.H.,
Stormo, G.D., Beverley, S.M., 2004. Expression profiling using random
genomic DNA microarrays identifies differentially expressed genes associated
with three major developmental stages of the protozoan parasite Leishmania
major. Molecular and biochemical parasitology 136, 71-86.

- Alcolea, P.J., Alonso, A., Sanchez-Gorostiaga, A., Moreno-Paz, M., Gomez, M.J.,
 Ramos, I., Parro, V., Larraga, V., 2009. Genome-wide analysis reveals increased
 levels of transcripts related with infectivity in peanut lectin non-agglutinated
 promastigotes of Leishmania infantum. Genomics 93, 551-564.
- Alcolea, P.J., Alonso, A., Gomez, M.J., Sanchez-Gorostiaga, A., Moreno-Paz, M.,
 Gonzalez-Pastor, J.E., Toraño, A., Parro, V., Larraga, V., 2010. Temperature
 increase prevails over acidification in the gene expression modulation of
 amastigote differentiation in Leishmania infantum. BMC Genomics 11, 31.
- Almeida, R., Gilmartin, B.J., McCann, S.H., Norrish, A., Ivens, A.C., Lawson, D.,
 Levick, M.P., Smith, D.F., Dyall, S.D., Vetrie, D., Freeman, T.C., Coulson,
 R.M., Sampaio, I., Schneider, H., Blackwell, J.M., 2004. Expression profiling of
 the Leishmania life cycle: cDNA arrays identify developmentally regulated
 genes present but not annotated in the genome. Molecular and biochemical
 parasitology 136, 87-100.
- Alvar, J., Canavate, C., Molina, R., Moreno, J., Nieto, J., 2004. Canine leishmaniasis.
 Adv Parasitol 57, 1-88.
- Berens, R.L., Marr, J.J., 1978. An easily prepared defined medium for cultivation of
 Leishmania donovani promastigotes. The Journal of parasitology 64, 160.
- Cohen-Freue, G., Holzer, T.R., Forney, J.D., McMaster, W.R., 2007. Global gene
 expression in Leishmania. International journal for parasitology 37, 1077-1086.
- Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M., 2005.
 Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676.
- Cozens, A.L., Runswick, M.J., Walker, J.E., 1989. DNA sequences of two expressed
 nuclear genes for human mitochondrial ADP/ATP translocase. J Mol Biol 206,
 261-280.
- Chakraborty, A., Sen, B., Datta, R., Datta, A.K., 2004. Isomerase-independent
 chaperone function of cyclophilin ensures aggregation prevention of adenosine
 kinase both in vitro and under in vivo conditions. Biochemistry 43, 1186211872.
- Da'dara, A.A., Walter, R.D., 1998. Molecular and biochemical characterization of Sadenosylmethionine decarboxylase from the free-living nematode
 Caenorhabditis elegans. Biochem J 336 (Pt 3), 545-550.
- Debrabant, A., Joshi, M.B., Pimenta, P.F., Dwyer, D.M., 2004. Generation of
 Leishmania donovani axenic amastigotes: their growth and biological
 characteristics. International journal for parasitology 34, 205-217.
- 648 Depledge, D.P., Evans, K.J., Ivens, A.C., Aziz, N., Maroof, A., Kaye, P.M., Smith,
 649 D.F., 2009. Comparative Expression Profiling of Leishmania: Modulation in
 650 Gene Expression between Species and in Different Host Genetic Backgrounds.
 651 PLoS Negl Trop Dis 3, e476.
- Doering, T.L., Masterson, W.J., Englund, P.T., Hart, G.W., 1989. Biosynthesis of the
 glycosyl phosphatidylinositol membrane anchor of the trypanosome variant
 surface glycoprotein. Origin of the non-acetylated glucosamine. J Biol Chem
 264, 11168-11173.
- 656 Gupta, N., Goyal, N., Rastogi, A.K., 2001. In vitro cultivation and characterization of 657 axenic amastigotes of Leishmania. Trends in parasitology 17, 150-153.
- Handman, E., 2001. Leishmaniasis: current status of vaccine development. Clinical
 microbiology reviews 14, 229-243.
- Hart, D.T., Vickerman, K., Coombs, G.H., 1981. A quick, simple method for purifying
 Leishmania mexicana amastigotes in large numbers. Parasitology 82, 345-355.

- Holzer, T.R., McMaster, W.R., Forney, J.D., 2006. Expression profiling by wholegenome interspecies microarray hybridization reveals differential gene
 expression in procyclic promastigotes, lesion-derived amastigotes, and axenic
 amastigotes in Leishmania mexicana. Molecular and biochemical parasitology
 146, 198-218.
- Ilgoutz, S.C., McConville, M.J., 2001. Function and assembly of the Leishmania
 surface coat. International journal for parasitology 31, 899-908.
- Kabututu, Z., Martin, S.K., Nozaki, T., Kawazu, S., Okada, T., Munday, C.J.,
 Duszenko, M., Lazarus, M., Thuita, L.W., Urade, Y., Kubata, B.K., 2002.
 Prostaglandin production from arachidonic acid and evidence for a 9,11endoperoxide prostaglandin H2 reductase in Leishmania. International journal
 for parasitology 32, 1693-1700.
- Leifso, K., Cohen-Freue, G., Dogra, N., Murray, A., McMaster, W.R., 2007. Genomic
 and proteomic expression analysis of Leishmania promastigote and amastigote
 life stages: the Leishmania genome is constitutively expressed. Molecular and
 biochemical parasitology 152, 35-46.
- Lemma, A., Schiller, E.L., 1964. Extracellular Cultivation of the Leishmanial Bodies of
 Species Belonging to the Protozoan Genus Leishmania. Experimental
 parasitology 15, 503-513.
- McConville, M.J., de Souza, D., Saunders, E., Likic, V.A., Naderer, T., 2007. Living in
 a phagolysosome; metabolism of Leishmania amastigotes. Trends in
 parasitology 23, 368-375.
- McNicoll, F., Drummelsmith, J., Muller, M., Madore, E., Boilard, N., Ouellette, M.,
 Papadopoulou, B., 2006. A combined proteomic and transcriptomic approach to
 the study of stage differentiation in Leishmania infantum. Proteomics 6, 35673581.
- Minta, J.O., Pambrun, L., 1985. In vitro induction of cytologic and functional
 differentiation of the immature human monocytelike cell line U-937 with
 phorbol myristate acetate. Am J Pathol 119, 111-126.
- Moreno, I., Molina, R., Toraño, A., Laurin, E., García, E., Domínguez, M., 2007.
 Comparative real-time kinetic analysis of human complement killing of
 Leishmania infantum promastigotes derived from axenic culture or from
 Phlebotomus perniciosus. Microbes Infect. 9, 1574-1580.
- Neal, R.A., Miles, R.A., 1963. Heated blood agar medium for the growth of
 Trypanosoma cruzi and some species of Leishmania. Nature 198, 210-211.
- Pasquau, F., Ena, J., Sanchez, R., Cuadrado, J.M., Amador, C., Flores, J., Benito, C.,
 Redondo, C., Lacruz, J., Abril, V., Onofre, J., 2005. Leishmaniasis as an
 opportunistic infection in HIV-infected patients: determinants of relapse and
 mortality in a collaborative study of 228 episodes in a Mediterreanean region.
 Eur J Clin Microbiol Infect Dis 24, 411-418.
- Rawlings, N.D., Barrett, A.J., 1994. Families of cysteine peptidases. Methods Enzymol
 244, 461-486.
- Rochette, A., Raymond, F., Corbeil, J., Ouellette, M., Papadopoulou, B., 2009. Wholegenome comparative RNA expression profiling of axenic and intracellular
 amastigote forms of Leishmania infantum. Molecular and biochemical
 parasitology 165, 32-47.
- Rosenzweig, D., Smith, D., Opperdoes, F., Stern, S., Olafson, R.W., Zilberstein, D.,
 2008. Retooling Leishmania metabolism: from sand fly gut to human
 macrophage. Faseb J 22, 590-602.

- Saxena, A., Worthey, E.A., Yan, S., Leland, A., Stuart, K.D., Myler, P.J., 2003.
 Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Molecular and biochemical parasitology 129, 103-114.
- Saxena, A., Lahav, T., Holland, N., Aggarwal, G., Anupama, A., Huang, Y., Volpin, H.,
 Myler, P.J., Zilberstein, D., 2007. Analysis of the Leishmania donovani
 transcriptome reveals an ordered progression of transient and permanent changes
 in gene expression during differentiation. Molecular and biochemical
 parasitology 152, 53-65.
- Sen, B., Venugopal, V., Chakraborty, A., Datta, R., Dolai, S., Banerjee, R., Datta, A.K.,
 2007. Amino acid residues of Leishmania donovani cyclophilin key to
 interaction with its adenosine kinase: biological implications. Biochemistry 46,
 723 7832-7843.
- Sopwith, W.F., Debrabant, A., Yamage, M., Dwyer, D.M., Bates, P.A., 2002.
 Developmentally regulated expression of a cell surface class I nuclease in Leishmania mexicana. International journal for parasitology 32, 449-459.
- Srividya, G., Duncan, R., Sharma, P., Raju, B.V., Nakhasi, H.L., Salotra, P., 2007.
 Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays. Parasitology 134, 1527-1539.
- Steiger, R.F., Steiger, E., 1976. A defined medium for cultivating Leishmania donovani
 and L. braziliensis. The Journal of parasitology 62, 1010-1011.
- Steiger, R.F., Steiger, E., 1977. Cultivation of Leishmania donovani and Leishmania
 braziliensis in defined media: nutritional requirements. The Journal of
 protozoology 24, 437-441.
- 735 736 737

138 LEGEND TO FIGURES139

740 Fig. 1. Isolation and characterization of the promastigote and amastigote populations. (A)

741 Average growth curve of the replicate promastigote cultures. (B-G) Cultures of stimulated U937 lines

- 742 infected with promastigotes for the preparation of intracellular amastigotes. (B) Modified Giemsa
- staining. (C) PBS as negative control for the FITC-conjugated anti-mouse IgG secondary antibody.
- 744 (D) Monoclonal anti-rabbit complement factor H primary antibody negative control. (E) SIM110
- 745 monoclonal anti-SLA as positive control. (F) SIM 6.11.2.1. monoclonal anti-gp63 IgG. (G) Purified
- 746 monoclonal anti-gp46 IgG. Evan's Blue was used as the contrast staining in C-G.
- 747

748 Fig. 2. Average M/A scatter plots of three-replicate microarray hybridization analyses. The

stages compared are S/L, S/A and L/A and the respective cDNA samples were labelled as Cy5/Cy3. M

750 = $(\log_2 Ri - \log_2 Gi)$ and A = $[(\log_2 Ri + \log_2 Gi)/2]$, where R and G are respectively red (Cy5) and green

751 (Cy3) intensity values. Red spots correspond to selected DNA fragments containing a gene up-

regulated at least 1.7 times and green spots represent those down-regulated at least 1.7 times. Further
criteria for spot selection are detailed in Materials and methods section. Standard deviations are
shown.

755

756 Fig. 3. Overview of gene expression modulation throughout the life cycle of L. infantum. The 757 number of differentially regulated genes is indicated in each of the transitions between the main stages 758 of the cycle. (A) The microarray hybridization analysis S/L has resulted in 96 genes up-regulated in 759 logarithmic phase promastigotes and 114 in stationary phase promastigotes. Venn diagrams for the 760 comparison of the transcriptome analysis output for logarithmic/stationary phase promastigotes and 761 for the previously reported for procyclic/metacyclic analysis (Alcolea et al., 2009) clearly show that 762 both gene expression profiles are very dissimilar. Indeed, only 6 and 5 genes respectively are 763 coincident between the two expression profiles. (B) Gene expression profiling of the S-A transition 764 shows that 129 genes are up-regulated in S/A whereas 81 are down-regulated. gp63 IFA was 765 performed to check U937 infections for the purification of intracellular amastigotes, which appear in 766 green colour in the micrograph to contrast with the red staining (Evans' Blue) of the host cell. (C) 129 767 genes are up-regulated in the transition of amastigotes to logarithmic phase promastigotes whereas 79 768 are down-regulated. Table 1 breaks down genes into each stage according to annotation status.

769

Fig. 4. Multilevel sector charts of α -scores for GO terms annotated in down-regulated genes in amastigotes. GO term nodes at different level in the ontology have been filtered by an α -score value of 2 with BLAST2GO and represented in these diagrams. (A) and (B) are respectively the sector charts for biological process and molecular function terms annotated on genes up-regulated in L/A. (C) and (D) are referred to S/A. Terms related to gene expression and its regulation are highly represented at both the biological process and the molecular function level in the promastigote with respect to the amastigote stage.

778 Fig. 5. Diagram of the differential expression profiles of S/L, S/A and L/A in L. infantum.

779 Proteins coded by stage-specifically regulated genes are represented in the leishmanial expression and

780 secretory pathways, plasma membrane, cytosol and organelles. Functional relations are also shown

781 whenever possible. See abbreviations in the text. (A) Gene expression, secretory pathway and

violation violation (B) Metabolism and kDNA-related genes. (C) Surface molecules,

783 cytoskeleton, vessicle trafficking, signal transduction and cell cycle regulation.

Table 1. Differential gene regulation in *Leishmania infantum*: status of gene annotations. The number of differentially regulated genes in each of the main stages is given in the table. A breakdown of genes according to the presence or absence of annotated gene functions and gene annotation in the sequence contained in the clone is described (each clone without gene annotation presumably contains a differentially regulated gene).

6

Annotation status		Number of differentially regulated genes								
		dS/L	uS/L	dSmet/	uSmet/	uS/A	dS/A	uL/A	dL/A	Total
				SPro	Spro					
Genes with annotated	function	41	56	52	36	72	30	104	13	404
Hypothetical protein	genes	17	15	37	44	22	27	50	26	238
Unknown genes		0	0	0	0	0	0	2	0	2
Pseudogenes		1	0	0	0	0	0	1	0	2
Minicircle sequences		0	2	0	5	0	1	1	0	9
Unresolved clones	containing annotated gene functions	23	21	7	9	4	18	18	18	118
	lacking annotated gene sequences	20	25	26	84	31	5	48	22	262
Total		102	119	122	178	129	81	224	79	1035

7

8 d, down-regulated; u, up-regulated; dS/L, genes down-regulated in stationary versus logarithmic phase 9 promastigotes; uS/L, genes up-regulated in stationary versus logarithmic phase promastigotes; 10 dSmet/pro, genes down-regulated in the subpopulation of metacyclic promastigotes with respect to the 11 procyclic promastigotes from the promastigote population in stationary phase; uSmet/pro, genes up-12 regulated in the subpopulation of metacyclic promastigotes with respect to the procyclic promastigotes 13 from the promastigote population in stationary phase; uS/A, up-regulation in stationary phase 14 promastigotes versus amastigotes; dS/A, down-regulated genes in stationary phase promastigotes 15 versus amastigotes; dL/A, genes down-regulated in logarithmic phase promastigotes versus 16 amastigotes; uL/A, genes up-regulated in logarithmic phase promastigotes versus amastigotes.

- 17
- 18

Table 2. Differentially regulated genes in stationary versus logarithmic phase promastigotes S/L. The features described are: clone number; F (up-regulation if F > 1.7 and down-regulation if F < -1.7); base-two logarithmic scale F and S.D. values; *p*; GenBank GSS accession numbers; e-values; Def., clone definition according to mapping outcomes *a*, *b* or *c* (see explanation in 2.2.); Id., annotation in the *L. infantum* genome sequence; annotated gene function; relative quantitative real time reverse transcription-PCR (qRT-PCR). When a given clone overlaps with more than one annotation (asterisk in Def., only clones checked for differential regulation using qRT-PCR appear in this table.

Clone	F	$Log_2F\pm$	Р	GenBank	e-va	lue	Def.	Id.	Annotated Gene Function		RT-PCR
		SD		GSS	Fw	Rv				+/-	E + SD
Lin1/E10	1.02	1.0 ± 0.2	0.030	C5882208	0	76-170	h	Lin I31 V3 1030	Ubiquitin fusion protein (uba)	7/-	ND
Lin15B2	1.92	1.0 ± 0.2 0.7 ± 0.2	0.039	G5882299	2e-77	2e-80	b	LinJ31_V3.1930	Regulatory subunit of protein kinase A-like protein (rPKA)		ND.
Lin18F11	2.11	0.7 ± 0.2 0.9 ± 0.2	0.010	GS882300	0	5e-137	b	LinJ31 V3.3380	Sodium stibogluconate resistance protein, putative (SbGRP)		N.D.
Lin50G2	1.87	0.9 ± 0.1	0.007	GS882301	0	0	b	LinJ34 V3.2660	Amastin-like surface protein, putative		N.D.
Lin54D12	2.31	1.2 ± 0.3	0.018	GS882302	5e-137	-	b	LinJ13_V3.1130	40S ribosomal protein S4, putative (S4)		N.D.
Lin54H9 ^a	3.41	1.8 ± 0.3	0.007	GS882303	0	0	а	LinJ32_V3.0460	40S ribosomal protein S2 (S2)		N.D.
Lin63B7	2.33	1.2 ± 0.4	0.027	GS882304	1e-103	1e-103	b	LinJ15_V3.1200	60S acidic ribosomal protein P2		N.D.
Lin63F3	2.48	1.3 ± 0.3	0.021	GS882305	0	0	a	LinJ36_V3.6550	Glucose transporter, lmgt2, putative (GT)	+	6.6 ± 1.0
								LinJ36_V3.6560	Glucose transporter, putative (GT)	+	4.3 ± 1.3
Lin65G6	1.78	0.8 ± 0.3	0.037	GS882306	0	0	b	LinJ08_V3.0690	Amastin-like protein		N.D.
								LinJ08_V3.0700	Amastin-like protein		N.D.
Lin67B7ª	2.52	1.3 ± 0.5	0.039	GS882307	0	0	b	LinJ29_V3.1160	Ribosomal protein Lla, putative (Lla)	+	7.4 ± 0.9
Lin82G7	1.8/	0.9 ± 0.4	0.047	<u>GS882308</u>	0	0	b L	LinJ24_V3.0420	Cysteine peptidase, Clan CA, family C12, putative (UHC-C12)	+	3.1 ± 0.6
LIN85D1	1.88	0.9 ± 0.1	0.005	<u>G8882309</u>	0	0	D	LinJ08_V3.0700	Amastin-like protein		N.D.
Ling6D4	2 5 9	1.9 ± 0.7	0.047	C5002210	0	0	h	LinJ08_V3.0710	Chaose transporter lmgt2 putative (CT)		N.D. 66 ± 1.0
Lin00H12	3.06	1.6 ± 0.7	0.047	CS882311	0	0	b	Lin I36_V3.0000	40S ribosomal protein S18, putative (S18)	Ŧ	0.0 ± 1.0
Lin91F9 ^a	2 14	1.0 ± 0.4 1.1 ± 0.4	0.034	<u>G5882312</u> CS882312	2e-105	-	c	LinJ30_V3.0550	Putative 3 ketoacyl coa thiolase-like protein (Thiol I)	+	46+03
Lin92F7	1 70	0.8 ± 0.2	0.019	GS882313	0	0	b	Lin I35 V3 0400	40S ribosomal protein S3a, putative (S3a)		ND
Lin92H2	1.72	0.0 ± 0.2 0.8 ± 0.2	0.020	GS882314	Ő	Ő	h	Lin I36 V3 2560	Caltractin putative		N D
Lin96F4	1.78	0.8 ± 0.1	0.015	GS882315	Ő	Ő	b	LinJ26 V3.0370	Hypothetical protein, conserved		N.D.
								LinJ26 V3.0380	RET2,RNA editing complex MP57		?
Lin96G5	1.81	0.9 ± 0.1	0.007	GS882316	0	0	b	LinJ36_V3.3940	40S ribosomal protein S27-1, putative (S27-1)		N.D.
Lin101B5	2.06	1.0 ± 0.4	0.048	GS882317	0	0	b	LinJ09_V3.0650	Serine peptidase family S51, peptidase E, putative (SerP51)	+	14.0 ± 0.4
Lin101D5	1.75	0.8 ± 0.1	0.004	GS882318	4e-39	0	b	LinJ27_V3.2500	Glycosomal phosphoenolpyruvate carboxykinase, putative (gPEPCK)		N.D.
Lin113A12	2.02	1.0 ± 0.3	0.032	GS882319	2e-65	2e-40	b	LinJ23_V3.1200	Hydrophilic surface protein 2 (HASPA1)	+	13.1 ± 1.7
								LinJ23_V3.1210	SHERP	+	2.5 ± 0.1
								LinJ23_V3.1220	Hydrophilic surface protein (HASPB)	+	4.9 ± 0.5
Lin118C1	2.40	1.3 ± 0.4	0.030	GS882320	0	0	b	LinJ08_V3.0700	Amastin-like protein		N.D.
Lin127E8	1.77	0.8 ± 0.2	0.030	GS882321	0	0	b	LinJ35_V3.1870	60S ribosomal protein L5, putative (L5)		N.D.
Lin128D7	2.01	1.0 ± 0.2	0.039	<u>GS882322</u>	0	0	b	LinJ21_V3.2150	40S ribosomal protein S6, putative (S6)		N.D.
Lin129H10	2.55	1.3 ± 0.3	0.020	<u>GS882323</u>	0	0	b	LinJ08_V3.0960	Cathepsin L-like protease (Cathepsin-L)		N.D.
Lin14/H2	1.84	0.9 ± 0.2	0.032	G5882324	0	0	D	LinJ34_V3.1160	Tuzin-like protein		N.D.
LIN149H2	1.87	0.9 ± 0.3	0.029	G3882325	0	0	а	LinJ20_V3.1210	Cysteine peptidase, Clan CA, family C2, putative (C2cp)		N.D.
Lin156E3a	1 73	0.8 ± 0.2	0.045	C5887376	0	0	c	LinJ20_V3.1220	Amastin putative	+	11 ± 0.2
Emilion 5	1.75	0.8 ± 0.3	0.045	03002520	0	0	c	Lin I29_V3.3020	Tuzin-like protein putative	+	42 ± 0.5
Lin160E1 ^a	1.76	0.8 ± 0.3	0.032	GS882327	0	0	b	LinJ35_V3.1870	60S ribosomal protein L.5. putative		N.D.
Lin163A7	2.11	1.1 ± 0.1	0.006	GS882328	Õ	2e-170	b	LinJ23 V3.1220	Hydrophilic surface protein (HASPB)	+	4.9 ± 0.5
								LinJ23_V3.1230	SHERP	+	3.8 ± 0.2
								LinJ23_V3.1240	Hydrophilic surface protein 2 (HASPA2)	+	7.4 ± 0.8
Lin166B10	1.95	1.0 ± 0.2	0.018	GS882329	1e-26	0	b	LinJ31_V3.1850	Amino acid permease (aap)		N.D.
Lin189A7 ^a	1.74	0.8 ± 0.3	0.044	GS882330	0	0	a	LinJ34_V3.2730	Ribosomal protein L3, putative (L3)		N.D.
Lin165D2	3.90	2.0 ± 0.3	0.005	GS882331	0	0	b	LinJ23_V3.1230	SHERP	+	3.8 ± 0.2
Lin194E2 ^a	1.70	0.8 ± 0.1	0.008	GS882332	0	0	с	LinJ08_V3.0730	Tuzin, putative	+	2.4 ± 0.1
Lin194F11	1.96	1.0 ± 0.2	0.022	GS882333	0	0	b	LinJ31_V3.0950	Sodium stibogluconate resistance protein, putative (SbGRP)	+	7.6 ± 1.0
Lin196A12 ^a	2.10	1.1 ± 0.3	0.031	GS882334	0	0	b	LinJ29_V3.1170/80	Ribosomal protein L1a, putative (L1a)		N.D.
Lin210C4	1.70	0.8 ± 0.3	0.045	GS882335	0	0	b	LinJ08_V3.0690	Amastin-like protein		N.D.
Lin219E1	1.73	0.8 ± 0.1	0.006	GS882336	0	0	b	LinJ32_V3.3330	Ribosomal protein L3, putative (L3)		N.D.
Lin231G5	2.17	1.1 ± 0.1	0.001	<u>GS882337</u>	0	0 4a 20	b L	LinJ35_V3.2040	60S ribosomal protein L32 (L32)		N.D.
Lin245E2	2.03	1.0 ± 0.2	0.054	<u>GS882338</u>	70 124	46-39	D	LinJ22_V3.0680	3 azrei-related protein (3 azrei)		N.D.
Lin251A12	1.75	0.8 ± 0.1	0.004	<u>G5882239</u>	/e-124	0	C h	Lin 122 V2 0860	A hashin-like surface protein, putative		N.D.
Lii251A8	1.78	0.8 ± 0.2	0.034	<u>G5002340</u>	0	0	1	Liij25_V3.0800	5-ketoacyi-coa unoiase-inke protein (Tinoi I)		N.D.
Lin253D4	1.92	0.9 ± 0.2	0.010	<u>GS882341</u>	0	0	b L	LinJ34_V3.2660	Amastin-like surface protein, putative		N.D.
LIN2/4G6	2.58	1.4 ± 0.5	0.034	<u>GS882342</u>	0	0	D	LinJU8_V3.0680	Amastin-like protein		N.D. N.D.
L in 302C-5	2 35	12 ± 02	0.006	CS882343	4e_110	16-45	а	Lin I35 V3 4000	LIS snRNA-associate splicing factor (US-sn-RNA-of)		ND.
Lin306F2	1.86	1.2 ± 0.2 0 9 + 0 2	0.000	GS882344	-117	0	h	Lin I22 V3 1410	40S ribosomal protein L14 putative (L14)		ND.
Lin10E1	-2.00	-1.0 ± 0.2	0.038	GS882345	0	0	a	Lin I35 V3 1740	Dynein-associated roadblock protein-like protein		ND.
Lin19C6 ^a	-1.75	-0.8 ± 0.0	0.002	GS882346	õ	ő	b	LinJ15 V3.0240	Protein phosphatase 1 catalitic subunit, putative (cPP1)	+	-3.1 ± 0.4
Lin24E4	-2.25	-1.2 ± 0.1	0.005	GS882347	0	õ	b	LinJ20 V3.0310	Developmentally regulated phosphoprotein-like protein (DRPP)	+	-5.5 ± 0.6
Lin27B2	-2.36	-1.3 ± 0.4	0.038	GS882348	0	0	b	LinJ35_V3.1230	Short chain dehydrogenase, putative (SCDH)		N.D.
				. <u> </u>				LinJ35_V3.1240	Short chain dehydrogenase, putative (SCDH)		N.D.
Lin31C11	-1.78	$\textbf{-0.8}\pm0.1$	0.009	GS882349	0	0	b	LinJ35_V3.3280	Cystathionine gamma lyase, putative (CGL)		N.D.
Lin35B2	-1.74	$\textbf{-0.8} \pm 0.2$	0.045	GS882350	0	0	b	LinJ05_V3.1210	Surface antigen-like protein (SALp)		N.D.

Lin49B3	$-2.05 -1.0 \pm 0.2$	0.020	GS882351	0	0	b	LinJ31_V3.0860	Triacylglycerol lipase-like protein (TGL)	+	-8.0 ± 0.2
							LinJ31_V3.0870	Lipase precursor-like protein (TGL)	+	-3.2 ± 0.1
Lin54C2	$-1.74 -0.8 \pm 0.2$	0.028	GS882352	0	0	а	LinJ24_V3.2410	Mitogen-activated protein kinase (MAPK)		N.D.
Lin54F7	-1.83 -0.8 ± 0.1	0.010	GS882353	0	0	а	LinJ27_V3.1070	Histone H1, putative (H1)		N.D.
Lin58H5	-2.21 -1.1 ± 0.0	0.000	<u>GS882354</u>	0	0	b	LinJ31_V3.2400	3,2 trans-enoyl-CoA isomerase, mitochondrial precursor, putative (ECH)		N.D.
Lin59B2 ^a	$-2.50 -1.3 \pm 0.4$	0.042	<u>GS882355</u>	0	0	b	LinJ30_V3.0790	4-methyl-5(beta-hydroxyethyl)-thiazole monophosphate synthesis protein, putative (MPETs)	+	-4.5 ± 0.5
Lin76A1	$-1.97 -2.0 \pm 0.1$	0.003	GS882356	0	0	b	LinJ31_V3.3320	Histone H4 (H4)		N.D.
Lin77B1 ^a	$-2.27 -1.2 \pm 0.1$	0.013	GS882357	0	0	b	LinJ21_V3.0080	Syntaxin, putative (Sx)	+	-1.8 ± 0.0
Lin80B3	$-1.93 -0.9 \pm 0.2$	0.028	GS882358	0	0	b	LinJ28 V3.3250	Glucose 6-phophate N-acetyl transferase (GNAT)		N.D.
Lin88B2	-1.79 -0.8 + 0.2	0.015	GS882359	0	0	b	LinJ10 V3.1070	Histone H3 (H3)		N.D.
Lin90H10	$-1.74 -0.8 \pm 0.2$	0.022	GS882360	0	0	a	LinJ07 V3.1300	Proteasome regulatory non ATP-ase subunit, putative (rS-non-ATPase)		N.D.
Lin91E7	$-1.87 -0.9 \pm 0.2$	0.035	GS882361	5e-155	0	a	LinJ29 V3.2250	C8-sterol isomerase-like protein		N.D.
Lin100D11	$-2.01 -1.0 \pm 0.1$	0.001	GS882362	3e-27	0	b	LinJ04_V3.0570	Spermidine synthase, putative (SpS)		N.D.
Lin100F4 ^a	-1.75 -0.8 ± 0.3	0.043	GS882363	0	0	a	LinJ28 V3.2280	Dynein light chain lc6, flagellar outer arm, putative (DynLC6)	+	-2.4 ± 0.3
Lin104C1 ^a	$-1.73 -0.8 \pm 0.1$	0.011	GS882364	0	1e-116	с	LinJ33_V3.2930	GTP-binding elongation factor Tu family protein, putative (EF-Tu)	+	-3.4 ± 0.4
Lin106C12 ^a	-3.52 -1.8 ± 0.2	0.008	GS882365	0	0	b	LinJ08_V3.0010	Structural maintenance of chromosome 3 protein, putative (smc3)	+	-2.2 ± 0.1
							LinJ08_V3.0030	Vesicle associated membrane protein, putative (vamp)	+	-6.3 ± 1.5
Lin109C7	$-2.06 -1.0 \pm 0.4$	0.040	GS882366	0	0	a	LinJ22_V3.1300	Cyclophilin, putative (Cph)		N.D.
Lin109F4	-1.70 -0.8 ± 0.1	0.007	GS882367	0	0	a	LinJ06_V3.1330	Coproporphyrinogen III oxidase, putative (C(III)O)	+	-4.8 ± 0.2
							LinJ06_V3.1340	Protoporphyrinogen oxidase-like protein (PO)	+	-9.6 ± 0.5
Lin111F3	-1.91 -0.9 ± 0.1	0.008	GS882368	0	0	a	LinJ31_V3.2210	Protein farnesyltransferase alpha subunit, putative (FTase- α)		N.D.
Lin144F11	-1.77 -0.8 ± 0.2	0.021	GS882369	2e-164	2e-142	a	LinJ31_V3.2210	Prostaglandin F2-alpha synthase (PGFS)		N.D.
Lin147D2	$-2.04 -1.0 \pm 0.3$	0.032	GS882370	0	0	a	LinJ28_V3.0110	Proteasome beta 3 subunit, putative (β 3)	+	-1.9 ± 0.0
							LinJ28_V3.0120	DNA directed RNA polymerase II, subunit 9, putative (RNAPol II-s9)	+	-2.1 ± 0.2
Lin187C7	$-1.92 -0.9 \pm 0.1$	0.002	GS882371	0	0	b	LinJ26_V3.1680	Sphingolipid delta 4 desaturase, putative	+	-2.6 ± 0.1
							LinJ26_V3.1690	Cytochrome c oxidase subunit V, putative (coxV)	+	
Lin203B5 ^a	$-2.03 -1.0 \pm 0.2$	0.014	GS882372	0	2e-176	с	LinJ16_V3.0950	Dynein light chain, putative (DLC)	+	-11.0 ± 0.2
Lin237D5	-1.53 -0.6±0.1	0.017	GS882373	1e-122	0	b	LinJ22_V3.1300	Cyclophilin, putative (Cph)		N.D.
Lin239H2 ^a	-1.78 -0.8±0.1	0.001	GS882374	0	0	b	LinJ30_V3.0800	 4- methyl-5 (betahydroxyethyl)-thiazole monophosphate synthesis protein, putative (MPETs) 	+	$\textbf{-4.5}\pm0.5$
Lin271C2 ^a	-1.95 -1.0 ± 0.2	0.013	GS882375	1e-069	1e-165	b	LinJ28_V3.0090	Adenylate cyclase-like protein (AC)	+	-2.7 ± 0.3
Lin276H10 ^a	-1.95 -1.0 ± 0.2	0.027	GS882376	0	0	b	LinJ19_V3.1520	Eukaryotic translation initiation factor-like protein (EIF)	+	-7.3 ± 0.3
Lin294G4	$-2.65 -1.4 \pm 0.2$	0.009	GS882377	0	0	b	LinJ16_V3.1640	DNA polymerase I alpha catalytic subunit, putative (cDNAPol I aB)		N.D.
Lin310C4	-1.85 -0.9 ± 0.2	0.010	GS882378	0	0	b	LinJ22_V3.1300	Cyclophilin, putative (Cph)		N.D.
07										
27										

^aClones containing more than one gene fragment; only the differentially regulated gene is indicated.

32 Table 3. Differentially regulated genes in stationary phase promastigotes versus amastigotes S/A. The 33 features described are: clone number; F (up-regulation if F > 0 and down-regulation if F < 0); base-34 two logarithmic scale F and S.D. values; P; GenBank GSS accession numbers; e-values; Def., clone 35 definition according to mapping outcomes a, b or c (see brief explanation in 2.2); Id., annotation in the 36 L. infantum genome sequence; annotated gene function; relative quantitative real time reverse 37 transcription-PCR (qRT-PCR). When a given clone overlaps with more than one annotation (^a), only 38 clones checked for differential regulation using qRT-PCR appear in this table. cLinA2 and cLdoA2 39 were spotted onto microarrays as control genes.

Cons P P Cons P P P P P	Clone	F	Lee E + SD	P	GenBank	0	valua	Def	Id	Annotated Gene Function		aPT_PCP
	Cione	1.	$Log_2F \pm SD$	r	GSS	Fw C-	Rv	Der.	Iu.	Annotated Gene Function	+/-	F + SD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L in9B6 ^a	2.26	12 ± 0.0	0.012	G\$882379	0	0	c	LinI21_V3.0700	Phosphoglucomutase (PGluM)	+	57+04
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lin16B12	2.20	1.2 ± 0.0 1.1 ± 0.1	0.012	<u>G5882380</u>	0	0	h	LinJ21_V3.0700	3-oxo-5-alpha-steroid 4-dehydrogenase_putative (steroid DH)	+	5.7 ± 0.4
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Lin18E11	2.11	1.1 ± 0.1	0.040	CS882300	0	50-137	b	LinJ25_V3.1050	Sodium stihogluconate resistance protein putative (ShGPP)		ND
	Lin28C5 ^a	5.78	0.9 ± 0.2 2.5 ± 0.1	0.010	CS882381	0	0	b	LinJ31_V3.3530	Sphingolinid delta-4 desaturase	+	10.1 ± 0.0
	Lin21H9 ^a	2.12	2.3 ± 0.1 1 1 ± 0 1	0.049	G\$882382	0	0	b	LinJ26_V3.1000	Dynein heavy chain nutative (DynH)	+	10.1 ± 0.9 15.6 ± 0.8
	Lin33C4 ^a	3.00	1.1 ± 0.1 1.6 ± 0.0	0.011	C\$882383	0	ő	c	LinJ20_ V3.0340	40S ribosomal protein \$15, putative (\$15)	+	13.0 ± 0.3 27.0 ± 1.1
	Lin34B10	2.02	1.0 ± 0.0	0.011	CS882384	0	0	b	LinJ22_V3.0660	5'a2rel-related protein (5'a2rel)	т	37.0±1.1
$ \begin{array}{c} Lad G(2) & 1 = 2 & 0 + 1 & 0 + 1 \\ Lad G(2) & 1 = 2 & 0 + 1 & 0 & 0 \\ Lad G(2) & 1 = 2 & 0 + 1 & 0 & 0 \\ Lad G(2) & 1 = 2 & 0 + 1 & 0 & 0 \\ Lad G(2) & 1 = 2 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 + 1 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ Lad G(2) & 2 & 0 + 1 & 0 & 0 & 0 & 0 & 0 & $	Lin35B2	6.66	1.2 ± 0.0 2.7 ± 0.2	0.032	<u>G5882385</u>	0	0	b	LinJ22_V3.0000	Surface antigen-like protein (SALp)	+	67 ± 1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin40G12 ^a	1.02	2.7 ± 0.2	0.032	CS508016	20-161	0	b	LinJ03_V3.1210	L athosterol oxidase like protein	+	0.7 ± 1.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin40012	2.52	0.9 ± 0.2	0.013	C5993296	10.04	0	0	LinJ25_V3.1500	Cysteine populase-file plotein	- T	5.4 ± 0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LIII421'4	5.52	1.8 ± 0.1	0.015	G3002300	10-94	0	а	Linj 32_ V 3.4040	605 ribosomel protein L2, rutative (L2)		3.0 ± 0.2
$ \begin{array}{c} Lan Jun 2 \\ Lan Gib 2 \\ Lan Gib 2 \\ Lan Jun 2 $	1 : 1709	4.00	20105	0.022	00500017	0	0		LIIIJ52_V5.4050	Correspondent L2, putative (L2)	+	2.1 ± 0.3
	LIII4/D8	4.00	2.0 ± 0.5	0.025	<u>G5598917</u>	0	0	a	LIIJ00_V 5.1550	Distonormhuringen mit oxidase, jutative C(mO)	+	14.2 ± 0.3
$ \begin{array}{c} Lab 00 \\ Lab $	I :== 50C 5	2.02	10.00	0.000	00000007	0	0	L	LIIJ00_V3.1340	Cuto charme a anidase suburit VI putating (appVI)	+	4.7 ± 0.5
	Lin50G5	2.02	1.0 ± 0.0	0.008	<u>GS882387</u>	7.164	0	D	LinJ21_V3.2080	Cytochrome c oxidase subunit vi, putative (cox vi)		N.D.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lin50H7	2.32	1.2 ± 0.1	0.005	<u>G8598919</u>	/e-164	0	D	Linj28_V3.2380	2,3-oispnospnogycerate-independent prospnoglycerate mutase-like	+	7.6 ± 1.0
					GG00				LinJ28_V3.2390	Cyclin dependent kinase-binding protein, putative (cdkbp)	+	2.9 ± 0.4
	Lin58H6	2.34	1.2 ± 0.1	0.032	<u>GS882388</u>	0	0	ь	LinJ08_V3.0030	Vessicle-associated membrane protein, putative (vamp)		N.D.
	Lin61F2"	3.38	1.8 ± 0.0	0.001	GS882389	0	0	b	LinJ15_V3.0220	60S ribosomal protein L13a, putative (L13a)	+	8.5 ± 0.4
									LinJ15_V3.0240	Protein phosphatase 1 catalytic subunit (cPP1)	+	7.4 ± 0.2
	Lin63F3	5.33	2.4 ± 0.1	0.011	GS882390	0	0	а	LinJ36_V3.6550	Glucose transporter lmgt2, putative (GT)	+	6.6 ± 0.5
									LinJ36_V3.6560	Glucose transporter, putative (GT)	+	5.1 ± 0.3
	Lin69B5 ^a	2.11	1.1 ± 0.1	0.039	GS882391	0	0	b	LinJ33_V3.0770	60S ribosomal protein L6, putative (L6)	+	1.8 ± 0.1
	Lin75E6	2.71	1.4 ± 0.1	0.019	GS882392	0	0	b	LinJ18_V3.0270	Glycogen synthase kinase, putative (GSK)		N.D.
	Lin80B3	2.06	1.0 ± 0.3	0.024	GS598924	0	0	b	LinJ28_V3.3250	Glucose-6-phosphate-N-acetyltransferase, putative (GNAT)		N.D.
	Lin80E12 ^a	2.47	1.3 ± 0.0	0.007	GS882393	0	0	с	LinJ35_V3.0600	60S ribosomal protein L18a, putative (L18a)	+	18.0 ± 1.3
	Lin86F11 ^a	2.09	1.1 ± 0.1	0.039	GS882394	0	0	b	LinJ30_V3.3390	60S ribosomal protein L9, putative (L9)	+	6.4 ± 0.3
$ \begin{array}{llll} Link 3FP^{1} \\ Link 3FP^{$	Lin87B9 ^a	2.41	1.3 ± 0.0	0.002	GS882395	0	0	b	LinJ36_V3.4730	60S ribosomal protein L18, putative (L18)	+	3.0 ± 0.1
	Lin87F1 ^a	3.74	1.9 ± 0.1	0.030	GS882396	0	0	b	LinJ13_V3.1120	40S ribosomal protein S4, putative (S4)	+	7.4 ± 0.3
	Lin89F9 ^a	1.78	0.8 ± 0.1	0.048	GS882397	0	0	b	LinJ31_V3.2370	3'-nucleotidase/nuclease, putative (3'NTase/Nase)	+	4.9 ± 0.4
									LinJ31_V3.2380	3'-nucleotidase/nuclease precursor, putative (3'NTase/Nase)	+	20.7 ± 0.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin89H11	1.95	1.1 ± 0.0	0.011	GS882398	0	0	b	LinJ31_V3.1240	Vacuolar-type proton translocating pyrophosphatase 1, putative (vH+- PPase)	+	16.4 ± 3.1
$ \begin{array}{c} \mbox{Lin94S}^{s} & 2.8 \\ \mbox{Lin95F} & 2.8 \\ \mbox{Lin95F} & 2.8 \\ \mbox{Lin95F} & 2.8 \\ \mbox{Lin91S} & 1.2 \pm 0.1 \\ \mbox{Lin90F} & 3.5 \\ \mbox{Lin91S} & 1.2 \pm 0.1 \\ \mbox{Lin90F} & 3.5 \\ \mbox{Lin90F} & 3.5 \\ \mbox{Lin91S} & 1.2 \pm 0.1 \\ \mbox{Lin90F} & 3.5 \\ \mbox{Lin91S} & 1.2 \pm 0.1 \\ \mbox{Lin90F} & 3.5 \\ \mbox{Lin91S} & 1.2 \pm 0.1 \\ \mbox{Lin91S} & 0.005 \\ \mbox{Lin91S} & $	Lin92F7	2.38	1.3 ± 0.1	0.020	GS882399	0	0	b	LinJ35_V3.0400	40S ribosomal protein S3a, putative (S3a)		N.D.
	Lin94A5 ^a	2.28	1.2 ± 0.1	0.027	GS882400	0	0	b	LinJ23_V3.0220	Endoribonuclease L-PSP (pb5), putative	+	9.3 ± 0.2
	Lin95F9	2.82	1.5 ± 0.1	0.027	GS882401	0	0	b	LinJ28_V3.2360	Ribosomal protein S29, putative (S29)		N.D.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin100F8	3.55	1.8 ± 0.0	0.009	GS882402	0	7e-167	b	LinJ35 V3.3330	60S ribosomal subunit protein L31, putative (L31)		N.D.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									LinJ35_V3.3340	60S ribosomal subunit protein L31, putative (L31)		N.D.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lin102E4	5.59	2.5 ± 0.0	0.005	GS882403	9e-154	0	b	LinJ23_V3.1200	Hydrophilic surface protein, putative (HASPA1)	+	5.2 ± 0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin104C3	2.37	1.2 ± 0.1	0.030	GS882404	6e-47	0	b	LinJ32_V3.3100/10	Nucleoside diphosphate kinase b, putative (Ndkb)	+	14.0 ± 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									LinJ32_V3.3120	Minochromosome maintenance (MCM) complex protein (mmc)	+	3.1 ± 0.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin105A3	2.22	1.1 ± 0.1	0.005	GS598937	0	0	b	LinJ36_V3.1320	Fructose-1,6-bisphosphate aldolase (ALD)		N.D.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin105C8 ^a	3.52	1.8 ± 0.1	0.023	GS882405	0	0	b	LinJ33 V3.0960	40S ribosomal protein S3, putative (S3)	+	2.2 ± 0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin106B3	1.74	0.8 ± 0.0	0.023	GS882406	0	0	а	LinJ36 V3.3100	Succinvl-CoA ligase (GDP-forming) beta-chain, putative (SCL)	+	3.5 ± 0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lin107C12	2.70	1.4 ± 0.1	0.040	GS882407	7e-130	2e-127	b	LinJ11 V3.1180	40S ribosomal protein S15a, putative (S15a)	+	1.9 ± 0.2
Lin12H5 ^a 3.401.8 \pm 0.10.025GS88240800aLinJ15_V3.1600Presenilin-like aspartic peptidase, clan AD, family A22A, putative+ 2.4 ± 0.3 Lin123E82.31 1.2 ± 0.1 0.048GS8824095e-1710bLinJ26_V3.0160GS ribosomal protein L7, putative (L7)N.D.Lin126D12.26 1.2 ± 0.0 0.010GS88241000bLinJ28_V3.0210Histone H2B variant (H2B)+ 47.8 ± 8.0 Lin130H101.71 0.8 ± 0.1 0.033GS88241100bLinJ28_V3.0210Histone H2B variant (H2B)+ 2.0 ± 0.3 Lin135F6 ^a 1.73 0.8 ± 0.0 0.007GS88241300bLinJ30_V3.160S-adenosylmethionine decarboxylase proenzyme-like protein+ 5.8 ± 1.0 Lin139B33.13 1.3 ± 0.0 0.011GS88241500bLinJ21_V3.120060S ribosomal protein L21, putative (L21)+ 2.5 ± 0.4 Lin146F6 ^a 1.71 0.8 ± 0.1 0.043GS88241500cLinJ12_V3.130040S ribosomal protein L9, putative (L9)+ 3.6 ± 0.5 Lin146F6 ^a 1.71 0.8 ± 0.1 0.049GS88241600bLinJ36_V3.4390UDP-N-acetylglucosamine/boshptansferase+ 6.8 ± 0.6 Lin148E9 ^a 3.29 1.7 ± 0.0 0.004GS88241700bLinJ20_V3.1210Cysteine peptidase, Clan CA, family C2, putative (C2ep)+ 3.3 ± 0.3 Lin14	Lin111F3	2.09	1.1 ± 0.4	0.035	GS598941	0	0	a	LinJ31 V3.2210	Prostaglandin $F2\alpha$ synthetase (PGFS)		N.D.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lin112H5 ^a	3.40	1.8 ± 0.1	0.025	GS882408	0	0	a	LinJ15_V3.1600	Presenilin-like aspartic peptidase, clan AD, family A22A, putative (A22A)	+	2.4 ± 0.3
Lin126D 1.2 ± 0.1 0.010 $GS82410$ 0.010 $GS82410$ 0.010 $GS82410$ 1.2 ± 0.0 1.0 ± 0.0	Lin123E8	2.31	12 ± 01	0.048	GS882409	5e-171	0	b	LinJ26 V3.0160	60S ribosomal protein L7, putative (L7)		N.D.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lin126D1	2.26	1.2 ± 0.1 1.2 ± 0.0	0.010	G\$882410	0	Ő	b	Lin I35 V3 2080	Calcium motive P-type ATPase, putative (Ca 2^+ -ATPase)	+	47.8 ± 8.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin130H10	171	0.8 ± 0.1	0.033	GS882411	0	ŏ	b	Lin I28 V3 0210	Histone H2B variant (H2B)	+	10.3 ± 0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin135E6 ^a	1 73	0.8 ± 0.1	0.007	CS882412	0	õ	b	Lin I29 V3 1920	40S ribosomal protein \$15a, putative (\$15a)	+	10.5 ± 0.2 2.0 ± 0.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lin137D6	1.75	0.0 ± 0.0	0.004	CS882412	0	ő	b	LinJ20_V3.3160	S-adenosylmethionine decarboxylase programme-like protein	+	2.0 ± 0.3 5 8 ± 1 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lin120D2	2.12	0.9 ± 0.0	0.004	<u>G5882415</u> C5992414	0	0	ь г	Lin 116 V2 0470	(SAMDC) (Sample and a static 121 putation (121)	+	3.6 ± 1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LIII 1 37 B 3	3.13	1.5 ± 0.0	0.011	C5992415	0	0	U	Lilij 10_ v 3.0470	605 ribosomal protein L21, putative (L21)	+	2.5 ± 0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lin142E2"	2.55	1.4 ± 0.1	0.043	65882415	0	0	с	LinJ21_V3.1290	405 ribosomai protein L9, putative (L9)	+	3.6 ± 0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T : 14000	1.74		0.046	00000415	0	0		LINJ21_V3.1300	405 ribosomai protein \$23, putative (\$23)	+	6.8 ± 0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lin146F6"	1.71	0.8 ± 0.1	0.049	<u>G5882416</u>	0	U	b	LinJ36_V3.4390	acetylglucosaminephosphotransferase (UDP-NAGDPT)	+	56.1 ± 4.6
Lin149H2 3.12 1.6 ± 0.1 0.036 GS882418 0 0 b LinJ20_V3.1210 Cysteine peptidase, Clan CA, family C2, putative (C2cp) N.D. LinJ20_V3.1220 Cysteine peptidase, Clan CA, family C2, putative (C2cp) N.D.	Lin148E9 ^a	3.29	1.7 ± 0.0	0.004	GS882417	0	0	а	LinJ06_V3.0410	60S ribosomal protein L19, putative (L19)	+	3.3 ± 0.3
	Lin149H2	3.12	1.6 ± 0.1	0.036	<u>GS882418</u>	0	0	b	LinJ20_V3.1210 LinJ20_V3.1220	Cysteine peptidase, Clan CA, family C2, putative (C2cp) Cysteine peptidase, Clan CA, family C2, putative (C2cp)		N.D. N.D.

Lin153B7 ^a	3.15	1.7 ± 0.1	0.022	GS882419	0	0	b	LinJ21_V3.1790	40S ribosomal protein S11, putative (S11)	+	2.4 ± 0.1
Lin159D1 ^a	2.35	1.2 ± 0.1	0.039	GS882420	0	0	b	LinJ01_V3.0430/40	Ribosomal protein S7, putative (S7)	+	6.3 ± 0.6
Lin183A2 ^a	3.22	1.7 ± 0.1	0.031	GS882421	0	0	b	LinJ23_V3.0080	Agmatinase-like protein (agm)	+	5.9 ± 0.1
Lin188G6	2.23	1.2 ± 0.1	0.035	GS882422	0	0	b	LinJ28_V3.1950	Heat shock protein 70, putative		N.D.
								LinJ28_V3.1960	Heat shock protein 70, putative		N.D.
Lin193E6	4.28	2.1 ± 0.1	0.027	GS882423	0	0	b	LinJ23_V3.1230	SHERP	+	6.3 ± 0.5
Lin193F5 ^a	1.75	0.8 ± 0.1	0.045	GS882424	0	0	b	LinJ36_V3.2070	Phosphomannomutase, putative (PMM)	+	7.1 ± 0.3
Lin196A12 ^a	1.88	0.9 ± 0.0	0.018	GS882425	0	0	b	LinJ29_V3.1170/80	Ribosomal protein L1a, putative (L1a)	+	1.8 ± 0.1
Lin205H12 ^a	3.99	2.0 ± 0.0	0.002	GS882426	0	0	b	LinJ32_V3.0930	60S ribosomal protein L18a, putative (L18a)	+	3.8 ± 0.5
Lin208G9 ^a	1.92	0.9 ± 0.1	0.025	GS882427	2e-59	0	b	LinJ19_V3.0040	Histone H2B (H2B)	+	2.6 ± 0.2
								LinJ19_V3.0050	40S ribosomal protein S2, putative (S2)	+	4.1 ± 0.4
Lin214D6 ^a	3.07	1.6 ± 0.2	0.044	GS882428	0	0	b	LinJ05_V3.0040	Paraflagellar rod component par4, putative (PAR4)	+	11.0 ± 2.3
Lin219A10 ^a	1.89	0.9 ± 0.1	0.004	GS598961	0	0	b	LinJ19_V3.0710	Glycosomal malate dehydrogenase (gMDH)	+	2.2 ± 0.3
Lin228A12	1.78	0.8 ± 0.1	0.037	GS882429	0	0	b	LinJ30_V3.3650	40S ribosomal protein S14 (S14)	+	4.5 ± 0.3
Lin239A10	1.94	1.0 ± 0.0	0.040	GS882430	0	0	a	LinJ24_V3.2340	Fatty acid desaturase, putative	+	8.2 ± 1.0
Lin11D7	-2.53	-1.3 ± 0.3	0.020	GS598854	0	0	b	LinJ31_V3.0460	Amastin, putative		N.D.
Lin22E12	-2.79	-1.5 ± 0.1	0.001	GS598856	0	0	b	LinJ31_V3.1850	Amino acid permease (aap)		N.D.
Lin25C5 ^a	-2.39	-1.3 ± 0.1	0.023	GS882431	0	0	b	LinJ07_V3.0360	Phosphatidylglycerophosphate synthase-like protein (PLD)	+	-6.3 ± 0.2
Lin26B8	-2.19	-1.1 ± 0.0	0.013	GS882432	4e-162	9e-37	b	LinJ29_V3.2850	Actin-like protein, putative (Actin)		N.D.
Lin35E9	-3.63	$\textbf{-1.9}\pm0.1$	0.014	GS882433	0	0	b	LinJ17_V3.1520	Otubain cysteine peptidase, Clan CA, family C65, putative	+	-13.9 ± 0.4
Lin36B8	-1.99	-1.0 ± 0.2	0.015	GS598859	0	0	b	LinJ30_V3.3230	3-hydroxy-3-methyglutaryl-CoA reductase, putative		N.D.
Lin48F2	-2.61	-1.4 ± 0.0	0.012	GS882434	0	0	a	LinJ31_V3.2590	Ferredoxin, 2fe-2s-like protein (Fd)		N.D.
								LinJ31_V3.2600	Ferredoxin, 2fe-2s-like protein (Fd)		N.D.
Lin62D3 ^a	-1.92	-0.9 ± 0.4	0.040	GS598862	0	0	b	LinJ05_V3.0350	Trypanothione reductase (TR)	+	-25.7 ± 1.4
Lin76D1	-4.41	-2.1 ± 0.3	0.054	GS882435	0	0	b	LinJ08 V3.0520	Ribose-phosphate pyrophosphokinase, putative (PRPPS)		N.D.
Lin83D1	-2.36	-12 ± 01	0.049	GS882309	0	0	b	LinJ08 V3.0700/10	Amastin-like protein		N.D.
Lin103F1	-1.83	-0.9 ± 0.0	0.004	GS882436	Ő	õ	a	LinJ35 V3.3080	Prenvl protein specific carboxyl methyltransferase, putative (Isoprenvl		N.D.
								-	cysteine methyltransferase, ICMT)		
Lin113C3	-1.87	-0.9 ± 0.1	0.040	GS598876	3e-74	0	a	LinJ14_V3.1440	Pteridine transporter (PT3)	+	-3.4 ± 0.2
								LinJ14_V3.1450	Myo-inositol-1-phosphate synthase (INO1)	+	-6.4 ± 0.2
Lin123H10 ^a	-1.81	-0.9 ± 0.1	0.035	GS882437	0	0	b	LinJ30_V3.1520	P1/S1 nuclease (P1/S1)	+	-3.0 ± 0.1
Lin142C1 ^a	-1.72	-0.8 ± 0.1	0.003	GS882438	4e-159	9e-111	с	LinJ16_V3.0550	Aspartate carbamoyltransferase, putative (AspCT)	+	-4.3 ± 0.6
Lin142D7	-1.87	-0.9 ± 0.1	0.033	GS882439	0	0	а	LinJ36 V3.6760	MAP-kinase homologue (MAPKh)		N.D.
Lin165E2	-3.48	-1.8 ± 0.2	0.004	GS598885	0	0	b	LinJ22 V3.0680	3'a2rel-related protein (3'a2rel)	+	-93 ± 05
Lin197A12	-1.95	-1.0 ± 0.2	0.016	GS598890	0	0	а	LinJ31 V3.2540	Linase, putative (TGL)		N.D.
Lin201F12 ^a	-1.79	-0.8 ± 0.0	0.018	GS882440	0	0	с	LinJ29 V3.1270	Lipase domain protein, putative (TGL)	+	-2.6 ± 0.3
Lin210C4	-2.09	-1.1 ± 0.0	0.013	GS598893	0	õ	b	LinJ08 V3.0690	Amastin-like protein		N.D.
Lin234D7	-1.93	-1.0 ± 0.0	0.005	GS882441	9e-151	2e-118	b	LinI11_V3 1220	ABC transporter-like protein (ABC)	+	-3.4 ± 0.2
Em25 (B)	1.75	110 = 010	0.000	00002111	20 101	20 110	0	Lin I11 V3 1230	ABC1 transporter nutative (ABC1)	+	-4.1 ± 0.2
Lin238D6	-2 34	-12 ± 01	0.041	G\$882442	0	0	а	Lin I30 V3 1820	Splicing factor 3A putative (Sf3A)		ND
Lin254D11	-2.30	-1.2 ± 0.1	0.041	GS882443	7e-59	Ő	h	Lin I11 V3 1250	ABC transporter-like protein (ABC)		N D
Lin264E5 ^a	-1.73	-0.8 ± 0.1	0.044	CS882444	0	0	3	Lin J32 V3 1080	Protein kinase nutative	+	-5.0 ± 0.5
Lin267D9 ^a	-2.06	-1.0 ± 0.1	0.010	C\$508808	9e-111	0	h	LinJ32_V3.1000	CarbamovLphosphate synthetase putative (CPS)	+	-3.0 ± 0.3 -2.9 ± 0.4
Lin207D	-1.89	-0.9 ± 0.0	0.004	CS882445	0	0	3	LinJ35_V3 1420	ThreenvLtRNA synthetase putative (ThrtS)		-2.9 ± 0.4
Lin209D2	4.20	0.9 ± 0.0	0.004	CE992446	0	0		LinJ35_V3.1420	Otubain quotaina paptidasa. Clan CA, family C65, putativa		12.0 ± 0.4
Lin210F2	-4.57	-2.1 ± 0.0 -1.2 ± 0.5	0.009	C\$508004	0	0	a b	LinJ17_V3.1520	Hydrophilic surface protein (HA SPR)	Ŧ	-13.9 ± 0.4
cL in A?	-2.34		0.040	00000004	0	0	0	Ling25_ + 5.1220	Try a opinice surface protein (Trist B)		11.D.
NI 411/24	-2.34	-1.2 ± 0.0	0.000	\$60603	-	-	-	-	$I_{\rm infantum} \Delta^2$ gene $= DN\Delta$ microarray control spot		x
cL do A 2	-2.34 -2.45 -2.01	-1.3 ± 0.0	0.000	<u>S69693</u>	-	-	-	-	L. infantum A2 gene – DNA microarray control spot		X X
cLdoA2	-2.34 -2.45 -2.01	-1.3 ± 0.0 -1.0 ± 0.1	0.000 0.021	<u>S69693</u> -	-	-	-	-	L. infantum A2 gene – DNA microarray control spot L. donovani A2 gene – DNA microarray control spot		X X

49 Table 4. Differentially regulated genes in logarithmic phase promastigotes versus amastigotes 50 L/A. The features described are: clone number; F (up-regulation if F > 0 and down-regulation if 51 F < 0; base-two logarithmic scale F and S.D. values; p; GenBank GSS accession numbers; e-52 values; Def., clone definition according to mapping outcomes a, b or c (see brief explanation in 53 the text); Id., annotation in the L. infantum genome sequence; annotated gene function; relative 54 quantitative real time reverse transcription PCR (qRT-PCR). When a given clone overlaps with 55 more than one annotation (^a), only qRT-PCR checked clones for differential regulation appear in 56 this table.

<i>c</i> 1				a n 1				* 1			DEDOD
Clone	F	$Log_2F \pm SD$	р	GenBank	e-v	alue	Det.	Id.	Annotated Gene Function	qR	
				635	FW	RV				+/-	F±SD
Lin18F11	2.11	0.9 ± 0.2	0.010	GS882300	0	5e-137	ь	LinJ31_V3.3380	Sodium stibogluconate resistance protein, putative (SbGRP)		N.D.
Lin54C2 ^a	3.45	1.8 ± 0.6	0.039	<u>GS882447</u>	0	0	a	LinJ24_V3.2410	Mitogen-activated protein kinase (MAPK)	+	2.4 ± 0.1
Lin54D2	2.17	1.1 ± 0.2	0.016	<u>GS882448</u>	1e-149	0	ь	LinJ36_V3.1700	Clathrin heavy chain, putative (Clathrin-H)		N.D.
Lin55A8	2.02	1.0 ± 0.2	0.011	<u>GS882449</u>	0	0	ь	LinJ19_V3.0200	ADP/ATP translocase1, putative (ANC2)		N.D.
Lin63F3	2.87	1.5 ± 0.2	0.008	<u>GS882450</u>	0	0	а	LinJ36_V3.6550	Glucose transporter, lmgt2, putative (GT)	+	4.1 ± 0.2
								LinJ36_V3.6560	Glucose transporter, putative (GT)	+	5.2 ± 0.1
Lin70E4	2.38	1.3 ± 0.4	0.037	<u>GS882451</u>	0	0	ь	LinJ26_V3.0450	ATPase subunit 9, putative (F_{0} s9)		N.D.
Lin52F10 ^a	2.23	1.2 ± 0.3	0.020	GS882452	0	0	с	LinJ23_V3.0230	ABC transporter/multidrug resistance protein/p-glycoprotein,	+	7.4 ± 0.8
									putative (MRP)		
Lin51E2	2.06	1.0 ± 0.3	0.035	<u>GS882453</u>	3e-061	0	а	LinJ36_V3.0020	Histone H4 (H4)		N.D.
Lin45G3	3.06	1.6 ± 0.3	0.012	<u>GS882454</u>	0	0	а	LinJ08_V3.0030	Vesicle-associated membrane protein, putative (vamp)	+	6.1 ± 0.3
Lin44G/	2.14	1.1 ± 0.4	0.046	<u>GS882455</u>	4e-076	4e-063	a	LinJ08_V3.0730/40	Tuzin, putative	+	3.3 ± 0.2
Lin44D8	2.27	1.2 ± 0.3	0.021	<u>GS882456</u>	1e-143	8e-068	Ь	LinJ13_V3.1120	40S ribosomal proteinS4, putative (S4)		N.D.
Lin38C2	5.35	2.4 ± 0.7	0.030	<u>GS882457</u>	0	7e-130	b	LinJ12_V3.0230	Thiolase protein-like protein (Thiol I)		N.D.
Lin34D12	2.68	1.4 ± 0.2	0.008	<u>GS882458</u>	0	2e-173	а	LinJ33_V3.0960	40S ribosomal protein S3, putative (S3)		N.D.
Lin28C5 ^a	5.08	2.3 ± 0.2	0.003	GS882459	1e-162		с	LinJ32_V3.1770	Protein phosphatase 2C, putative (PP2C)	+	17.9 ± 1.8
Lin24E4 ^a	4.00	2.0 ± 0.2	0.003	<u>GS882460</u>	0	0	ь	LinJ20_V3.0310	Developmentally regulated phosphoprotein-like protein (DRPP)	+	9.9 ± 0.7
Lin18H3 ^a	2.05	1.0 ± 0.3	0.029	<u>GS882461</u>	0	0	Ь	LinJ15_V3.0240	Protein phosphatase 1 catalitic subunit, putative (cPP1)	+	5.9 ± 0.3
Lin12G8 ^a	2.85	1.5 ± 0.6	0.047	<u>GS882462</u>	6e-087	1e-125	ь	LinJ28_V3.2650	Ribosomal protein S29, putative (S29)	+	2.8 ± 0.3
Lin17D4 ^a	2.47	1.3 ± 0.4	0.035	GS882463	0	0	b	LinJ09_V3.0060	N-acetylglucosaminylphophatidylinositoldeacetylase (NAGPID)	+	5.5 ± 0.4
Lin87B9 ^a	2.06	1.0 ± 0.2	0.012	GS882464	0	0	b	LinJ36_V3.4730	60S Ribosomal protein L18, putative (L18)	+	6.1 ± 0.3
Lin93C5 ^a	2.16	1.1 ± 0.4	0.038	GS882465	0	4e-128	b	LinJ13_V3.1450	Alpha tubulin (α-tub)	+	22.7 ± 1.3
Lin94A5 ^a	2.06	1.0 ± 0.2	0.007	GS882466	0	0	b	LinJ23_V3.0220	Endoribonuclease (pb5), putative (L-PSP (pb5))	+	8.2 ± 0.4
Lin95F11	2.42	1.3 ± 0.5	0.039	GS882467	0	0	b	LinJ28_V3.2360	Ribosomal protein S29, putative (S29)		N.D.
Lin100F8 ^a	2.24	1.2 ± 0.3	0.017	GS882468	0	0	а	LinJ28_V3.2280	Dynein light chain lc6, flagellar outer arm, putative (DynLC6)	+	17.9 ± 0.8
Lin100F4	2.12	1.1 ± 0.2	0.010	GS882469	0	5e-174	b	LinJ35_V3.3330	60S Ribosomal subunit protein L31, putative (L31)		N.D.
								LinJ35_V3.3340	60S Ribosomal subunit protein L31, putative (L31)		N.D.
Lin102E4	4.74	2.2 ± 0.7	0.035	<u>GS882470</u>	1e-122	3e-138	ь	LinJ23_V3.1200	Hydrophilic surface protein 2 (HASPA1)		N.D.
Lin105C8 ^a	3.25	1.7 ± 0.4	0.015	<u>GS882471</u>	0	0	ь	LinJ33_V3.0960	40S ribosomal protein S3, putative		N.D.
Lin105G12	2.32	1.2 ± 0.4	0.041	GS882472	2e-25	2e-105	ь	LinJ13_V3.1370	Mitochondrial DNA polymerase I protein D, putative (mPol ID)		N.D.
Lin106F5 ^a	2.10	1.1 ± 0.1	0.005	GS882473	0	0	ь	LinJ21_V3.2070	Proteasome alpha 2 subunit, putative (a2)	+	2.6 ± 0.1
Lin107A8 ^a	2.46	1.3 ± 0.5	0.042	<u>GS882474</u>	0	3e-175	а	LinJ23_V3.0040	Beta propeller protein, putative (β-prop)	+	3.2 ± 0.4
Lin107C2	4.11	2.0 ± 0.3	0.005	<u>GS882475</u>	0	0	ь	LinJ08_V3.1000	Histone deacetylase, putative (H-deAc)		N.D.
Lin108H5 ^a	3.10	1.6 ± 0.2	0.007	GS882476	0	0	ь	LinJ36_V3.0250	Peptidyl-prolyl cis-trans isomerase, putative (FKPB)	+	6.9 ± 0.3
Lin111D8	3.26	1.7 ± 0.2	0.003	GS882477	0	0	а	LinJ08_V3.1000	Histone deacetylase, putative (H-deAc)		N.D.
Lin113A4	7.54	2.9 ± 0.4	0.005	<u>GS882478</u>	0	0	a	LinJ19_V3.1480	MAP kinase (MAPK)		N.D.
Lin113E12 ^a	2.61	1.4 ± 0.5	0.035	GS882479	0	0	ь	LinJ05_V3.1060	ATPase, putative (AFG1)	+	5.7 ± 0.3
Lin113H11	2.20	1.1 ± 0.1	0.005	GS882480	0	0	ь	LinJ36_V3.1700	Clathrin heavy chain, putative		N.D.
Lin114D8 ^a	2.78	1.5 ± 0.1	0.003	<u>GS882481</u>	0	0	с	LinJ09_V3.1390	Paraflagellar rod component, putative (PFR)	+	29.0 ± 2.5
Lin126D1	2.08	1.1 ± 0.3	0.019	GS882482	0	0	ь	LinJ35_V3.2080	Calcium motive P-type ATPase, putative (Ca ² +-ATPase)	+	4.4 ± 0.1
Lin128D8 ^a	2.20	1.1 ± 0.2	0.010	GS882483	0	0	а	LinJ23_V3.1430	Membrane-bound acid phosphatase 2 (MBAP2)	+	8.0 ± 1.1
Lin131A7 ^a	2.82	1.5 ± 0.2	0.005	<u>GS882484</u>	0	0	ь	LinJ36_V3.7320	Eukaryotic translation initiation factor 3 subunit 8, putative (IF3s8)	+	3.9 ± 0.3
Lin134C1 ^a	2.35	1.2 ± 0.2	0.006	GS882485	0	0	ь	LinJ26_V3.2230	Ribosomal protein, putative	+	5.1 ± 0.2
Lin134F4 ^a	2.19	1.1 ± 0.3	0.020	GS882486	3e-83	1e-137	a	LinJ09_V3.1190	Inner membrane preprotein translocase Tim17 (Tim17)	+	7.4 ± 0.4
Lin135F1 ^a	2.27	1.2 ± 0.2	0.014	GS882487	0	0	ь	LinJ23_V3.0040	Beta propeller protein, putative (β-prop)	+	3.2 ± 0.4
Lin137D6	2.30	1.2 ± 0.4	0.043	GS882488	0	0	ь	LinJ08_V3.0960	Cathepsin L-like protease (Cathepsin-L)		N.D.
Lin138C1 ^a	2.32	1.2 ± 0.4	0.035	GS882489	0	0	b	LinJ24_V3.1380	Translation initiation factor IF-2, putative (IF2)	+	7.2 ± 0.3
Lin141B7 ^a	2.22	1.2 ± 0.2	0.008	<u>GS882490</u>	0	0	ь	LinJ23_V3.0040	Beta propeller protein, putative (β-prop)	+	3.2 ± 0.4
								LinJ23_V3.0060	Peptidyl-prolyl cis-trans isomerase, putative (FKBP)	+	5.1 ± 0.3
Lin142C8	3.65	1.9 ± 0.2	0.005	GS882491	0	0	а	LinJ21_V3.0800	60S ribosomal protein L36, putative (L36)	+	10.2 ± 0.4
								LinJ21_V3.0820	ATPase subunit 9, putative (F_0 s9)	+	3.1 ± 0.2
Lin146F6 ^a	2.62	1.4 ± 0.2	0.008	GS882492	6e-155	0	b	LinJ36_V3.4390	UDP-N-acetylglucosamine-dolichyl-phosphaten-	+	12.7 ± 1.0
						_			acetylglucosaminephosphotransferase (UDP-NAGDPT)		
Lin147E10 ^a	2.38	1.2 ± 0.5	0.041	GS882493	0	0	с	LinJ34_V3.4290	Lipophosphoglycan biosynthetic protein (lpg2)	+	8.6 ± 0.0
Lin148E9 ^a	2.27	1.2 ± 0.2	0.012	GS882494	0	0	b	LinJ06_V3.0410	60S ribosomal protein L19, putative (L19)	+	17.2 ± 0.3
Lin153A3	2.36	1.2 ± 0.2	0.010	GS882495	0	0	b	LinJ05_V3.1210	Surface antigen-like protein (SALp)	+	5.0 ± 0.8
Lin153B7	2.21	1.1 ± 0.2	0.015	GS882496	0	0	b	LinJ21_V3.1790	40S ribosomal protein S11, putative (S11)	+	3.2 ± 0.1
Lin161C9	6.98	2.8 ± 0.5	0.012	GS882497	0	2e-167	b	LinJ26_V3.1670	Sphingolipid delta 4 desaturase, putative		N.D.
Lin163A6	2.08	1.1 ± 0.2	0.014	GS882498	0	0	b	LinJ09_V3.0170	Microtubule associated protein-like protein (MTap)		N.D.
								LinJ09_V3.0180	Microtubule associated protein-like protein (MTap)		N.D.
1: 12002	2.01		0.010		0	0		LinJ09_V3.0190	Microtubule associated protein-like protein (MTap)		N.D.
Lin1/0B/	2.01	1.0 ± 0.2	0.018	GS882499	0	0	ь	LinJ23_V3.0860	3-ketoacyi-Coa thiolase-like protein (Thiol I)		N.D.

Lin182F2	3.14	1.7 ± 0.2	0.004	GS882500	0	0	b	LinJ25_V3.0740	Eukaryotic initiation factor 5a, putative (IF5a)		N.D.
Lin197F11	4.68	2.2 ± 0.3	0.004	<u>GS882501</u>	0	0	b	LinJ26_V3.1680	Sphingolipid delta 4 desaturase, putative (1754)		N.D.
T								LinJ26_V3.1690	Cytochrome c oxidase subunit V, putative (cox V)	+	6.1 ± 0.2
Lin203B5"	2.71	1.4 ± 0.1	0.002	<u>GS882502</u>	0	0	b	LinJ16_V3.0950	Dynein light chain, putative (DLC)	+	163 ± 17
Lin210A3"	2.02	1.0 ± 0.1	0.003	<u>GS882503</u>	0	0	a	LinJ28_V3.2280	Dynein light chain lc6, flagellar outer arm, putative (DynLC6)	+	20.4 ± 0.5
Lin210F9 ^a	2.10	1.1 ± 0.1	0.004	<u>GS882504</u>	2e-176	0	b	LinJ13_V3.0460	40S ribosomal protein S12, putative (S12)	+	6.7 ± 0.3
Lin212A6	2.26	1.2 ± 0.4	0.032	GS882505	2e-102	2e-93	b	LinJ32_V3.0460	40S ribosomal protein S2 (S2)		N.D.
Lin213D1 ^a	2.95	1.6 ± 0.3	0.016	GS882506	0	0	b	LinJ23_V3.0080	Agmatinase-like protein (agm)	+	4.4 ± 0.6
Lin214D6 ^a	4.33	2.1 ± 0.3	0.005	GS882507	0	0	b	LinJ05_V3.0040	Paraflagellar rod component par4, putative (PAR4)	+	1.8 ± 0.0
Lin217C10 ^a	2.28	1.2 ± 0.2	0.012	GS882508	0	0	b	LinJ19_V3.0050	40S ribosomal protein S2 (S2)		N.D.
Lin223H2 ^a	3.17	1.7 ± 0.7	0.049	GS882509	0	0	b	LinJ19_V3.0170	MAP kinase, putative (MAPK)	+	5.7 ± 0.3
								LinJ19_V3.0190	ADP/ATP translocase 1, putative (ANC1)	+	2.2 ± 0.1
Lin226A10 ^a	2.09	1.1 ± 0.2	0.018	GS882510	0	0	b	LinJ26_V3.0160	60S ribosomal protein L7, putative (L7)	+	8.8 ± 2.0
Lin226F1	5.60	2.5 ± 0.5	0.011	GS882511	0	0	b	LinJ31_V3.1660	Putative 3-ketoacyl-CoA thiolase-like protein (Thiol I)		N.D.
Lin226F2	2.07	1.0 ± 0.3	0.021	GS882512	0	0	b	LinJ05_V3.0420	Dynein-light chain-protein, putative (DLC)		N.D.
Lin228D4 ^a	2.27	1.2 ± 0.4	0.031	GS882513	0	0	а	LinJ19 V3.0090	Fibrillarin, putative (Fibril)	+	13.7 ± 0.1
Lin231A5	2.89	1.5 ± 0.5	0.030	GS882514	0	0	b	LinJ35 V3.1310	Ubiquitin-conjugating enzyme E2, putative (UBC2)		N.D.
Lin231E8 ^a	2.03	1.0 ± 0.1	0.005	GS882515	0	0	b	LinJ16 V3.0600	Histone H3. putative (H3)	+	2.0 ± 0.2
Lin236H2	3.45	18 ± 0.4	0.014	GS882516	0	1e-147	h	LinI29_V3 1860	Histone H2A putative (H2A)		ND
		1.0 ± 0.1			-			LinJ29 V3.1870	Histone H2A, putative (H2A)		N.D.
Lin237D5	2.72	14 ± 03	0.016	GS882517	0	0	b	LinJ22 V3.1300	Cyclophilin, putative (Cph)		N.D.
Lin239H2 ^a	4.20	21 ± 0.3	0.005	GS882518	0	0	b	LinJ30_V3.0800	4-methyl-5(beta-hydroxyethyl)-thiazole monophosphate synthesis	+	35.0 ± 1.9
		2.1 ± 0.0		00002010					protein, putative (MPETs)		5510 ± 115
Lin241B10	2.15	1.1 ± 0.1	0.003	GS882519	0	0	b	LinJ34 V3.2420	Adaptor complex subunit medium chain 3, putative (Apcx3)		N.D.
L in 276E6	2.54	1.1 ± 0.1 1.3 ± 0.2	0.009	G\$882520	õ	õ	h	Lin I35 V3 2370	Protein kinase nutative (PK)		ND
Lin276F9 ^a	2.01	1.3 ± 0.2 1.3 ± 0.2	0.006	CS882521	Ő	-	c	Lin I24 V3 2230	60S ribosomal protein L 12 putative (L 12)	+	18+01
Lin277E3	2.28	1.3 ± 0.2 1.2 ± 0.4	0.035	CS882522	Ő	0	h	Lin J36_V3.0590	Ibiquitin-like protein putative (uba)	+	1.0 ± 0.1 2.4 ± 0.3
EllizitEs	2.20	1.2 ± 0.4	0.055	03002322	0	0	U	LinJ36_V3.0600	Cdc2-related kinase (cdc2)	+	2.4 ± 0.5 2.0 ± 0.5
Lin280E0a	2.41	12 ± 0.2	0.011	C5882522	0	0	9	LinJ30_V3.0000	Cytochrome c oxidese VIII (cox VIII) putative	+	3.0 ± 0.3
Lin282B6	2.41	1.3 ± 0.2	0.001	<u>G5662525</u> C5992524	0	0	h	LinJ02_V2.0060	Elemention initiation factor 2 alpha subunit nutative (IE2a)	т	2.7 ± 0.2
Lin282B0	2.14	1.0 ± 0.3	0.006	<u>G3002524</u>	0	0	0	LinJ03_V3.0900	Histone H1 putative (H1)		N.D.
Lin204C0	4.25	1.2 ± 0.2	0.000	00000505	0	1	c	Linj27_V3.1120	ADD sibosulation factor substitue (ADDsf)	Ŧ	14.7±0.5
LIII294C9	4.20	2.1 ± 0.5	0.020	<u>G5882525</u>	0	16-82	a L	Linj04_V 5.0550	ADP-HOSylation factor, putative (ADPH)		N.D.
Lin295C8	2.02	1.0 ± 0.3	0.050	<u>G5882520</u>	0	0	10 1.	LIIJ31_V3.2070	Denotin licht chain 2h antenlien metating (Den 2h L C7)	+	4.9 ± 0.2
LINSUIBS	3.08	1.9 ± 0.7	0.041	<u>GS882527</u>	0	0	D	Linj18_V3.1010	Dynein light chain 2b, cytoplasmic, putative (Dyn2bLC7)		N.D.
Lin309ETT	2.74	1.5 ± 0.5	0.031	<u>GS882528</u>	0	0	b	LinJ20_V3.1220	Cysteine peptidase, Clan A, family C2, putative (C2cp)		N.D.
Lin241H6	2.67	1.4 ± 0.4	0.031	GS882529	0	0	b	LinJ33_V3.3380	608 ribosomal protein L44, putative (L44)	+	3.5 ± 0.1
								LinJ33_V3.3390	H1 histone-like protein (H1)	+	1.9 ± 0.1
Lin249D12ª	2.57	1.4 ± 0.1	0.002	<u>GS882530</u>	-	0	c	LinJ26_V3.0160	60S ribosomal protein L7, putative (L7)	+	6.0 ± 0.3
Lin251A8	2.12	1.1 ± 0.2	0.011	<u>GS882531</u>	0	0	b	LinJ23_V3.0860	3-Ketoacyl –CoA thiolase-like protein (Thiol I)		N.D.
Lin253A10 ^a	2.85	1.5 ± 0.2	0.007	<u>GS882532</u>	0	0	с	LinJ04_V3.0460	60S ribosomal protein L11 (L11)		N.D.
								LinJ06_V3.1330	Coproporphyrinogen III oxidase, putative (C(III)O)	+	3.2 ± 0.2
						_		LinJ06_V3.1340	Protoporphyrinogen oxidase-like protein (PO)	+	6.7 ± 0.2
Lin256B3	2.50	1.3 ± 0.2	0.005	<u>GS882533</u>	2e-31	0	а	LinJ35_V3.0670	RING finger protein, conserved		N.D.
Lin260G2	2.24	1.2 ± 0.4	0.045	<u>GS882534</u>	0	4e-156	b	LinJ26_V3.1670	Sphingolipid delta 4 desaturase, putative		N.D.
Lin265E2	2.29	1.2 ± 0.2	0.008	GS882535	9e-154	0	b	LinJ29_V3.1880	Paraflagellar rod protein 1D, putative (PFR1D)	+	15.2 ± 0.7
Lin268E7	3.62	1.9 ± 0.4	0.014	GS882536	0	0	b	LinJ27_V3.0300	Acyl carrier protein, putative (ACP)		N.D.
Lin270A3 ^a	3.08	1.6 ± 0.6	0.041	GS882537	0	0	b	LinJ23_V3.0060	Peptidyl-prolyl cis-trans isomerase, putative (FKBP)	+	2.5 ± 0.1
								LinJ23_V3.0080	Agmatinase-like protein (agm)	+	3.3 ± 0.0
Lin11D7	-2.53	-1.3 ± 0.3	0.020	GS882538	0	0	b	LinJ31_V3.0460	Amastin, putative		N.D.
Lin12D9	-1.75	-0.8 ± 0.2	0.026	GS882539	0	0	b	LinJ27_V3.1900	FtsJ cell division protein, putative		N.D.
Lin25B12 ^a	-1.88	-0.9 ± 0.3	0.038	GS882540	0	-	с	LinJ29_V3.2310	GTP-binding protein, putative	+	-15.3 ± 1.1
Lin26B8	-2.10	-1.1 ± 0.2	0.009	GS882541	6e-158	5e-35	b	LinJ29_V3.2850	Actin-like protein, putative		N.D.
Lin130C5	-18.35	-4.2 ± 1.3	0.028	GS882542	0	0	а	LinJ36_V3.4270	Phosphoglycerate mutase-like protein (PGM)		N.D.
Lin142C1 ^a	-1.72	-0.8 ± 0.1	0.003	GS882438	4e-159	9e-111	с	LinJ16_V3.0550	Aspartate carbamoyltransferase, putative (AspCT)	+	-3.6 ± 0.4
Lin239B8	-1.82	-0.9 ± 0.3	0.032	GS882543	4e-162	6e-112	b	LinJ32_V3.1080	Protein kinase, putative (PK)	+	-2.8 ± 0.5
Lin245E2	-2.03	-1.0 ± 0.3	0.032	GS882544	0	0	b	LinJ22_V3.0680	3'a2rel-related protein (3'a2rel)		N.D.
Lin247B12	-1.82	-0.9 ± 0.2	0.017	GS882545	0	2e-121	b	LinJ12 V3.0690	Surface antigen protein 2 precursor (SALp2)		N.D.
Lin254D11	-2.49	-1.3 ± 0.3	0.020	GS882546	0	0	b	LinJ11 V3.1250	ABC transporter-like protein (ABC)		N.D.
Lin259H9 ^a	-2.34	-1.2 ± 0.4	0.036	GS882547	0	1e-168	с	LinJ29 V3.1370	Lipase domain protein, putative (TGL)	+	-1.9 ± 0.1
Lin298D3	-2.13	-1.1 ± 0.4	0.049	GS882548	0	0	a	LinJ17 V3.1520	Otubain cysteine peptidase, Clan CA. family 65. putative		N.D.
cLinA2	-3.11	-1.3 ± 0.0	0.000	S69693	-	_	-	_	L. infantum A2 gene – DNA microarray control spot		X
cLdoA2	-2.54	-1.0 ± 0.1	0.021	-	-	-	-	-	L. donovani A2 gene – DNA microarray control spot		Х

65 Table 5. Intra- and inter-species analyses of differential gene regulation in *Leishmania* spp. 66 amastigotes. A review of non-redundant absolute and relative frequencies of up- and down-67 regulated genes in amastigotes are shown in the table for each of the expression profile 68 analyses performed to date for this stage which referred to logarithmic and/or stationary phase promastigotes. Significance tests of the binomially distributed random variable of differential 69 70 regulation in amastigotes were performed for each of the individual expression profiling 71 reports, as well as intra- and inter-specifically, either including or separating logarithmic 72 phase promastigotes versus amastigotes L/A and stationary phase promastigotes versus 73 amastigotes S/A profiles.

74 Legend: (1) Functional genomics (partial shotgun DNA microarrays); (2) functional genomics 75 (partial cDNA microarrays); (3) functional genomics (complete oligonucleotide microarrays); 76 (4) proteomics; (5) functional genomics (complete shotgun DNA microarrays); (6) functional 77 genomics (partial oligonucleotide microarrays); (a) coverage rate calculated by Clarke and Carbon equation for shotgun DNA microarrays with 5% probability of not finding any 78 79 sequence; (b) oligonucleotide sequences or expressed sequence tags (ESTs) representing 80 genes and excluding intergenic regions. Complete oligonucleotide microarrays probably do 81 not represent 100% of genes because clones containing genic sequences not annotated in the 82 genome have been detected by means of shotgun DNA microarrays; (c) this report; (d) axenic 83 amastigotes (amastigote-like forms); (e) amastigote-like forms (axenic) obtained by the 84 unique effect of simultaneous temperature and pH shift; (f) predominance of up-regulation in 85 amastigotes without significant statistical difference; (g) significant difference between both 86 groups with predominance of up-regulation in amastigotes; (h) binomial test without 87 approximation to the normal distribution, as $np \le 10$ and/or $nq \le 10$. *Statistical significance. 88 Three binomial tests: two independent tests for L/A and S/A respectively and one global test 89 for L/A + S/A.

Species	Approach.	Genome	me References	Global gene	Up-regul	ated genes in ama	stigotes	Down-regu	ulated genes in an	astigotes	Binomia	test	
_		coverage		differential regulation	dL/A	dS/A	dL/A + dS/A	uL/A	uS/A	uL/A + uS/A	(P-val	ue)	
L. major	(1)	16.1% (b)	Akopyants et al., 2004	15% of 10%	29 (23.8%)	7 (5.7%)	34 (27.9%)	26 (21.3%)	19 (15.6%)	7 (5.7%)	0.051 (f)	0.016	
	(2)	22.4% (b)	Almeida et al., 2004	22.2% of 7.2%	-	-	58 (44%)	13 (9.8%)	23 (17.4%)	38 (28.8%)	0.081		
	(3)	100% (b)	Leifso et al., 2007	1.9%	87 (56.1%)	-	-	68 (43.9%)	-	-	0.063 (f)		
L. mexicana	(3)	100% (b)	Holzer et al., 2006	2.9%	28 (11.9%)	-	-	208 (88.1%)	-	-	< 0.001	< 0.001	
				0.6%	14 (27.4%)(d)	-	-	37 (72.6%)(d)	-	-	< 0.001		
L. donovani	(1)	6.5% (a)	Srividya et al., 2007	6.5% of 4.6%	-	15 (60%)	-	-	10 (40%)	-	0.212 (h)	< 0.001	
	(4)	-	Rosenzweig et al., 2008	53.6% of 11.2%	-	173 (35%)	-	-	321 (65%)	-	< 0.001		
L. infantum	(4)	-	McNicoll et al., 2006	100% of 0.9%	-	53 (72.6%)	-	-	20 (27.4%)	-	<0.001 (g)	< 0.001	
	(4)	-	Leifso et al., 2007	68.9% of 1.1%	8 (12.7%)	-	-	55 (87.3%)	-	-	<0.001 (h)		
	(3)	100% (b)	Rochette et al., 2009	5.8%	-	217 (45.5%)	-	-	260 (54.5%)	-	0.024		
				11.2%	-	443 (48.1%)(d)	-	-	478 (51.8%)(d)	-	0.125		
	(5)	100% (a)	Alcolea et al.	2.2%	-	80 (44.4%)(e)	-	-	100 (66.6%)(e)	-	0.069		
			(c) [what is this?]DATA FROM THIS MANUSCRIPT. IT IS DEFINED IN THE TABLE LEGEND. THIS IS CORRECT	5.7%	66 (14.4%)	68 (14.6%)	13 (2.8%)	189 (40.5%)	94 (20.2%)	35 (7.5%)	<0.001*		
L. braziliensis	(6)	8.3% (b)	Depledge et al., 2009	8.1% of 8.3%	10 (12.8%)	35 (63.6%)	3 (5.4%)	3 (5.4%)	1 (1.8%)	3 (5.4%)		<0.001 (g, h)	
			Global binomial test	for interspecies L/A different	tial regulation (p-val	ue)		<	:0.001				
			Global binomial test	for interspecies S/A different	tial regulation (p-val	ue)		<	:0.001				
	Global binomial test for promastigote/amastigote differential regulation (p-value)								<0.001				

A. Gene expression, secretory pathway and ubiquitin-proteasome degradation.

B. Metabolism and kDNA-related genes.

C . Surface molecules, cytoskeleton, vesicle trafficking, signal transduction and cell cycle regulation.

Down-regulated in S/L Up-regulated in S/A Down-regulated in S/A Down-regulated in L/A Up-regulated in L/A

SUPPLEMENTARY DATA FILE 1

Fig. S1. A replicate of *L. infantum* microarray hybridization experiment with L/A (Cy5/Cy3) cDNA samples.

Fig. S2. Raw image of microarray hybridization analysis of *Leishmania*-U937 cell line crosshybridization. Genomic DNA was isolated from U937 cells. Then, it was randomly sheared by sonication and labelled with Cy5 by GenomiPhi[™] DNA Amplification Kit (GE Healthcare). Hybridizations with *L. infantum* genomic microarrays were performed under the specific conditions described in the MS for *L. infantum* microarray-cDNA. Cross-hybridization was not found once the local background median was substracted and intensity value cutoff was applied.

Table S1. Primers for qRT-PCR reactions. Annealing temperature for each oligonucleotide pair was optimized by temperature gradients checked by agarose gel electrophoresis, ensuring the absence of primer dimmers and unspecific sequences together with melting curve analysis. Sequence specificity was checked by product sequencing. Thermal cycling was: 95 °C for 5' + 40x (95 °C for 30'' + 50-60°C for 30'' + 72°C for 30'' data acquisition) + 72 °C for 5' + melting curve [95 °C for 1' + 80x (55 \rightarrow 95 °C for 10'' (+0.5 °C/step) with data acquisition)]. Quantification method: efficiency corrected Δ Ct method after elimination of outliers (CV > 20%).

Annotation	Annotated gene function	Forward (5'-3')	Reverse (5'-3')
LinJ36_V3.6560	Glucose transporter, inigiz, putative (GT) Glucose transporter, putative (GT)	CGGCAAGGCICCCICATAAT	CGAGGAATCTGGTGCGGTGT
LinJ29_V3.1160	Ribosomal protein L1a, putative (L1a)	ATCTGGACGAAGTCGGCGTT	ACGTCCGTGTTCGTCAGCAT
LinJ31_V3.1660	Putative 3 ketoacyl-Coa thiolase-like protein (Thiol I)	GGCTGAAAAGGCGGGGGTACT	CITITIGCCCGAACICCGAA
LinJ09_V3.0650 LinJ23_V3.1200	Serine peptidase family S51, peptidase E, putative (SerP51) Hydrophilic surface protein 2 (HASPA1)	GCAATACCTCGCCCACTTCA	CAAACGGATCCAGCACCACT
LinJ23_V3.1210	SHERP	GAGCGACAATGCGCACAACA	TTACGAGCCGCCGCTTATCT
LinJ23_V3.1220 LinJ23_V3.1230	Hydrophilic surface protein (HASPB) SHERP	AATGACGGCGATGGCCCTAA CGGCGGAGACGAGCGACAAT	GCCACCGCCGTCATTTTTCT CCGTGCTGCCCACTGCATCA
LinJ23_V3.1240	Hydrophilic surface protein 2 (HASPA2)	TGCTGACCACTGCCAGCGTT	TGCCAAACTCTCGGCGATGA
LinJ29_V3.3010 LinJ29_V3.3020	Amastin, putative Tuzin-like protein, putative	GCCGCGACCGTTTCCTCCTT AGGGCGCCATCAGCTGCATT	ACGCAGAGACGACGAAGAA GCACACCCTCGCCCTTCGAT
LinJ08_V3.0730	Tuzin, putative	CTGCCACGGCTCGATTTCTA	GTTCGTCCCCATCGTTTCAA
LinJ31_V3.0950 LinJ15_V3.0240	Sodium stibogluconate resistance protein, putative (SbGRP) Protein phosphatase 1 catalitic subunit, putative (cPP1)	AGACCTCCACCTCAGCGATGA AAAGCGGCATTTGCTCACCAT	GAACICGGCGCICICAGGTAT TCCAACGIGAIGAIGCIGCAT
LinJ20_V3.0310	Developmentally regulated phosphoprotein-like protein (DRPP)	AGTCAGCAAACCAGCTCTGCA	CGCGTACCGTAGCCCTCCAT
LinJ31_V3.0860 LinJ30_V3.0790	Triacylglycerol lipase-like protein (TGL) 4-methyl-5(beta-bydroxyethyl)-thiazole monophosphate synthesis protein, putative (MPETs)	AGCACGTCCCCTATGAGGTT	GATGCTTGCACGATGCATGT
LinJ21_V3.0080	Syntaxin, putative (Sx)	GCGCGAAACAGGCCTCCACA	CACCTGGACGCCTGAGATGT
LinJ28_V3.2280	Dynein light chain lc6, flagellar outer arm, putative (DynLC6) CTP-binding elongation factor Tu family protein, putative (FE-Tu)	TGGCGCGACGGTGAAGCTAT	ACCAAAGTTCCGGCCAACAA
LinJ08_V3.0010	Structural maintenance of chromosome 3 protein, putative (smc3)	ATCACGGAGGTGCTCAACGA	TCTTCAGCTCCCGCACIGIT
LinJ08_V3.0030 LinJ06_V3.1330	Vesicle associated membrane protein, putative (vamp) Conconcriburingen III oxidase putative (C(III)C)	TTAGCGCGTGGTGACCGTAT	TGATCCGCCAGAGTGGAAGA
LinJ06_V3.1340	Protoporphyrinogen oxidase-like protein (PO)	GAAGGCGAATGCAGCAGAGAA	GCCGCTGACATGCCGACTAT
LinJ28_V3.0110 LinJ28_V3.0120	Proteasome beta 3 subunit, putative (b3) DNA directed RNA polymorase II subunit 9 putative (RNAPol ILe9)	TGAGAGCITIGCACGGCATGT	TGCACCGTAGCCGGAGAGA ACACCGTCCCTCGACAGGAT
LinJ26_V3.1690	Cytochrome c oxidase subunit V, putative (coxV)	GAGATGGATGGCTGCAAGCT	CCTCCCACTTCATCGTCTCT
LinJ16_V3.0950	Dynein light chain, putative (DLC)	CGTTGGAGAAGCACGAGGATA	CACAATGCCAGGAAGGTCCAA
LinJ19_V3.1520	Eukaryotic translation initiation factor-like protein (EIF)	AAGGCCAGGGCACAGAAAAT	GGCAGGATGGTGCAGTTGAA
LinJ21_V3.0700	Phosphoglucomutase (PGluM)	GCTACAGGCGGGACGCATAAT	GAGTGGAATGATCCGCGATGA
LinJ26_V3.1000	Dynein heavy chain, putative (DynH)	TCTTTCCGCAAGGGTTTCTCA	TCCTCCGGCAGCTCCTAACA
LinJ22_V3.0340	40S ribosomal protein S15, putative (S15)	GCGCTGAGCGAGGAGGAGGAGTT	CTCGCCAACCITACGTGCT
LinJ23_V3.1210	Lathosterol oxidase-like protein	TCCACCACGAACIGTCCAACI	CTCGTACACGGGGGTCCACATA
LinJ32_V3.4040	Cysteine peptidase, Clan CA, family C54, putative (C54cp)	CCAATTCGCTCGTGGCGTTT	GCCACAGAAACGACGCCATT
LinJ32_V3.4050 LinJ28_V3.2380	2,3-bisphosphoglycerate-independent phosphoglycerate mutase-like protein (PGM ^{BPI})	GCTACAGGCGGGGGGGGGGGGACGCATAAT	GAGTGGAATGATCCGCGATGA
LinJ28_V3.2390	Cyclin dependent kinase-binding protein, putative (cdkbp)	ATCGACCCGACAGAGCTGCAT	CGTCTCGGCGTTGTTGAAACT
LinJ15_V3.0220 LinJ33_V3.0770	60S ribosomal protein L13a, putative (L13a) 60S ribosomal protein L6, putative (L6)	AGGTCGACATCTCCAGCGTT	ATGAAGTCGCCCTCGCTCTT
LinJ35_V3.0600	60S ribosomal protein L18a, putative (L18a)	AGCCAGGCGTACCACGACCT	TCCGGGATGCTCTTCACGTT
LinJ30_V3.3390 LinJ36_V3.4730	605 ribosomal protein L9, putative (L9) 605 ribosomal protein L18, putative (L18)	CCCGTCCAAGGTCAAGGATG TGGTCGGTGACGTCCTGGAT	GACCAGGCACATCIGGIGCA TIGCGACCACGCAGCAGGIA
LinJ13_V3.1120	40S ribosomal protein S4, putative (S4)	TGCGTGGACCTGATCAAGAA	CGCTCCTGGATCACATTCAT
LinJ31_V3.2370 LinJ31_V3.2380	3'-nucleotidase/nuclease, putative (3'NTase/Nase) 3'-nucleotidase/nuclease precursor, putative (3'NTase/Nase)	GGCTGAGGTGCACAACCACT	GGGCGACGTGCTCATAGGAA
LinJ31_V3.1240	Vacuolar-type proton translocating pyrophosphatase 1, putative (vH ⁺ -PPase)	ATGGCTATCTCGGCCTCCAA	GCCGGGCCTGAGGTATCCT
LinJ23_V3.0220	Endoribonuclease L-PSP (pb5), putative	ACTCGCTGACGGCTGAGGAT	ACAAGCGGGTGGTCATGGAA
LinJ32_V3.3100 LinJ32_V3.3120	Nucleoside diphosphate kinase b, putative (Ndkb) Minochromosome maintenance (MCM) complex protein (mmc)	GACICACAGCCIGGCACGAI GGATAGACCGCCACGGATA	CICAICCGCCIIGAACCAAAA CGGAGAGAGATCGACGGATGAA
LinJ33_V3.0960	40S ribosomal protein S3, putative (S3)	GGGCATCATCCGCTACGTCA	GCGGAGTCGACGAACGACTT
LinJ36_V3.3100 LinJ11_V3.1180	Succinyl-CoA ligase (GDP-forming) beta-chain, putative (SCL) 40S ribosomal protein S15a, putative (S15a)	ATGATGAGCGTTCTCGCGAA	CTTGCCAGCGCGATGGTCAT
LinJ15_V3.1600	Presenilin-like aspartic peptidase, clan AD, family A22A, putative (A22A)	CACGCCACTCCATTCAAGCT	CCGCCAGGATGCTCACCATA
LinJ35_V3.2080	Calcium motive P-type ATPase, putative (Ca2 ⁺ -ATPase)	GCGCTGGCTCGACAACAAGT	GIGATCATGCIGIGIGTACAAA
LinJ29_V3.1920	40S ribosomal protein S15a, putative (S15a)	CCTGAACAAGTGCGGTGCTA	GAGGTCGTCAGCACCACGAA
LinJ30_V3.3160	S-adenosylmethionine decarboxylase proenzyme-like protein (SAMDC)	GGTGGATGGTCATCACTGCT	CACITIGCAGCGCGTGGAAA
LinJ21_V3.1290	605 ribosomal protein 1.21, putative (1.21) 605 ribosomal protein 1.9, putative (1.9)	TTCACGGTGATTCGCTGGTT	CACCTIGAAGCGGTAGCCCT
LinJ21_V3.1300	40S ribosomal protein S23, putative (S23)	GTGCGTGTGCAGCTGATCAA	CACCAGCACCTCGTCGTTCT
LinJ06_V3.0410	605 ribosomal protein L19, putative (L19)	GTGTTCCGCAACAAGCGCAA	TIGCGAGCCITGTIGCGGTT
LinJ21_V3.1790	40S ribosomal protein S11, putative (S11)	TGAGGTCGTCATTGGCCAGT	GGCGAACTTCTTGCCCATCT
LinJ01_V3.0430 LinJ23_V3.0080	Agmatinase-like protein (agm)	CGCGACCIGTIGCACATCAT	GCCATCGCTACGGCACATAT
LinJ36_V3.2070	Phosphomannomutase, putative (PMM)	AGGCGGTCAAATCAGTITCGA	TAATCGTIGCCGCCCICIGA
LinJ19_V3.0040 LinJ19_V3.0050	Histone H2B (H2B) 405 ribosomal protein S2, putative (S2)	AGATCTACCCCGTGCAGAAA	TGTGGCTCACCGATCTTGTT
LinJ05_V3.0040	Paraflagellar rod component par4, putative (PAR4)	AAGGACGACGCGTATGAGCA	TCAGTGCCCCGAAGTTGCTCT
LinJ19_V3.0710 LinJ30_V3.3650	Glycosomal malate dehydrogenase (gMDH) 405 ribosomal protein S14 (S14)	ACGGGTAAACCGCIGGTGTA AAGAAGGGCGACCICGTTTA	ACTCGCIGCCCITCACGATA CTCCGGIGACCITCACGIAT
LinJ24_V3.2340	Fatty acid desaturase, putative	TCACCTTCGGGAGGGCTAT	GCGCGGATGATCCACTTGGT
LinJ07_V3.0360 LinJ17_V3.1520	Phosphatidylglycerophosphate synthase-like protein (PLD) Otubain cvsteine peptidase. Clan CA, family C65, putative	TCGTCTGCCGCAAGGAGTTT GAAGGGTGTGGCGGACAAGA	CCITCICCACCACCCAACGT TGCAGGTAAGCGGAGATCAA
LinJ05_V3.0350	Trypanothione reductase (TR)	ACGGCGAGGTTCTGGGTGTT	TCCGATGGTGCTGTGGAAGT
LinJ14_V3.1440 LinJ14_V3.1450	Pteridine transporter (PT3) Myo-inosital-1-phosphate synthase (INO1)	GCCGCTGACGAAGCCACTGA	TCGCGCITCGTGTCGTTGAA
LinJ30_V3.1520	P1/S1 nuclease (P1/S1)	GTGGACGTGATGGCGATTCAT	GACACGCITGCATCGAGCAA
LinJ16_V3.0550 LinJ22_V3.0680	Aspartate carbamoyltransferase, putative (AspCT) 3'a2rel-related protein (3'a2rel)	ACGGTGCATTCGCTGCTGAA	GAGGCCACACGCCIGCIGAA
LinJ11_V3.1220	ABC transporter-like protein (ABC)	CAGGTGGTCTTCCTGGACGA	CACCATGATCGCCACAATGT
LinJ16_V3.0590 LinJ24_V3.2410	Carbamoyl-phosphate synthetase, putative (CPS) Mitogen-activated protein kinase (MAPK)	GCTACACCGGCITCICCCIT	ACGCGTGATCTTCGTCATCT TTCCCGATCATCCCAGTTGA
LinJ23_V3.0230	ABC transporter/multidrug resistance protein/p-glycoprotein, putative (MRP)	GGGAGCGGGTTCATCCTGAT	TGCAGCCGGTGCGCGATCGT
LinJ32_V3.1770 LinJ28_V3.2650	Protein phosphatase 2C, putative (PP2C) Ribosomal protein S29, putative (S29)	GAGGTAGCGCAGCAGCTTGT	GGCCTTTCGCTTTCTTGTCGT
LinJ09_V3.0060	N-acetylglucosaminylphophatidylinositoldeacetylase (NAGPID)	GTTGGACTGCTGGCGGTTCT	CAGACTGATGCGGGTGGAAT
LinJ13_V3.1450 LinJ21_V3.2070	Alpha tubulin (a-tub) Proteasome alpha 2 subunit, putative (a2)	ACGTACCGCCAGCTGTTCAA ACGCTAAAGGAGGGCTTTGA	CIGGAGACCCGIGCAGIIGT CGACGCICAGGACTICGAAA
LinJ23_V3.0040	Beta propeller protein, putative (b-prop)	CCCGATGTCCTCGTTTCCAC	AAGCGAAGAACGCGCACAAT
LinJ36_V3.0250	Peptidyl-prolyl cis-trans isomerase, putative (FKPB)	ACCGIGCACIGCACCGGGTA	CTCATCCCAGCCGCGAATCA
LinJ09_V3.1390	Paraflagellar rod component, putative (PFR)	GACCACGAGGCTGACGAGTT	GTCICGGTTATGCIGCGCAA
LinJ23_V3.1430	Membrane-bound acid phosphatase 2 (MBAP2) Euleranatis translation initiation (actor 3 cubunit 8 putation (IE2c8)	TGCGTATGTATTGCCCCTTCA	GAGCCCCGATGCAGAAGGTT
LinJ26_V3.2230	Ribosomal protein , putative	TGCGTGAAGGTGAAGCACAA	GCAGTCACGGCGATCTTCTT
LinJ09_V3.1190	Inner membrane preprotein translocase Tim17 (Tim17)	GATGGTGGCCAAGGACAGCA	AAGCCGAAGAAGGCGAAGCT
LinJ24_V3.1380 LinJ21_V3.0800	1 ranslation initiation factor IF-2, putative (IF2) 60S ribosomal protein L36, putative (L36)	CGACICGCIIGAAIGCCAACI	GCGAGGTACGCACCAATGGA GCTTCTTCTTGGCCGCAGTA
LinJ21_V3.0820	ATPase subunit 9, putative (F ₀ s9)	GCCATCITTGGCTGCTTGCT	CATCITGGTCAGGTTGGGCT
LinJ34_V3.4290 LinJ13_V3.0460	Lapophosphogtycan biosynthetic protein (lpg2) 405 ribosomal protein S12, putative (S12)	GGCAGCAATCGGTGACACAA AGGAGAACGTCGTGGTTGAT	CATIGTGGTGGGCGAGGTTA CTCCTCATCCTCGCAGTCAT
LinJ19_V3.0170	MAP kinase, putative (MAPK)	TCTGCGCTGTACGCTGGCAT	GGGCTGCTGTTGCTGGTCAA
LinJ19_V3.0190 LinJ26_V3.0160	ADP/ATP translocase 1, putative (ANC1) 60S ribosomal protein L7, putative (L7)	GACGGCCTGGTAGGTCTGTA TGCGCGGAGGATATGCTGAA	ATCCAGCCCAGCATGAAGTT
LinJ19_V3.0090	Fibrillarin, putative (Fibril)	ATCAAGGCGAACTGCATCGA	AGAAGCTGAAGGATTCCGGC
LinJ16_V3.0600	Histone H3, putative (H3) 605 ribosomal protein L12 putative (L12)	ACGTCGAAGAAGAGCAAGAA	ATCAGCAGGCTCGTACTCTT
LinJ36_V3.0590	Ubiquitin-like protein, putative (ubq)	AGCAACCCCCAGTTTATGCA	AGCTTCCCATCATTGCCATT
LinJ36_V3.0600	Cdc2-related kinase (cdc2) Cytochrome c oxidase VIII (cox VIII), putativo	TGGAGTGTCGGCTGCATTTT	GCGTCCCCAGCACITGAAAA
LinJ27_V3.1120	Histone H1, putative (H1)	GGCGGTGAGGAAGGTGGCTA	GCGACCTTCTTCGCGACCTT
LinJ31_V3.2070	Ubiquitin-fusion protein (ubq) 605 ribosomal protein L44, putative (L44)	CCGCACGCTCTCGGACTACA	GCCTTCTTGCGGCAGTTCGT
LinJ33_V3.3390	H1 histone-like protein (H1)	TCCGCACGCAGAAGATGGAA	TTCGACGGGCGAGACTTCAA
LinJ29_V3.1880	Paraflagellar rod protein 1D, putative (PFR1D)	ATCTGGACGAAGTCGGCGTT	GGCAGCGTGAAGCCCTTCTT
LinJ29_V3.2310	GTP-binding protein, putative	GCGCGCGTTCGCGAATATCT	ATCCCTGCCGCCCCTCTTGT
LinJ32_V3.1080	Protein kinase, putative (PK)	TCCGCAGCGTCTGTGTCGAT	TGGCGCTTGTGGGAACGTCTT
Lanj29_V3.1370	rapase domain protein, putative (101.)	TCOCACAACTCCTTTCCCAT	CCCCCTTCACCCCTTA

Table S2. Table of differential regulation frequencies for S/A and L/A transcriptome analyses in *Leishmania* sp. n is the total number of differentially regulated genes; p is the frequency of down-regulated genes in amastigotes and q = 1-p is the frequency of up-regulated genes in amastigotes.

Ref. MS	n	р	Q	np	nq	Approx.
Akopyants et al., 2004	122	0.426	0.574	52.0	70.0	Yes
Almeida et al., 2004	132	0.561	0.439	74.0	58.0	Yes
Leifso et al., 2007	155	0.439	0.561	68.0	87.0	Yes
Holzer et al., 2006	236	0.881	0.119	207.9	28.1	Yes
	51	0.725	0.275	37.0	14.0	Yes
Srividya et al., 2007	25	0.400	0.600	10	15.0	No
Rosenzweig et al., 2008	494	0.650	0.350	321.1	173.0	Yes
McNicoll et al., 2006	73	0.274	0.826	20.0	60.3	Yes
Leifso et al., 2007	55	0.855	0.145	47.0	8.0	No
Rochette et al., 2009	477	0.545	0.455	260.0	217.0	Yes
	921	0.519	0.481	478.0	443.0	Yes
Alcolea et al., 2010	180	0.555	0.445	99.9	80.1	Yes
This manuscript	345	0.696	0.304	240.0	105.0	Yes
Depledge et al., 2009	55	0.873	0.127	48.0	7.0	No

SUPPLEMENTARY DATA FILE 2

Table S3. Hypothetical and unknown protein genes that are differentially regulated in S/L. F < -1.7 indicate gene down-regulation and F > 1.7 up-regulation.

Clone	Fold	$Log_2R \pm SD$	р	NCBI Acc.	E-v	alue	Clone	Annotation	Gene function
	change	v		No.	F	R	def.		•
Lin21A6	1.93	0.9 ± 0.2	0.017	GS882549	0	0	а	LinJ07 V3.1060	Hypothetical protein, unknown function
Lin21110	2.08	1.1 ± 0.2	0.031	G\$882550	Ő	1e-180	h	Lin108_V3.0280	Hypothetical protein, conserved
2014507	2.00	1.1 ± 0.5	0.051	05002550	0	10 100	0	Lin135 V3 4550	Hypothetical protein, conserved
								Lin I35_V3.4560	Hypothetical protein, conserved
Lin86C2	1 97	10 ± 0.2	0.018	G\$882551		5e-137	h	LinJ05_V3.4500	Hypothetical protein, conserved
Lin106B12	1.97	1.0 ± 0.2 0.0 ± 0.1	0.002	G\$882552	20-105	50 157	b	LinJ04_V3.0340	Hypothetical protein, unknown function
Lin111G5	1.05	0.9 ± 0.1	0.002	CS882552	26-105	-	b	LinJ29_V3.2330	Hypothetical protein, unknown function
Lin121C5	1.74	0.8 ± 0.1	0.014	CS882555	0	0	U 16	LinJ12_V3.0090	Hypothetical protein, conserved
LIII121C3	1.90	1.0 ± 0.2	0.022	CS892556	0	0	0 1	LinJ00_V3.1290	Hypothetical protein, conserved
LIN138B4	1.70	0.8 ± 0.2	0.028	G5882550	0	0	D	LinJ32_V3.3700	Hypothetical protein, conserved
L := 120E2	1.74		0.045	00000557	0	0	1.	LinJ32_V3.3/10	Hypothetical protein, unknown function
LIII139E2	1.74	0.8 ± 0.2	0.045	03882337	0	0	0	LIIJ00_V3.1300	Hypometical protein, conserved
LIN142D1	2.00	1.0 ± 0.1	0.004	G\$882558	2e-74	2e-108	D	Linj08_V3.1090	Hypothetical protein, conserved
L 1-147D4	1.70	00100	0.027	C00002550	1. 124	0	1.	Linj08_V3.1100	Hypothetical protein, conserved
LIN14/B4	1.79	0.8 ± 0.2	0.027	G5882559	1e-154	0	D	LinJ08_V3.1090	Hypothetical protein, conserved
1-1/240	1.04	00102	0.024	61042	0	0	1.	Linj08_V3.1100	Hypothetical protein, conserved
LIN165A9	1.94	0.9 ± 0.2	0.034	\$19A3	0	0	D	LinJ30_V3.2310	Hypothetical protein, conserved
								LinJ30_V3.2320	Hypothetical protein, conserved
L:=165D2	1 0 1	00102	0.022	C 5992560	0	0	L.	Linj 30_V 5.2550	Hypothetical protein, conserved
Lin165D2	1.81	0.9 ± 0.2	0.025	GS882500	0	0	D	LinJ30_V3.2310	Hypothetical protein, conserved
								LinJ30_V3.2320	Hypothetical protein, conserved
L:= 160D9	1.74	00102	0.022	C 5 99 2 5 6 1	0	0	L.	Linj30_V3.2330	Hypothetical protein, conserved
LIII109D8	1.74	0.8 ± 0.2	0.025	03882301	0	0	D	LIIIJ24_V3.2320	Hypothetical predicted multi-pass transmentorate protein
L:n172115	1.02	00102	0.029	C 5992562	0	0	L.	LinJ24_V3.2330	Hypothetical protein, conserved
LIII1/3FI3	1.95	0.9 ± 0.2	0.058	05882502	0	0	0	LIIIJ51_V5.2540	Hypometical protein, conserved
Lin238G11	2.05	1.0 ± 0.4	0.044	GS882565	0e-158	0	D	Linj12_V3.0090	Hypothetical protein, conserved
Lin312C2	1.84	0.9 ± 0.1	0.002	GS882564	0	0	b	LinJ2/_V3.0120	Hypothetical protein, conserved
Lin12F8	-1.91	-0.9 ± 0.0	0.001	GS882565	0	0	b	LinJ28_V3.0820	Hypothetical protein, conserved
Lin13A1	-1.93	-0.9 ± 0.3	0.031	GS882566	6e-44	4e-14	b	LinJ28_V3.3260	Hypothetical protein, conserved
Lin16A6	-1.97	-1.0 ± 0.4	0.051	GS882567	0	0	а	LinJ33_V3.1740	Hypothetical protein, conserved
								LinJ33_V3.1750	Hypothetical protein, conserved
Lin27H9	-1.74	-0.8 ± 0.2	0.044	GS882568	0	0	b	LinJ17_V3.0010	Hypothetical protein, conserved
Lin41A10	-1.75	-0.8 ± 0.3	0.040	GS882569	0	0	b	LinJ09_V3.1610	Hypothetical protein, conserved
								LinJ09_V3.1620	Hypothetical protein, conserved
								LinJ09_V3.1630	Hypothetical protein, conserved
Lin44H5	-1.92	-0.9 ± 0.2	0.051	GS882570	0	0	b	LinJ31_V3.0090	Hypothetical protein, conserved
								LinJ31_V3.0100	Hypothetical protein, conserved
Lin47D11	-1.71	-0.8 ± 0.2	0.032	GS882571	0	0	b	LinJ30_V3.2860	Hypothetical protein, conserved
								LinJ30_V3.2870	Hypothetical protein, conserved
Lin50C5	-1.79	-0.8 ± 0.0	0.002	GS882572	0	0	b	LinJ20_V3.0560	Hypothetical protein, conserved
Lin83E8	-1.93	-0.9 ± 0.2	0.021	GS882573	0	0	b	LinJ35_V3.0140	Hypothetical protein, conserved
								LinJ35_V3.0150	Hypothetical protein, conserved
								LinJ35_V3.0160	Hypothetical protein, conserved
Lin122B10	-1.75	-0.8 ± 0.2	0.027	GS882576	0	0	а	LinJ29_V3.2070	Hypothetical protein, conserved
Lin159H6	-1.86	-0.9 ± 0.3	0.044	GS882577	0	0	b	LinJ18 V3.1630	Hypothetical protein, conserved
								LinJ18_V3.1640	Hypothetical protein, conserved
Lin173C7	-2.08	-1.0 ± 0.1	0.009	GS882578	0	2e-170	b	LinJ33_V3.0650	Hypothetical protein, conserved
								LinJ33 V3.0660	Hypothetical protein, conserved
								LinJ33 V3.0670	Hypothetical protein, conserved
Lin204D8	-2.05	-1.0 ± 0.1	0.006	GS882579	0	0	b	LinJ33 V3.0650	Hypothetical protein, conserved
								LinJ33 V3.0660	Hypothetical protein, conserved
								LinJ33_V3.0670	Hypothetical protein, conserved
Lin223E7	-1.92	-0.9 ± 0.1	0.019	GS882581	0	0	h	Lin I28 V3 2040	Hypothetical protein, conserved
Lin239G8	-1.74	-0.8 ± 0.2	0.005	GS882582	õ	õ	b	LinJ32 V3.3180	Hypothetical protein, conserved (pseudogene)
Lin276E12	-1.75	-0.8 ± 0.2	0.034	G\$882583	õ	õ	h	Lin I34 V3 0730	Hypothetical protein, conserved
Lm12/01/12	-1.75	-0.0 ± 0.2	0.054	03002303	U	U	U	Lin I34 V3 0740	Hypothetical protein, conserved
Lin283E9	_2.05	10+02	0.000	G8892595	0	Δ	h	LinJ34_V3.0740	Hypothetical protein, conserved
Lin203E0	-2.03	-1.0 ± 0.2	0.000	G\$992594	0	0	b	LinJ31_V3.1110	Hypothetical protein, conserved
LIIIZYZEZ	-1.69	-0.9 ± 0.2	0.029	03002300	0	0	U	Linj50_V5.0010	Hypothetical protein, conserved
L:= 200E6	1.75	0.0 1.0 2	0.020	0000507	0	0	L.	LIIIJ30_V3.0020	Hypothetical protein, conserved
LIII309E0	-1.75	-0.8 ± 0.2	0.020	0388238/	0	0	D	LIIJ35_V3.2950	rypomencal protein, conserved
								LinJ35_V3.2960	Hypothetical protein, conserved

Claura	E-11			NCDI Ass	E		Classe	A	Constantion
Cione	roia change	$Log_2R \pm SD$	р	NCBI ACC. No.	F	awe R	def.	Annotation	Gene junction
Lin13H10	1.96	0.7 ± 0.2	0.015	GS882588	0	0	b		
Lin33C4	1.74	0.8 ± 0.1	0.005	GS882589	0	0	с	LinJ36_V3.3500	Hypothetical transmembrane protein
								LinJ36_V3.3510	Hypothetical protein, conserved
								LinJ22_V3.0340	Hypothetical protein, conserved
								LinJ22_V3.0360	Hypothetical protein, conserved
Lin37A10	1.72	0.8 ± 0.2	0.022	GS882590	0	0	с	LinJ32_V3.3560	Hypothetical protein, conserved
Lin (2D)	2.28	12.02	0.025	C5992501		10 76	L.	LinJ32_V.33570	Chloride channel protein, putative
Lin48E3	2.28	1.2 ± 0.3 0.8 ± 0.1	0.023	GS882592	-	46-76	b a	LinI28 V3 1030	Oxidorreductase-like protein
LIII40E5	1.71	0.0 ± 0.1	0.007	66662572	0	0	u	LinJ28 V3.1040	Hypothetical protein, conserved
								LinJ28_V3.1050	40S ribosomal protein S14
Lin50E2	1.88	0.9 ± 0.2	0.012	GS882593	4e-23	0	b	LinJ07_V3.0540	Hypothetical protein, conserved
1 := 601110	1 70	0.0 1 0.0	0.001	C5992504	0	0		LinJ07_V3.0550	60S ribosomal protein L7a, putative
Lino2H12 Lin72H4	2.42	0.8 ± 0.0 1 3 + 0 4	0.001	G\$882594 G\$882595	0	0 3e-135	c b		
Lin73E5	1.75	0.8 ± 0.2	0.023	GS882596	0	0	b	LinJ36 V3.2010	Hypothetical protein, conserved
								LinJ36_V3.2020	60S ribosomal protein L37a
Lin76C12	1.74	0.8 ± 0.3	0.055	GS882597	0	0	с	LinJ08_V3.0910	Hypothetical protein, conserved
1	2.05	10:00	0.010	C6992509	0	0		LinJ34_V3.3450	Transmembrane/endomembrane-like protein
LIN / /HII	2.05	1.0 ± 0.2	0.018	G5882598	0	0	с	LinJ31_V3.1930	Ubiquitin-iusion protein Hypothetical protein, conserved
Lin81H2	2.52	1.3 ± 0.4	0.030	GS882599	0	0	b	LinJ24 V3.2290	Hypothetical protein, conserved
								LinJ24_V3.2300	60S ribosomal protein L12, putative
								LinJ24_V3.2310	Hypothetical protein, conserved
1:01510	2.04	15.04	0.010	C6992(00		5. 70		LinJ24_V3.2320	Hypothetical protein, conserved
LIN91F10	2.84	1.5 ± 0.4	0.019	GS882000	-	5e-72	с		
Lin105B7	1.57	0.6 ± 0.1	0.015	GS882601	5e-134	3e-163	b	LinJ11 V3.1220	Hypothetical protein, conserved
								LinJ11_V3.1230	60S ribosomal protein L28, putative
								LinJ11_V3.1240	Protein transport protein sec31, putative
Lin106D5	2.60	1.4 ± 0.1	0.003	GS882602	0	0	b		
Lin113G1	1.78	0.8 ± 0.2	0.034	GS882603	0	0	b L	L: 125 V2 4420	DNA nakumanasa anailan astakutia sukunit nutatiya
LIIIIISES	1.75	0.8 ± 0.1	0.010	03882004	0	0	b	LinJ35_V3.4450	Hypothetical protein conserved
								LinJ35 v3.4450	Hypothetical protein, conserved
Lin125E7	1.78	0.8 ± 0.1	0.003	GS882605	4e-131	4e-131	b		51
Lin126D11	1.70	0.8 ± 0.3	0.029	GS882606	5e-32	8e-37	b		
Lin129G3	1.75	0.8 ± 0.2	0.029	GS882555	0	0	с	LinJ33_V3.1570	Hypothetical protein, conserved
Lin 125E11	1.00	00102	0.022	C 5992607	10 19	1. 44	L.	LinJ22_V3.1080	Hypothetical protein, conserved
Lin137A7	1.90	0.9 ± 0.2 0.8 ± 0.2	0.052	GS882608	4e-48 1e-66	0	b		
Lin139B3	1.93	0.0 ± 0.1 0.9 ± 0.1	0.015	GS882609	0	0	b	LinJ16_V3.0460	Hypothetical protein, conserved
								LinJ16_V3.0470	60S ribosomal protein L21, putative
Lin159D1	1.72	0.8 ± 0.2	0.035	GS882610	0	0	b	LinJ01_V3.0430	Ribosomal protein S7, putative
								LinJ01_V3.0440	Ribosomal protein S7, putative
Lin165H2	2.29	12 ± 01	0.001	G\$882611	3e-131	7e-136	h	Linj01_v3.0440	Hypothetical protein, conserved
Lin174G2	1.92	0.9 ± 0.1	0.001	GS882612	0	0	b		
Lin177D10	2.02	1.0 ± 0.3	0.024	GS882613	3e-126	0	b		
Lin194D11	1.52	0.6 ± 0.2	0.031	GS882614	0	0	b		
Lin199E11	3.05	1.6 ± 0.5	0.026	GS882615	0	5e-103	b		
Lin200A6	1.71	0.8 ± 0.1	0.014	GS882616	0	6e-161	b	L = 126 V2 2400	Here the discharge in a second for a disc
Lin201H8	1.//	0.8 ± 0.3	0.034	GS882017	0	0	с	LinJ36_V3.3400	Hypothetical protein, unknown function Hypothetical protein, conserved
Lin209G3	1.78	0.8 ± 0.3	0.037	GS882618	0	0	с	LinJ17 V3.0230	Hypothetical protein, conserved
								LinJ17_V3.0240	Hypothetical protein, unknown function
Lin213A1	1.98	1.0 ± 0.3	0.033	GS882619	6e-118	9e-114	b		
Lin217F1	1.75	0.8 ± 0.3	0.044	GS882620	0	0	b		
Lin218D10	1.92	0.9 ± 0.2	0.016	GS882621	0	0	b		
Lin227D10	2.18	1.0 ± 0.4 1.1 ± 0.2	0.051	G\$882622	0	0	D	Lin 133 V3 0850	Hypothetical protein conserved
Lin232B5	1.70	1.1 ± 0.3 0.8 ± 0.1	0.010	GS882624	0	0	b	LIII355_ V 5.0050	Hypolitetical protein, conserved
Lin241B9	1.83	0.9 ± 0.3	0.003	GS882625	0	0	b		
Lin256D7	1.73	0.8 ± 0.1	0.005	GS882626	0	0	b		
Lin264F3	1.71	0.8 ± 0.2	0.040	GS882627	2e-160	0	b	LinJ22_V3.1480	CCR4 associated factor, putative
L:::: 260D5	1.72	0.01.0.2	0.027	C5992629	4.11	5. 25		LinJ22_V3.1490	Hypothetical protein, conserved
LIII209B3	1.75	0.8 ± 0.2	0.027	03882028	46-11	36-33	а	LinJ22_V3.1480	Hypothetical protein conserved
Lin276C7	2.03	0.9 ± 0.1	0.013	GS882629	0	0	b		
Lin279A11	1.74	0.8 ± 0.1	0.011	GS882630	0	0	b		
Lin283D9	1.90	0.9 ± 0.1	0.005	GS882631	0	0	с	LinJ28_V3.2050	Zinc transporter, putative
								LinJ28_V3.2060	Zinc transporter, putative
Lin16E9	-1.71	-0.8 ± 0.1	0.014	GS882632	3e-52	1e-57	b	1 - 100 1/2 0450	Henry destinal energia in a second
LINZIDIZ	-1./8	-0.8 ± 0.3	0.029	GS882033	0	0	D	LinJ29_V3.2450	Hypothetical protein, conserved
								LinJ29 V3.2470	Metallo peptidase, Clan MH, Family M20
Lin21G5	-1.82	-0.9 ± 0.2	0.016	GS882634	0	0	b		
Lin35B5	-1.75	$\textbf{-0.8} \pm 0.3$	0.051	GS882350	1e-131	7e-130	а		
Lin52F10	-2.24	$\textbf{-1.2}\pm0.2$	0.008	GS882635	1e-100	2e-154	b		
Lin56H12	-1.71	-0.8 ± 0.2	0.017	S20C9	5e-180	0	b	1 - 125 1/2 1010	Here all a disclored a la contra di
LIN65D5	-1.92	-0.9 ± 0.2	0.018	S20C12	0	0	с	LINJ35_V3.1010	Hypothetical protein, conserved
								LinJ35_V5.1020	Hypothetical protein, unknown function
Lin76D2	-1.99	-1.0 ± 0.1	0.002	GS882636	7e-59	7e-59	b		,
Lin78B12	-1.75	$\textbf{-0.8} \pm 0.1$	0.008	S20D4	0	0	b		
Lin80G6	-2.14	-1.1 ± 0.3	0.032	GS882637	0	0	b		
Lin86D3	-1.72	-0.8 ± 0.1	0.010	GS882638	0	0	b	1 - 121 1/2 1110	Here all a disclored a la contra di
Linð8H3	-1.75	-0.8 ± 0.1	0.012	GS882574	U	U	с	LINJ31_V3.1160	raypotnetical protein, conserved

Table S4. Unresolved clones that contain differentially regulated genes in S/L. F < -1.7 indicate gene down-regulation and F > 1.7 up-regulation.

Lin93C7	-1.95	-1.0 ± 0.3	0.026	GS882639	0	0	b	LinJ31_V3.1170 LinJ18_V3.1630 LinJ18_V3.1640	Hypothetical protein, unknown function Hypothetical protein, conserved Hypothetical protein, conserved
Lin94H3	-1.85	-0.9 ± 0.3	0.032	GS882640	0	5e-180	b	LinJ18_V3.1650 LinJ22_V3.1480 LinJ22_V3.1490 LinJ22_V3.1500	Chaperone protein DNAJ, putative CCR4 associated factor, putative Hypothetical protein, conserved Hypothetical protein, unknown function
Lin102E2	-1.79	$\textbf{-0.8} \pm 0.2$	0.023	GS882575	0	0	c	LinJ18_V3.0710 LinJ18_V3.0720 LinJ26_V3.0800 LinJ26_V3.0810	Hypothetical protein, unknown function Hypothetical protein, conserved Hypothetical protein, conserved Hypothetical protein, conserved
Lin105E9	-1.83	-0.9 ± 0.1	0.004	GS882641	0	0	а		
Lin109C6	-2.24	-1.2 ± 0.4	0.033	GS882642	0	3e-169	а		
Lin110F4	-1.88	-0.9 ± 0.1	0.009	GS882643	0	2e-176	а	LinJ31_V3.1620 LinJ31_V3.1630 LinJ31_V3.1640	Hypothetical protein, conserved Hypothetical protein, conserved Dipthine synthase-like protein
Lin111A10	-1.70	-0.8 ± 0.1	0.005	GS882644	0	0	b		
Lin112H3	-1.70	-0.8 ± 0.2	0.019	GS882645	0	2e-151	с	LinJ29_V3.2070	
Lin116C2	-2.16	-1.1 ± 0.2	0.014	GS882646	0	0	а		
Lin118B11	-1.84	-0.9 ± 0.2	0.023	GS882647	0	4e-119	а		
Lin119A2	-1.88	-0.9 ± 0.2	0.029	GS882648	0	0	b	LinJ29_V3.1930	
Lin122E10	-1.79	-0.8 ± 0.3	0.051	GS882649	0	0	b	LinJ24_V3.2350	Notchless homolog, putative
								LinJ24_V3.2360	Zinc-finger multi-pass transmembrane protein
								LinJ24_V3.2370	DNA excision repair protein, putative
Lin124E11	-1.70	-0.8 ± 0.1	0.006	GS882650	0	0	b	LinJ36_V3.7230	Hypothetical protein, conserved
								LinJ36_V3.7240	T-complex protein 1 (theta subunit), putative
Lin127A1	-1.85	-0.9 ± 0.1	0.006	GS882651	0	0	b		
Lin135B3	-2.10	-1.0 ± 0.1	0.010	GS882652	0	0	ь	LinJ30_V3.0750	Hypothetical protein, conserved
								LinJ30_V3.0760	Co-chaperone GrpE, putative
Lin138B12	-1.85	$\textbf{-0.9}\pm0.4$	0.054	GS882653	0	0	а	LinJ30_V3.0770 LinJ15_V3.1600	Unknown Presenilin-like aspartic peptidase, clan AD, family A22A, putative
								LinJ15_V3.1610 LinJ15_V3.1620	Hypothetical protein, conserved Hypothetical protein, conserved
Lin145E5	-1.76	$\textbf{-0.8} \pm 0.1$	0.07	GS882654	0	0	с	LinJ15_V3.1520 LinJ15_V3.1530 LinJ15_V3.1540	Hypothetical protein, conserved NPH2/RS6-like protein cAMP-specific phosphodiesterase, putative
Lin203E9	-1.88	-0.9 ± 0.3	0.024	GS882655	1e-149	2e-145	а	20010_00010	er inn speenie prospriouesterase, parative
Lin204F3	-1.76	-0.8 ± 0.2	0.040	GS882656	0	0	b		
Lin209B12	-2.29	-1.2 ± 0.3	0.024	GS882580	0	0	c	LinJ35_V3.4170 LinJ35_V3.4180	Hypothetical protein, conserved Hypothetical protein, conserved
Lin237G11	-1.77	-0.8 ± 0.2	0.001	GS882657	7e-164	1e-140	b		
Lin261A10	-2.67	-1.4 ± 0.1	0.039	GS882658	0	0	b	LinJ22_V3.1480	CCR4 associated factor, putative
								LinJ22_V3.1490	Hypothetical protein, conserved
Lin270C4	-1.96	-1.0 ± 0.3	0.054	GS882659	3e-27	1e-11	b		
Lin270F7	-1.75	-0.8 ± 0.2	0.018	GS882660	0	5e-60	b		
Lin268H6	-1.84	-0.9 ± 0.2	0.048	GS882661	0	0	а	LinJ10_V3.0650	Hypothetical protein, conserved
Lin282A4	-1.75	-0.8 ± 0.2	0.043	GS882584	0	0	b	LinJ29_V3.1160	Ribosomal protein L1a, putative
								LinJ29_V3.1170	Ribosomal protein L1a, putative
								LinJ29_V3.1180	Ribosomal protein L1a, putative
1:-00750	1.05	00100	0.041	00000000	0	0	L	LinJ29_V3.1190	Hypothetical protein, conserved
Lin28/F2	-1.85	-0.9 ± 0.2	0.041	GS882002	0	0	D	LinJ35_V5.1900	Hypothetical protein, conserved
								LinJ33_V3.1920	Hypothetical protein, conserved Hypothetical protein, conserved Dual engolficity protein kinese putotive
Lin288C8	-1.85	$\textbf{-0.9}\pm0.2$	0.004	GS882663	1e-122	0	b	LinJ27_V3.1120	Histone h1, putative
Lin292F2	-1.83	-0.9 + 0.3	0.043	GS882664	0	0	h	LIIJ2/_ ¥ 5.1150	Carboxy populase, pulative
Lin302C2	-1.75	-0.8 ± 0.2	0.002	GS882665	9e-154	õ	b	LinJ15 V3.1140	Tryparedoxin peroxidase
		0.0 ± 0.2	0.002	55002000	20 10 1	~	U	LinJ15_V3.1150	Hypothetical protein, conserved

Table S5. Hypothetical and unknown protein genes that are differentially regulated in S/A. F < -1.7 indicate gene down-regulation and F > 1.7 up-regulation.

Clone	Fold	$Log_2R + SD$	D	NCBI Acc.	E-v	alue	Clone	Annotation	Gene function
	change		I	No.	F	R	def.		
Lin44G7	2.75	1.5 ± 0.0	0.007	GS882666	0	0	b	LinJ31_V3.0960	Hypothetical protein, conserved
1: 15110	1.74		0.041	00000447	0	0	,	LinJ31_V3.0970	Hypothetical protein, conserved
Lin45A12	1.76	0.8 ± 0.1	0.041	GS882667	0	0	b	LinJ25_V3.0660	Hypothetical protein, conserved
Lin53F1	3.78	19 ± 02	0.049	GS882668	0	0	b	LinJ33 V3.0950	Hypothetical protein, conserved
		1.0 = 0.2						LinJ33_V3.0960	Hypothetical protein, conserved
Lin93F9	2.04	1.0 ± 0.1	0.032	GS882670	0	0	b	LinJ34_V3.2140	Hypothetical protein, conserved
Lin94G6	1.84	0.9 ± 0.1	0.045	GS882671	0	0	b	LinJ30_V3.3250	Hypothetical protein, conserved
								LinJ30-V3.3260	Hypothetical protein, conserved
Lin110E7	1 97	0.0 ± 0.0	0.017	C-5992672	0	0	ь	LinJ30_V3.3270	Hypothetical protein, conserved
Lin123C12	2.61	1.4 ± 0.0	0.017	GS882673	0	0	b	LinJ31_V3.1480	Hypothetical protein, unknown function
Lin134A3	2.75	1.4 ± 0.0 1.5 ± 0.1	0.045	GS882675	Ő	0	b	LinJ04 V3.0630	Hypothetical protein, conserved
								LinJ04_V3.0640	Hypothetical protein
Lin158A10	2.51	1.3 ± 0.0	0.016	GS882676	0	0	b	LinJ23_V3.0870	Hypothetical protein, conserved
Lin163E7	3.65	1.9 ± 0.0	0.012	GS882677	0	0	a	LinJ06_V3.0270	Hypothetical protein, conserved
Lin172G11	1.78	0.8 ± 0.1	0.035	GS882678	0	0	b	LinJ30_V3.3400	Hypothetical protein, conserved
LIII 189D8	1.74	0.8 ± 0.1	0.048	03882079	0	0	а	LinJ26_V3.1840	Hypothetical protein, conserved
Lin200B11	1.82	09 ± 00	0.018	GS882680	0	0	b	LinJ29 V3.1030	Hypothetical protein, conserved
Lin203A1	2.92	1.5 ± 0.1	0.016	GS882681	7e-130	7e-133	a	LinJ06_V3.1360	Hypothetical protein, conserved
Lin205H2	1.88	0.9 ± 0.1	0.027	GS882682	1e-180	0	b	LinJ23_V3.0130	Hypothetical protein, conserved
Lin206H3	3.42	1.8 ± 0.1	0.026	GS882683	0	0	b	LinJ10_V3.1370	Hypothetical protein, conserved
Lin208D6	2.70	1.4 ± 0.1	0.042	GS882684	0	0	а	LinJ29_V3.1150	Hypothetical protein, conserved
Lin239F8	2.06	1.1 ± 0.1	0.036	GS882686	0	2e-151	ь	LinJ32_V3.3360	Hypothetical protein, conserve
Lin252G12	1 0 1	0.0 ± 0.1	0.030	G\$882687	10-07	10.88	ь	LinJ32_V3.3370	Hypothetical protein, conserved
Lii1252012	1.71	0.9 ± 0.1	0.057	03002007	10-97	40-00	U	Lin02_V3.0320	Hypothetical protein, conserved
Lin228E5	2.65	1.4 ± 0.1	0.042	GS882688	7e-56	7e-56	b	LinJ06_V3.1290	Hypothetical protein, conserved
Lin236A4	1.73	0.8 ± 0.0	0.022	GS882689	0	3e-166	b	LinJ35_V3.4620	Hypothetical protein, conserved
								LinJ35_V3.4630	Hypothetical protein, conserved
1:-24209	1.70	0.0 1 0.1	0.040	C5992600	0	0	h	LinJ35_V3.4640	Hypothetical protein, conserved
Lin1440	1.79	0.8 ± 0.1	0.049	G\$882690	10.01	40.01	b	LinJ22 V2 1170	Hypothetical protein, unknown function
Lin16D7	-1.73	-0.8 ± 0.0 -0.8 ± 0.1	0.024	GS882692	1e-91	40-91	b	LinJ36 V3.5780	Hypothetical protein, conserved
							-	LinJ36_V3.5790	Hypothetical protein, conserved
Lin22E1	-1.73	-0.8 ± 0.0	0.013	GS882693	5e-171	0	b	LinJ19_V3.0490	Hypothetical protein, conserved
Lin31C4	-1.71	-0.8 ± 0.1	0.047	GS882694	0	0	b	LinJ11_V3.1360	Hypothetical protein, conserved
Lin36D11	-1.74	-0.8 ± 0.1	0.038	G\$882605	50-35	80-34	ь	LinJ11_V3.13/0 LinJ36_V3.0850	Hypothetical protein, conserved Hypothetical protein, unknown function
Lin44E11	-2.13	-0.0 ± 0.1 -1.1 ± 0.1	0.028	GS882696	0	0	b	LinJ20 V3.0020	Hypothetical protein, conserved
Lin47E12	-1.72	-0.8 ± 0.0	0.021	GS882697	1e-143	1e-143	b	LinJ16_V3.1060	Hypothetical protein, conserved
Lin62C5	-1.91	-0.9 ± 0.1	0.038	GS882698	0	4e-82	b	LinJ13_V3.0880	Hypothetical protein, conserved
Lin94C9	-2.41	-1.3 ± 0.1	0.029	GS882699	0	0	a	LinJ32_V3.0220	Hypothetical protein, conserved
Lin106F12 Lin110H2	-1.84	-0.9 ± 0.0	0.008	GS882702	0	0	a b	LinJ36_V3.0850	Hypothetical protein, unknown function Hypothetical protein, conserved
LIIIIIOIIIZ	1.75	0.0 ± 0.0	0.017	65002702	0	0	U	LinJ36 V3.3070	Hypothetical protein, conserved
Lin125F4	-2.26	-1.2 ± 0.1	0.049	GS882703	0	0	b	LinJ34_V3.2530	Hypothetical protein, conserved
								LinJ34_V3.2540	Hypothetical protein, conserved
Lin126C12	-2.11	-1.1 ± 0.1	0.043	GS882704	0	0	ь	LinJ29_V3.2720	Hypothetical protein, conserved
Lin131E1	-1 71	-0.8 ± 0.1	0.052	GS882705	0	0	а	LinJ29_V3.2730 LinJ15_V3.1270	Hypothetical protein, conserved Hypothetical protein, conserved
Lin131F10	-2.16	-1.1 ± 0.0	0.020	GS882706	Ő	Ő	b	LinJ32 V3.3160	Hypothetical protein, conserved
Lin138D2	-1.76	-0.8 ± 0.0	0.021	GS882707	0	0	b	LinJ07_V3.0630	Hypothetical protein, conserved
					_			LinJ07_V3.0640	Hypothetical protein, conserved
Lin139B8	-2.75	-1.5 ± 0.1	0.026	GS882708	0	0	a	LinJ33_V3.3280	Hypothetical protein, conserved
Lin144H / Lin154G1	-1.84	-0.9 ± 0.1 -1.7 ± 0.0	0.044	GS882709 GS882710	0	2e-179	b	LinJ31_V3.1210 LinJ30_V3.2310	Hypothetical protein, unknown function Hypothetical protein, conserved
20070101	550	1.7 _ 0.0	0.001	00002710	0	20177	0	LinJ30 V3.2320	Hypothetical protein, conserved
								LinJ30_V3.2330	Hypothetical protein, conserved
Lin158B7	-2.18	-1.1 ± 0.0	0.020	GS882711	0	0	b	LinJ31_V3.0250	Hypothetical protein, conserved
Lin167F2	-1.88	-0.9 ± 0.1	0.037	GS882712	0	0	b	LinJ28_V3.1770	Hypothetical protein, conserved
Lin182G8	-1 97	-1.0 ± 0.1	0.038	GS882713	0	0	h	LinJ28_V3.1780 Lin36_V3.6410	Hypothetical protein, conserved Hypothetical protein, conserved
20110200	1.77	1.0 ± 0.1	0.050	65662715	0	0	U	LinJ36 V3.6420	Hypothetical protein, conserved
Lin194D5	-2.56	-1.4 ± 0.1	0.037	GS882714	0	0	b	LinJ30_V3.0810	Hypothetical protein, conserved
Lin210A10	-1.73	-0.8 ± 0.0	0.000	GS882716	0	0	b	LinJ27_V3.0020	Hypothetical protein, conserved
L := 22207	1 75	0.0.00	0.019	C0000717	1. 179	0	1.	LinJ27_V3.0030	Hypothetical protein, conserved
LIIIZZZB/	-1.75	-0.8 ± 0.0	0.018	03062/17	16-108	0	D	LinJ21_V3.10/0	Hypothetical protein, conserved
								LinJ21_V3.1090	Hypothetical protein, conserved
Lin281H8	-28.20	-4.8 ± 0.6	0.026	GS882718	4e-14	4e-156	b	LinJ03_V3.0540	Hypothetical protein

Table S6. Unresolved clones that contain differentially regulated genes in S/A. F < -1.7 indicate gene down-regulation and F > 1.7 up-regulation.

Clone	Fold	$Log_2R \pm SD$	р	NCBI Acc.	E-v	alue	Clone	Annotation	Gene function	qr	tRT-PCR
	change			No.	F	R	def.				$F.ch.\pm \mathrm{SD}$
Lin10F7	2.85	1.5 ± 0.1	0.031	GS882719	0	0	b				_
Lin11G12	1.91	0.9 ± 0.0	0.011	GS882720	6e-41	9e-40	b				
Lin13H10	1.84	0.9 ± 0.1	0.043	GS882721	0	0	b				
Lin46E9	1.79	0.8 ± 0.1	0.031	S23B9	1e-94	Te-94	р ь				
Lin56G3	2.11	1.1 ± 0.0 1.5 ± 0.0	0.018	GS882723	4e-45	2e-59	b a				
Lin63A10	3.81	1.5 ± 0.0 1.9 ± 0.0	0.000	GS882724	0	0	b				
Lin65B9	2.41	1.3 ± 0.0 1.3 ± 0.1	0.026	GS882725	0	Ő	b				
Lin72E2	1.95	1.1 ± 0.1	0.046	GS882726	7e-173	0	b				
Lin79C10	2.99	1.6 ± 0.0	0.002	GS882727	0	0	b				
Lin81H6	2.27	1.2 ± 0.1	0.044	GS882728	0	0	b				
Lin86D3	5.17	2.01 ± 0.0	0.006	GS882729	0	0	b				
Lin91F9	3.03	1.6 ± 0.1	0.017	GS882669	0	0	с	LinJ31_V3.1630 LinJ31_V3.1640 LinJ31_V3.1650 LinJ35_V3.5080	Hypothetical protein, unknown function Dipthine synthase-like protein Hypothetical protein, conserved Hypothetical protein, conserved	N.D. - N.D. N.D.	$\textbf{-1.6} \pm 0.3$
Lin92C9	1.71	0.8 ± 0.0	0.027	GS882730	0	0	b				
Lin96B8	2.72	1.4 ± 0.2	0.042	GS882731	0	0	b				
Lin9/A12 Lin101D2	2.66	1.4 ± 0.0	0.016	GS882732	0	0	b				
Lin122C8	2.00	0.8 ± 0.1 15 ± 0.2	0.031	G\$882734	0	0	b				
Lin122C0	2.90 4.47	1.3 ± 0.2 2 2 + 0 1	0.049	GS882735	0	0	b				
Lin123C9	2.52	1.3 ± 0.1	0.032	GS882736	0	0	b				
Lin124D12	2.38	1.3 ± 0.1	0.027	GS882737	0	0	b				
Lin125E7	3.16	1.7 ± 0.0	0.003	GS882738	0	0	с				
Lin132B12	3.44	1.8 ± 0.1	0.024	GS882674	0	0	c	LinJ06_V3.0810 LinJ31 V3.2090	Hypothetical protein, unknown function Hypothetical protein, unknown function	N.D. N.D.	
Lin165B11	2.20	1.1 ± 0.1	0.033	GS882739	0	0	b				
Lin194F7	3.02	1.6 ± 0.0	0.009	GS882740	0	0	b				
Lin200G6	1.86	0.9 ± 0.1	0.027	GS882741	0	0	b				
Lin209B6	2.99	1.6 ± 0.1	0.040	GS882742	0	0	b				
Lin204G10	2.68	1.4 ± 0.0	0.006	GS882743	0	0	b L	L:=120 V2 2060	Cussing disminanimalate desussingless like metain	ND	
Lin225C6	2.50	1.2 ± 0.0	0.013	G5882745	0	20-146	U 1	LinJ30_V3.2000 LinJ30_V3.2070	Ubiquitin fusion protein	N.D. N.D.	
Lin225G6 Lin22842	5.55 4 30	1.8 ± 0.2 2.1 ± 0.1	0.042	G\$882745 G\$882685	2e-176	2e-151 8e-179	D	LinI27_V3 2470	Hypothetical protein conserved	ND	
Lin220A2	1.99	2.1 ± 0.1 1.0 ± 0.0	0.005	GS882746	0	0	b	LIIJ2/_ V 3.24/0	Hypolicical protein, conserved	N.D.	
Lin242C5	2.20	1.0 ± 0.0 1.1 ± 0.1	0.025	GS882747	0	Ő	b				
Lin251E12	1.90	0.9 ± 0.1	0.034	GS882748	õ	0	b				
Lin252C12	1.99	1.0 ± 0.0	0.005	GS882749	3e-175	1e-100	b				
Lin9B10	-1.99	-1.0 ± 0.1	0.032	S25A1	0	0	с	LinJ32_V3.3810	3-hydroxyisobutyryl-coenzyme a hydrolase-like	N.D.	
								1 127 1/2 0200	protein	ND	
								LinJ2/_V3.0300	Acyl carrier protein, putative	N.D.	
Lin13E5	-2.37	-1.2 ± 0.1	0.045	GS882750	0	0	с	LinJ24 V3.0530	DNAJ domain protein, putative	N.D.	
								LinJ24_V3.0540	Hypothetical protein, conserved	N.D.	
								LinJ24_V3.0550	Hypothetical protein, unknown function	N.D.	
								LinJ31_V3.2910	Hypothetical protein, conserved	N.D.	
1:	12.00	27.01	0.010	C0000751	0	0		LinJ31_V3.2920	Hypothetical protein, conserved	N.D.	
Lin22G2	-12.00	-3.7 ± 0.1 -0.9 ± 0.0	0.018	G\$882752	0	0	b	Lin132 V3 1250	Hypothetical protein conserved	ND	
2012402	1.71	0.7 ± 0.0	0.007	00002752	0	0	U	LinJ32 V3.1260	Proteasome regulatory non-ATP-ase subunit, putative	N.D.	
								LinJ32_V3.1270	Hypothetical protein, conserved	N.D.	
Lin31C6	-1.83	$\textbf{-0.9} \pm 0.1$	0.032	GS882753	0	0	b	LinJ15_V3.1630	Protein kinase, putative	N.D.	
						_		LinJ15_V3.1640	Condensin subunit 1, putative	N.D.	
Lin48B7	-2.10	-1.1 ± 0.1	0.041	GS882754	0	0	b	LinJ36_V3.6250	Hypothetical protein, conserved	N.D.	
Lin99F1	-1.72	-0.8 ± 0.0	0.004	G\$882755	0	0	b	Lin I30 V3 3430	PAS-domain containing phosphoglycerate kinase	ND.	
2	1.72	010 - 010	0.001	00002700	0	0	U	L: 120 N2 2110	putative	ND.	
Lin107F4	-1 77	-0.8 + 0.0	0.001	GS882701	0	0	h	LinJ30_V3.3440 LinJ18_V3.0780	DNA-directed RNA polymerase I putative	IN.D.	-11 + 02
/1 ¬	-1.//	0.0 ± 0.0	0.001	00002701	0	U	U	LinJ18 V3.0790	DNA-directed RNA polymerase II, putative	-	-1.1 ± 0.2
								LinJ18_V3.0800	Hypothetical protein, conserved	N.D.	
Lin118F12	-2.06	-1.0 ± 0.1	0.035	GS882756	1e-146	3e-147	b				
Lin122G6	-2.57	-1.4 ± 0.0	0.012	GS882757	0	0	с	LinJ27_V3.1930	Hypothetical protein, conserved	N.D.	12.00
								LinJ2/_V3.1940 LinJ27_V3.1950	D-lactate denydrogenase-like protein Branched-chain aminoacid aminotraneferace, putotivo	- N D	1.3 ± 0.0
								LinJ27_V3.1960	Hypothetical protein. conserved	N.D.	
Lin124E11	-2.04	-1.0 ± 0.1	0.038	GS882758	0	0	b	LinJ36_V3.7230	Hypothetical protein, conserved	N.D.	
								LinJ36_V3.7240	T-complex protein 1 (theta subunit), putative	N.D.	
Lin125G2	-2.56	-1.4 ± 0.1	0.045	GS882759	0	0	с	LinJ31_V3.3240	Hypothetical protein, conserved	N.D.	
								LinJ31_V3.3250	Phosphatidylethanolaminen-methyltransferase-like	-	-1.5 ± 0.1
								LinJ36 V3.1950	Hypothetical protein, conserved	N.D.	
								LinJ36_V3.1960	Hypothetical protein, conserved	N.D.	
Lin146F1	-2.19	-1.1 ± 0.0	0.010	GS882760	4e-91	4e-91	b				
Lin152A7	-2.31	-1.2 ± 0.1	0.030	GS882761	0	0	с	LinJ2/_V3.1920	Hypothetical protein, conserved	N.D.	
								LinJ27_V3.1950	Branched chain amino acid aminotransferase	N.D.	
								20021_+3.1750	putative	л. <i>р</i> .	
								LinJ27_V3.1960	Hypothetical protein, conserved	N.D.	
Lin161C6	-1.89	$\textbf{-0.9} \pm 0.1$	0.046	GS882762	0	0	b	LinJ35_V3.4910	Proteasome alpha-1 subunit, putative	N.D.	
Lin164C2	2.00	10.00	0.010	00000760	0	0	1.	LinJ35_V3.4920	Hypothetical protein, conserved	N.D.	
LIN104G2	-2.00	-1.0 ± 0.0	0.019	GS882/03	0	0	b	LinJ29_V3.00/0	Symaxin, putative Hypothetical protein, conserved	N.D. N D	
Lin168B7	1.73	0.8 ± 0.1	0.046	GS882764	-	3e-154	с	LinJ23 V3.0620	Oxidoreductase-like protein	N.D.	
							-	LinJ23_V3.0630	Oxidoreductase-like protein	N.D.	
Lin190D7	-2.14	-1.1 ± 0.1	0.031	GS882765	0	0	b	LinJ29_V3.0900	Hypothetical protein, unknown function	N.D.	
								LinJ29_V3.0910	Hypothetical protein, conserved	N.D.	

Lin199F4	-1.91	$\textbf{-0.9} \pm 0.0$	0.022	GS882715	0	0	а	LinJ29_V3.0920 LinJ07_v3.1270 LinJ07_V3.1280	Guanine deaminase, putative Hypothetical protein, conserved ATPase subunit 9. putative, pseudogene	N.D. N.D. N.D.	
Lin223G12	-1.99	$\textbf{-1.0} \pm 0.1$	0.042	GS882766	0	0	с	LinJ27_V3.1930 LinJ27_V3.1940	Hypothetical protein, conserved D-lactate dehydrogenase-like protein	N.D.	1.3 ± 0.0
								LinJ27_V3.1950	Branched-chain amino acid aminotransferase, putative	N.D.	
								LinJ27_V3.1960	Hypothetical protein, conserved	N.D.	
Lin227H5 Lin290F10	-1.71 -2.87	-0.8 ± 0.0 -1.5 ± 0.0	0.016 0.006	GS882767 GS882768	2e-105	3e-110	а				
Lin298C1	-1.71	$\textbf{-0.8} \pm 0.1$	0.037	GS882770	0	0	а	LinJ16_V3.1630	Endoplasmic reticulum oxidoreductin, putative	N.D.	
Lin306G4	-2.13	-1.1 ± 0.0	0.013	GS882769	0	0	b	LinJ16_V3.1640	DNA polymerase I alpha catalytic subunit, putative	N.D.	

Table S7. Hypothetical and unknown protein genes that are differentially regulated in L/A. F < -1.7 indicate gene down-regulation and F > 1.7 up-regulation.

Clone	Fold	$L_{OB2}R + SD$	n	NCBI Acc	E-value Clone		Clone	Annotation	Gene function
Cume	change	$Log_2R \pm 5D$	P	No.	F	R	def.	Amolaton	Genegancion
Lin21C1	2.19	11 ± 04	0.049	GS882777	0	0	b	LinJ23 V3.0100	Hypothetical protein, conserved
		1.1 = 0.1						LinJ23 V3.0110	Hypothetical protein, unknown function
Lin26G3	2.57	1.4 ± 0.1	0.001	GS882776	6e-161	7e-59	а	LinJ36_V3.5190	Hypothetical protein, unknown function
Lin47D11	2.12	1.1 ± 0.2	0.015	GS882775	0	0	b	LinJ30_V3.2860	Hypothetical protein, conserved
								LinJ30_V3.2870	Hypothetical protein, conserved
Lin47F5	3.20	1.7 ± 0.4	0.015	GS882774	0	0	a	LinJ02_V3.0060	Hypothetical protein, conserved
Lin70C4	2.86	1.5 ± 0.4	0.027	GS882771	0	0	b	Lin J32_V3.0370	Hypothetical protein, conserved
Lin77G12	2.02	1.0 ± 0.3	0.026	GS882773	0	0	b	LinJ32_V3.1720	Hypothetical protein, conserved
Lin83E8	2.21	1.1 ± 0.1	0.005	GS882778	0	0	b	LinJ35_V3.0140	Hypothetical protein, conserved
								LinJ35_V3.0150	Hypothetical protein, conserved
								LinJ35_V3.0160	Hypothetical protein, conserved
Lin109E2	2.04	1.0 ± 0.3	0.025	GS882779	0	0	b	LinJ31_V3.1420	Hypothetical protein, conserved
Lin119E7	2.39	1.3 ± 0.4	0.025	GS882780	0	0	b	LinJ31_V3.1480	Hypothetical protein, unknown function
Lin121C6	3.18	1.7 ± 0.0	0.000	GS882781	0	0	b	LinJ09_V3.1600	Hypothetical protein, conserved
								LinJ09_V3.1610	Hypothetical protein, conserved
L := 109C111	2.21	11.01	0.000	00000700	1.170	1.169		LinJ09_V3.1620	Hypothetical protein, conserved
Lin128C11	2.21	1.1 ± 0.1	0.002	GS882783	1e-168	1e-108	D L	LinJ26_V3.2300	Hypothetical protein, conserved
LIII 30D8	2.04	1.4 ± 0.1	0.002	G5062704	C: 101	0	5	LIIJ09_V3.0910	Hypothetical protein, conserved
Lin131G3	2.95	1.6 ± 0.3	0.015	GS882785	0e-121	0	D	LinJ35_V3.3770	Hypothetical protein, conserved
LIN132B12	2.13	1.1 ± 0.2	0.016	GS882780	0	8e-179	D	LinJ06_V3.0810	Hypothetical protein, unknown function
Lin122E0	2.62	10 ± 0.4	0.017	CS882787	0	0	ь	LinJ31_V3.2090	Hypothetical protein, unknown function
Lin124A2	2.05	1.9 ± 0.4 1.2 ± 0.2	0.017	CS882789	0	0	b	LinJ04_V2.0620	Hypothetical protein, conserved
LIIII34A3	2.43	1.3 ± 0.2	0.011	03882788	0	0	U	LinJ04_V3.0640	Hypothetical protein
Lin136D8	675	28 ± 0.6	0.014	G\$882789	0	0	h	LinJ04_V3.0040	Hypothetical protein conserved
LIIIIJODO	0.75	2.8 ± 0.0	0.014	00002707	0	0	0	LinJ33_V3.0660	Hypothetical protein, conserved
								Lin I33_V3.0670	Hypothetical protein, conserved
Lin143H10	2.04	1.0 ± 0.1	0.005	GS882790	0	0	а	LinJ31_V3.0690	Hypothetical protein, conserved
Lin147B4	2.04	1.0 ± 0.1 1.0 ± 0.3	0.032	GS882792	Ő	1e-134	b	LinJ08_V3.1090	Hypothetical protein, conserved
		1.0 ± 0.0					-	LinJ08 V3.1100	Hypothetical protein, conserved
Lin157C6	2.24	1.2 ± 0.3	0.019	GS882793	0	0	b	LinJ26 V3.2580	Hypothetical protein, conserved
Lin158A10	2.19	1.1 ± 0.2	0.016	GS882794	0	0	b	LinJ23 V3.0870	Hypothetical protein, conserved
Lin158F5	2.45	1.3 ± 0.1	0.002	GS882795	0	0	b	LinJ31_V3.1620	Hypothetical protein, conserved
								LinJ31_V3.1630	Hypothetical protein, unknown function
Lin160E1	3.69	1.9 ± 0.6	0.034	GS882796	0	2e-111	b	LinJ30_V3.2310	Hypothetical protein, conserved
								LinJ30_V3.2320	Hypothetical protein, conserved
								LinJ30_V3.2330	Hypothetical protein, conserved
Lin163E7	2.89	1.5 ± 0.5	0.029	GS882797	0	0	а	LinJ06_V3.0270	Hypothetical protein, conserved
Lin166D11	2.50	1.3 ± 0.3	0.012	GS882798	0	0	b	LinJ23_V3.1350	Hypothetical protein, conserved
								LinJ23_V3.1360	Hypothetical protein, conserved
Lin166H10	3.87	2.0 ± 0.7	0.038	GS882799	0	0	а	LinJ30_V3.2310	Hypothetical protein, conserved
								LinJ30_V3.2320	Hypothetical protein, conserved
L := 177D0	2.01	10:02	0.020	C 5 99 2 900	0	0	L.	LinJ30_V3.2330	Hypothetical protein, conserved
LIII1//B9	2.01	1.0 ± 0.3	0.020	G5882800	0	0	0 1	Linj20_V5.2580	Hypothetical protein, conserved
Lin 194B7	2.04	1.0 ± 0.2	0.012	GS882801	0	0	D h	LinJ25_V5.1850	Hypothetical protein, unknown function
Lin200D7	2.17	1.1 ± 0.0 1.0 ± 0.4	0.000	G5882802	0	0	b	LinJ30_V3.0320	Hypothetical protein, conserved
Lin201C10	2.00	1.0 ± 0.4 1.2 ± 0.2	0.042	G\$882803	20-102	70-130	b	LinJ31_V3.2080	Hypothetical protein, unknown function
LIII201C10	2.20	1.2 ± 0.3	0.017	03882804	26-102	76-130	U	LinJ34_V3.2770	Hypothetical protein, conserved
Lin203A1	2 77	15 ± 0.6	0.044		50-134	70-130		LinJ06_V3_1360	Hypothetical protein, conserved
Lin203A1	7.49	1.5 ± 0.0 2.9 ± 0.4	0.005	G\$882806	0	0	h	LinJ33_V3.0650	Hypothetical protein, conserved
20120400	7.47	2.7 ± 0.4	0.005	05002000	0	0	0	Lin J33_V3.0660	Hypothetical protein, conserved
								LinJ33_V3.0670	Hypothetical protein, conserved
Lin209B12	5.35	2.4 ± 0.1	0.000	GS882807	7e-93	0	а	LinJ35 V3.4190	Conserved Hypothetical protein
Lin215A9	2.15	1.1 ± 0.4	0.038	GS882808	0	0	b	LinJ10 V3.1230	Hypothetical protein, conserved
		1.1 = 0.1						LinJ10 V3.1240	Hypothetical protein, conserved
								LinJ36 V3.2290	Hypothetical protein, conserved
Lin226F12	2.16	1.1 ± 0.3	0.024	GS882810	0	0	b	LinJ27_V3.2090	Hypothetical protein, conserved
Lin226G2	2.08	1.1 ± 0.3	0.029	GS882811	0	0	b	LinJ23_V3.1330	Hypothetical protein, unknown function
Lin230F8	2.45	1.3 ± 0.5	0.042	GS882812	0	0	b	LinJ06_V3.1350	Hypothetical protein, unknown function
Lin230H7	4.56	2.2 ± 0.6	0.027	GS882813	0	5e-103	b	LinJ08_V3.0020	Hypothetical protein, conserved
Lin233D10	2.24	1.2 ± 0.3	0.027	GS882814	0	-	b	LinJ13_V3.0320	Hypothetical protein, conserved
								LinJ13_V3.0330	Unknown
Lin238B10	2.43	1.3 ± 0.4	0.028	GS882815	0	0	а	LinJ34_V3.0770	Hypothetical protein, conserved
Lin239G8	3.25	1.7 ± 0.6	0.043	GS882816	0	0	b	LinJ32_V3.3180	Hypothetical protein, conserved (pseudogene)
Lin288E4	2.80	1.5 ± 0.5	0.042	GS882817	0	1e-140	b	LinJ21_V3.1920	Hypothetical protein unknown function
Lin289C9	2.48	1.3 ± 0.4	0.036	GS882818	0	0	b	LinJ28_V3.1110	Hypothetical protein, conserved
Lin289G12	2.07	1.1 ± 0.3	0.027	GS882819	0	0	b	LinJ31_V3.1760	Hypothetical protein, conserved
Lin246C5	2.60	1.4 ± 0.4	0.031	GS882820	0	0	b	LinJ08_V3.1010	Hypothetical protein, conserved
Lin250G5	2.82	1.5 ± 0.1	0.002	GS882821	0	0	b	LinJ09_V3.1610	Hypothetical protein, conserved
Lin265F5	2.53	1.3 ± 0.4	0.029	GS882823	0	5e-171	b	LinJ13_V3.0330	Unknown
Lin269B4	3.11	1.6 ± 0.5	0.032	GS882824	0	0	b	LinJ26_V3.2300	Hypothetical protein, conserved
Lin2/1B5	2.06	1.0 ± 0.4	0.042	G\$882825	0	0	D	Linj09_v3.0020	Hypothetical protein, conserved
Lin14C11	-1.90	-0.9 ± 0.1	0.003	GS882826	0	0	b	LinJ24_V3.1740	Hypothetical protein. conserved
1-0240	1 77		0.000	0000007	0	0		LinJ24_V3.1750	Hypothetical protein. conserved
Lin23A8	-1.//	-0.8 ± 0.1	0.009	G\$882827	0	0	b	LinJ13_V3.0890	Hypothetical protein. conserved
L in 22E10	2 45	14402	0.010	65002020	0	20.01	~	LINJ15_V5.0900 LinJ31_V2.1220	Hypothetical protein, conserved
Lin20D5	-2.00	-1.4 ± 0.3	0.019	G202220	0	20-81	a h	LinJ20 V2 1200	Hypothetical protein, conserved
LIII29D3	-1.80	-0.9 ± 0.1	0.007	526212	0	0	D L	LIIIJ29_V3.1200	Hypothetical protein, conserved
LINSIC/ Lin62C5	-1.86	-0.9 ± 0.2	0.013	528012	20 57	0	D L	LINJ29_V3.1200	Hypothetical protein, conserved
LII02C3	-1.73	-0.8 ± 0.2	0.013	G8002021	50-07	0	D L	LIIJ15_V3.0880	Hypothetical protein, conserved
LIII129H3	-2.04	-1.0 ± 0.4	0.048	G8892822	0	0	D L	LIIJ10_V3.1110	Hypothetical protein, conserved
LIII134B11 Lin135A9	-1.93	-0.9 ± 0.4	0.054	GS892922	0	0	D	LIIIJ29_V3.0110 LinI35_V2.4270	Hypothetical protein, conserved
Lin139D2	-1.98	-1.0 ± 0.3	0.033	GS892924	0	0	U 16	Lin 107 V 2.4270	Hypothetical protein, unknown fulletion
LIII 1 30D/2	-1./8	-0.8 ± 0.2	0.022	03002834	U	U	U	LinJ07_V3.0030	Hypothetical protein, conserved
L in 130R9	-2.16	11+05	0.052	G\$8829925	0	0	Ь	LinJ0/_V5.0040	Hypothetical protein, conserved
Lin130E0	-2.10	-1.1 ± 0.5	0.055	G8883635	0	0	U 9	Lin J31 V3 2110	Hypothetical protein, colliserved
LIII I 39F 9	-2.19	-1.1 ± 0.5	0.032	03002830	U	U	а	LinJ31_V3.3110	Hypothetical protein, unknown function
								LING J 1_ V J.J 120	Typoulouen protein, unknown function

Lin154A5	-2.25	-1.2 ± 0.2	0.006	GS882837	0	0	b	LinJ10_V3.0720	Hypothetical protein, conserved
Lin154G1	-2.92	-1.5 ± 0.5	0.033	GS882838	0	0	b	LinJ30_V3.2310	Hypothetical protein, conserved
								LinJ30 V3.2310	Hypothetical protein, conserved
								LinJ30_V3.2310	Hypothetical protein, conserved
Lin171B2	-2.92	-1.5 ± 0.2	0.005	GS882839	3e-135	0	b	LinJ24_V3.0560	Hypothetical protein, conserved
Lin177B5	-2.47	-1.3 ± 0.2	0.007	GS882840	5e-94	0	b	LinJ24_V3.1970	Hypothetical protein, conserved
Lin183A3	-1.95	-1.0 ± 0.4	0.045	GS882841	0	0	b	LinJ24_V3.2250	Hypothetical protein, conserved
Lin209F8	-1.92	-0.9 ± 0.3	0.028	GS882842	0	0	b	LinJ31_V3.1270	Hypothetical protein, conserved
Lin234B2	-1.73	-0.8 ± 0.2	0.025	GS882844	0	4e-159	b	LinJ28_V3.0960	Hypothetical protein, conserved
Lin236E4	-1.96	-1.0 ± 0.3	0.023	GS882845	0	0	а	LinJ33_V3.3280	Hypothetical protein, conserved
								LinJ33_V3.3290	Hypothetical protein, conserved
Lin241H12	-2.31	-1.2 ± 0.5	0.049	GS882846	0	0	b	LinJ34_V3.1120	Hypothetical protein, conserved
Lin243C7	-1.79	-0.8 ± 0.2	0.014	GS882847	5e-109	1e-48	b	LinJ02_V3.0280	Hypothetical protein, conserved
Lin267A6	-2.21	-1.1 ± 0.2	0.001	GS882848	0	0	b	LinJ06_V3.1270	Hypothetical protein, unknown function
Lin274C4	-1.87	-0.9 ± 0.2	0.017	GS882849	0	0	b	LinJ07_V3.0630	Hypothetical protein, conserved
Lin280G2	-2.29	-1.2 ± 0.3	0.017	GS882850	0	0	b	LinJ31_V3.1470	Hypothetical protein, unknown function
Lin281H8	-42.32	-5.4 ± 1.3	0.018	GS882851	8e-68	0	b	LinJ03_V3.0540	Hypothetical protein
Lin284E12	-2.09	-1.1 ± 0.2	0.011	GS882852	3e-70	8e-176	b	LinJ03_V3.0540	Hypothetical protein
Lin287C10	-2.50	-1.3 ± 0.4	0.026	GS882853	0	0	b	LinJ32_V3.3600	Hypothetical protein, conserved
								LinJ32 V3.3610	Hypothetical protein, conserved

Table S8. Unresolved clones that contain differentially regulated genes in L/A. F < -1.7 indicate gene down-regulation and F > 1.7 up-regulation.

Cl	Г	1 5 (65		C D I		1	D.C	11			
Clone	F	$Log_2F \pm SD$		GenBank	e-v Ew	alue Ru	Def.	Id.	Annotated Gene Function (GO terms in additional Fig	<i>q1</i>	RT-PCR
			р		ΓW	Αv			N., daditonal file N)	T/-	Γ± SD
Lin7D12	2 53	13 ± 05	0.042	G\$882871	0		c				
Lin9E12	2.33	1.3 ± 0.3 1.3 ± 0.4	0.042	G\$882870	1e-91	- 6e-121	b				
Lin12G9	2.34	1.3 ± 0.4 1.2 ± 0.1	0.002	GS882869	3e-27	3e-27	b				
Lin13B7	3.25	1.7 ± 0.5	0.030	GS882868	0	0	b				
Lin24C4	5.35	2.4 ± 0.5	0.012	GS882867	0	0	а				
Lin25B5	3.02	1.6 ± 0.5	0.030	GS882866	0	0	b				
Lin32B5	2.77	1.5 ± 0.5	0.038	GS882865	1e-29	1e-23	b				
Lin34D7	2.09	1.1 ± 0.2	0.010	GS882864	1e-128	3e-018	b				
Lin49F3	2.22	1.2 ± 0.2	0.013	GS882876	7e-136	0	b	LinJ27_V3.0020	Hypothetical protein, conserved	N.D.	
								LinJ27_V3.0030	Hypothetical protein, conserved	N.D.	
1:=52D9	2.15	11.02	0.020	C 5 99 7 96 7	0	0	L	LinJ2/_V3.0040	Metallo-peptidase, Clan M-, Family M48	N.D.	
Lin55B1	2.15	1.1 ± 0.3 1.6 ± 0.2	0.029	GS882855	0	0	b				
Lin56G3	2 73	1.0 ± 0.3 1.4 ± 0.5	0.036	G\$882856	4e-45	2e-59	9 9				
Lin56G7	2.75	1.4 ± 0.5 1.3 ± 0.0	0.000	G\$882857	0	0	h				
Lin63A10	2.40	1.3 ± 0.0 1.3 ± 0.1	0.004	GS882858	Ő	0	b				
Lin67B10	3.37	1.8 ± 0.3	0.011	GS882859	Ő	Ő	b				
Lin72E2	2.04	1.0 ± 0.2	0.015	GS882860	7e-173	0	b				
Lin74D2	2.44	1.3 ± 0.4	0.033	GS882861	0	0	b				
Lin76A8	3.05	1.6 ± 0.5	0.033	GS882862	0	0	b				
Lin77D11	2.06	1.0 ± 0.2	0.015	GS882772	0	0	с	LinJ32_V3.1580	Hypothetical protein	N.D.	
								LinJ32_V3.1590	Hypothetical protein, conserved	N.D.	
								LinJ10_V3.0460	Hypothetical protein, unknown function	N.D.	
Lin81B5	2.05	1.0 ± 0.1	0.003	GS882872	0	0	b				
Lin81H6	2.47	1.3 ± 0.2	0.006	GS882873	0	0	b				
Lin86D3	6.41	2.7 ± 0.1	0.001	GS882874	0	0	b	L 110 V2 1620	Here the discharge to be a second	ND	
Lin93C7	2.34	1.2 ± 0.3	0.020	GS882875	0	0	b	LinJ18_V3.1630	Hypothetical protein, conserved	N.D.	
								LinJ18_V3.1640	Hypothetical protein, conserved	N.D.	
Lin93D7	2.26	1.2 ± 0.2	0.016	G\$882800	0	0	ь	Linj18_V3.1650	Chaperone protein DNAJ, putative	N.D.	
Lin96B8	2.20	1.2 ± 0.3 1.1 ± 0.0	0.010	GS882891	0	0	b				
Lin100F11	2.22	1.1 ± 0.0 1.4 ± 0.2	0.000	G\$882892	0	5e-137	b				
Lin105H10	2.04	1.4 ± 0.3 1.0 ± 0.3	0.022	GS882877	0	0	b	LinI18 V3 0570	Hypothetical protein conserved	ND	
Lin109E12	2.04	1.0 ± 0.3 1.0 ± 0.2	0.0022	GS882893	3e-166	0	b	Emp10_15.0570	Hypothetical protein, conserved	н.р.	
Lin111F8	2.07	1.0 ± 0.2 1.0 ± 0.1	0.003	GS882894	1e-140	1e-137	b				
Lin122B2	2.11	1.0 ± 0.1 1.1 ± 0.2	0.014	GS882878	0	0	b	LinJ19 V3.1490	Oxidoreductase-like protein	N.D.	
								LinJ19_V3. 1500	Hypothetical protein, conserved	N.D.	
Lin122H12	2.09	1.1 ± 0.3	0.023	GS882895	0	0	b				
Lin124D12	2.43	1.3 ± 0.1	0.001	GS882896	0	0	b				
Lin 125A7	2.16	1.1 ± 0.3	0.022	GS882782	0	0	с	LinJ31_V3.1360	Hypothetical protein, conserved	N.D.	
Lin127A1	2.94	1.6 ± 0.1	0.000	GS882897	0	0	b				
Lin131C1	2.23	1.2 ± 0.4	0.044	GS882879	0	0	b	LinJ10_V3.0080	Hypothetical protein, conserved	N.D.	
			0.000	GGGGGGGGGGGGG				LinJ10_V3.0090	WD-repeat containing protein	N.D.	
Lin132C4	2.32	1.2 ± 0.2	0.009	GS882880	0	0	а	LinJ21_V3.2040	Hypothetical protein, conserved	N.D.	
								LinJ21_V3.2050	RNA-binding regulatory protein (pumilio family),	N.D.	
Lin132C5	216	1.1 ± 0.3	0.028	G\$882898	0	0	а		putative		
Lin139B3	3.12	1.1 ± 0.5 1.6 ± 0.5	0.020	GS882881	0	0	b	LinJ16 V3.0460	Hypothetical protein, conserved	N.D.	
		1.0 - 0.0					-	LinJ16 V3.0470	60S ribosomal protein L21, putative	N.D.	
Lin145E8	4.08	2.0 ± 0.2	0.004	GS882791	0	-	с	LinJ23_V3.1380	Hypothetical protein, unknown function	N.D.	
Lin149C8	2.48	1.3 ± 0.5	0.042	GS882899	0	0	а				
Lin166G8	2.54	1.3 ± 0.2	0.005	GS882900	0	0	b				
Lin174G2	2.68	1.4 ± 0.6	0.049	GS882901	0	0	b				
Lin189F2	2.09	1.1 ± 0.3	0.025	GS882902	0	0	b				
Lin202D11	2.62	1.4 ± 0.3	0.013	GS882882	0	0	b	LinJ06_V3.0340	Serine peptidase, clan SC, family S9A-like protein	N.D.	
								LinJ06_V3.0350	NAD(p)-dependent steroid dehydrogenase-like	N.D.	
								1. 104 1/2 0240	protein	ND	
Lin202C8	20.1	10102	0.022	C5002002	0	0	h	LinJ06_V3.0360	Hypothetical protein, conserved	N.D.	
Liii20208	20.1	1.0 ± 0.5	0.055	03882885	0	0	U	LinJ06_V3.0340	NAD(n) dependent storoid debydrogenese like	N.D.	
								LIIJ00_ V 5.0550	protein	IV.D.	
								LinJ06 V3.0360	Hypothetical protein, conserved	N.D.	
Lin205G10	2.69	1.4 ± 0.4	0.029	GS882903	0	0	а				
Lin209B6	2.34	1.2 ± 0.1	0.001	GS882904	0	0	b				
Lin209H1	2.50	1.3 ± 0.2	0.012	GS882884	0	0	а	LinJ20_V3.0030	Hypothetical protein, conserved	N.D.	
								LinJ20_V3.0040	Phosphate-repressible phosphate permease	N.D.	
Lin211C2	750	14101	0.002	G8992005	50 171	0	h	Lin 127 V2 0610	Hypothetical protain concerned	ND	
LIII21103	2.38	1.4 ± 0.1	0.002	03002003	Je-1/1	0	b	Linj2/_V3.0610	Small CTD hinding protein Doh1 putotius	N.D.	
Lin213C10	2 38	13 ± 02	0.010	G\$882905	8e-37	0	h	LIIJ27_V5.0020	Sinan OTF-binding protein Rab1, putative	N.D.	
Lin215C10	2.50	1.3 ± 0.2 1.2 ± 0.3	0.024	G\$882906	6e-87	4e-91	3				
Lin216D9	3.12	1.2 ± 0.3 1.6 ± 0.2	0.004	GS882907	0	0	b				
Lin219D1	1.81	0.9 ± 0.3	0.037	GS882843	0	0	c	LinJ02 V3.0720	Hypothetical protein, conserved	N.D.	
							-	LinJ02_V3.0730	Hypothetical protein, conserved	N.D.	
								LinJ02_V3.0740	Hypothetical protein, conserved	N.D.	
								LinJ27_V3.2470	Hypothetical protein, conserved	N.D.	
Lin224B12	2.71	1.4 ± 0.3	0.010	GS882886	0	0	b	LinJ33_V3.0220	Hypothetical protein, unknown function	N.D.	
Lin225C1	2.30	1.2 ± 0.3	0.016	GS882809	2e-71	3e-83	b	LinJ29_V3.1250	Tryparedoxin	-	
								LinJ29_V3.1260	Hypothetical protein, conserved	N.D.	
Lin225G6	2.24	1.2 ± 0.4	0.044	GS882908	0	1e-156	b				
Lin229G11	3.05	1.6 ± 0.2	0.004	GS882887	0	0	а	LmJ23_V3.0340	Iryptophanyl-tRNA synthetase, putative	N.D.	
1-04104	2.24		0.021	C6000000	2, 170	0	1.	LmJ23_V3.0350	Hypothetical protein, conserved	N.D.	
Lin24164	2.34	1.2 ± 0.3	0.021	GS882909	3e-178	0	b	Lin 121 1/2 1240	Hypothetical protain accounted	ND	
Lill23209	2.22	1.1 ± 0.4	0.038	G\$882010	-	0	C L	LIIJ51_V3.1340	rrypometical protein, conserved	IN.D.	
Lill200D/	3.80	1.9 ± 0.6	0.030	G5062910	0	0	D L				
Lin288F7	2.15	1.1 ± 0.4 1.0 ± 0.2	0.041	GS882012	0	2e-170	b b				
Lill2001 /	5.09	1.9 ± 0.5	0.000	00002712	0	0	U				

Lin252E9	2.44	1.3 ± 0.5	0.039	GS882913	0	0	b			
Lin256D11	3.81	1.9 ± 0.4	0.016	GS882914	0	0	b			
Lin257F10	2.25	1.2 ± 0.2	0.011	GS882915	0	0	b			
Lin271H5	2.11	1.1 ± 0.0	0.001	GS882916	5e-137	1e-137	b			
Lin272G8	2.57	1.4 ± 0.0	0000	GS882917	0	0	b			
Lin302C2	2.55	1.4 ± 0.5	0.037	GS882888	7e-161	0	b	LinJ15 V3.1140	Tryparedoxin peroxidase	N.D.
								LinJ15 V3.1150	Hypothetical protein, conserved	N.D.
Lin309G6	2.17	1.1 ± 0.4	0.046	GS882889	0	0	а	LinJ34 V3.2580	Methyltransferase-like protein	N.D.
		1.1 = 0.1							I J	
								LinJ34 V3.2590	Hypothetical protein, conserved	N.D.
Lin4B9	-2.40	-1.3 ± 0.2	0.05	GS882941	0	0	c	Lin I29 V3 1450	Amastin-like protein	ND
Lintby	2.10	-1.5 ± 0.2	0.00	00002711	0	0	č	Lin I06 V3 1280	Hypothetical protein conserved	ND
								LinJ06_V3.1200	Hypothetical protein, conserved	ND.
								LinJ06_V2.1200	Hypothetical protein, conserved	ND.
Lin7H4	3.07	1.6 ± 0.1	0.001	C\$882042	50.110		0	LinJ00_V3.1300	Amostin putativa	N.D.
LIII/H4	-3.07	-1.0 ± 0.1	0.001	03002942	3e-119	-	c	Linj29_V 5.3010	Amasun, putative	N.D.
1:004	2.00	10102	0.024	C 5992019	0	0	L	LIIIJ29_V 3.3020	ruzin-like protein, putative	N.D.
LIII8D4	-2.00	-1.0 ± 0.3	0.024	03882918	0	0	0			
Lin22G2	-16.58	-4.1 ± 0.4	0.003	GS882919	0	0	Ь			
Lin25B8	-2.08	-1.1 ± 0.1	0.003	GS882920	0	6e-161	Ь			
Lin25B12	-1.88	-0.9 ± 0.3	0.038	S28B4	0	-	с	Lin29_V3.2310	GTP-binding protein, putative	N.D.
								Lin29_V3.2320	Hypothetical protein, conserved	N.D.
Lin25C5	-2.70	-1.4 ± 0.0	0.000	GS882921	0	4e-113	b			
Lin32G7	-2.17	-1.1 ± 0.1	0.003	GS882922	5e-134	0	b			
Lin37B3	-2.14	-1.1 ± 0.4	0.047	GS882923	-	4e-141	с	LinJ31_V3.3100	Hypothetical protein. conserved	N.D.
								LinJ31_V3.3110	Hypothetical protein. unknown function	N.D.
Lin37E5	-1.88	-0.9 ± 0.3	0.028		0	0	а	LinJ27_V3.0970	Hypothetical protein, conserved	N.D.
								LinJ27 V3.0980	gBP21, MRP1	N.D.
Lin46H3	-2.16	-1.1 ± 0.2	0.012	GS882943	1e-128	0	с	LinJ27 V3.1950	Branched-chain aminoacid aminotransferase putative	N.D.
	2.10	1.1 ± 0.2	0.012	00002745	10 120	5	č	Lin 127 V3 1060	Hypothetical protein conserved	ND.
								Lin35 V3 3620	Hypothetical protein, conserved	ND.
Lin58D8	-1.72	0.8 ± 0.2	0.020	G\$882944	0	0	h	Lin I15 V3 0340	Hypothetical protein, conserved	ND.
LIIIJODO	-1.72	-0.8 ± 0.2	0.020	03002744	0	0	U	Linj15_V2.0250	Eastin autotive	N.D.
								LIIJ15_V3.0350	Ecouii, putative	N.D.
L = 100E11	2.10	17.04	0.025	CE002045		0		Linj15_V3.0360	Hypothetical protein, unknown function	N.D.
Lin129F11	-3.19	-1.7 ± 0.6	0.035	GS882945	-	0	с	LinJ22_V3.0630	Serine/threonine protein kinase SOS2, putative	N.D.
					_	_		LinJ22_V3.0640	Hypothetical protein, conserved	N.D.
Lin137B5	-1.83	-0.9 ± 0.3	0.032	GS882924	0	0	b	LinJ35_V3.1930	Hypothetical protein, conserved	N.D.
								LinJ35_V3.1940	Hypothetical protein, conserved	N.D.
								LinJ35_V3.1950	Ribosomal protein L32-like protein	N.D.
Lin144G1	-1.93	-0.9 ± 0.3	0.026	GS882946	0	0	с	LinJ36_V3.0120	Hypothetical protein, conserved	N.D.
								LinJ36_V3.0130	mRNA capping methyltransferase, putative	N.D.
								LinJ31_V3.1450	Hypothetical protein, conserved	N.D.
								LinJ31_V3.1460	P-glycoprotein-like protein	N.D.
Lin162A9	-1.73	-0.8 ± 0.2	0.014	GS882947	0	0	b	LinJ22_V3.0470	Hypothetical protein, conserved	N.D.
								LinJ22_V3.0480	Ubiquitin-conjugating enzyme-like protein	N.D.
Lin164F3	-2.28	-1.2 ± 0.4	0.038	GS882925	0	0	b			
Lin165D2	-2.10	-1.1 ± 0.4	0.045	GS882926	0	7e-127	b			
Lin172A9	-2.00	-1.0 ± 0.4	0.047	GS882948	0	0	а	LinJ06 V3.1200	Hypothetical protein, conserved	N.D.
		110 ± 011			÷	-	-	Lin I06 V3 1210	Nuclear transport factor 2 protein (NTF2) putative	ND
Lin184D12	-2.27	-12 ± 05	0.047	GS882927	0	0	b	1000_101210	rideneau riansport factor 2 protein (1112), patatre	11.21
Lin109E5	1.75	-1.2 ± 0.3	0.047	G5882028	0	20.150	ь ь			
Lin170E3	-1.75	-0.0 ± 0.1	0.002	C\$992020	0	00.149	b			
Lill177D4	-1.92	-0.9±0.2	0.017	03002929	2. 26	70-140	U 1.			
Lin200H6	-12.07	-3.6 ± 1.5	0.055	GS882930	3e-36	/e-59	b	1 - 126 1/2 6266	Here the discharge in a second state	ND
Lin201F12	-1.79	-0.8 ± 0.3	0.038	GS882949	0	0	b	LinJ36_V3.6360	Hypothetical protein, conserved	N.D.
T			0.67.					LinJ36_V3.6360	Centrin, putative	N.D.
Lin209D12	-1.77	$\textbf{-0.8} \pm 0.1$	0.006	GS882931	4e-45	1e-60	Ь			
Lin211C5	-1.74	$\textbf{-0.8} \pm 0.2$	0.022	GS882932	0	0	b			
Lin216A8	-1.81	$\textbf{-0.9}\pm0.3$	0.029	GS882933	0	0	а			
Lin224B5	-1.75	-0.8 ± 0.2	0.017	GS882950	0	0	b	LinJ16_V3.0720	Hypothetical protein, conserved	N.D.
								LinJ16_V3.0730	Cysteine peptidase, Clan CA, family C19, putative	N.D.
Lin226G7	-1.84	-0.9 ± 0.3	0.041	GS882951	0	0	с	LinJ15 V3.0490	Hypothetical protein	N.D.
	1.0.	0.7 ± 0.5			~	2	÷	LinI22 V3 1120	Polyprotein putative	ND
Lin244G7	-3.25	-17 + 07	0.046	G\$882934	3e-67	7e-65	я	LIN522_ ¥ 3.1120	r of protein, puture	
Lin201C?	2.51	-1.7±0.7	0.047	G\$892025	0	0	a h			
Lin20102	-2.51	-1.5 ± 0.5	0.047	CE002022	0	0	г			
Lin20JC9	-2.13	-1.1 ± 0.1	0.004	03002930	0	0	U 1.			
Lin28/B10	-3.56	-1.7 ± 0.3	0.008	GS882937	0	0	b			
1 400 211 / 11 / 2	-1.75	-0.8 ± 0.3	0.048	GS882938	0	0	b			
LIIIZ94HZ	-2.52	-1.3 ± 0.1	0.002	GS882952	0	0	b	LinJ36_V3.6750	Hypothetical protein, conserved	N.D.
Lin294H2 Lin297C3										
Lin294H2 Lin297C3								LinJ36_V3.6760	MAP kinase, putative	N.D.
Lin297C3							1			
Lin297C3	-2.18	-1.1 ± 0.2	0.015	GS882939	0	0	b			
Lin297C3 Lin297H12 Lin300A12	-2.18 -1.81	-1.1 ± 0.2 -0.9 ± 0.3	0.015 0.029	GS882939 GS882940	0 0	0 6e-115	b b			
Lin297C3 Lin297H12 Lin300A12 Lin301A6	-2.18 -1.81 -1.80	-1.1 ± 0.2 -0.9 ± 0.3 -0.8 ± 0.4	0.015 0.029 0.053	GS882939 GS882940 GS882854	0 0 6e-118	0 6e-115 0	b b c	LinJ26_V3.2190	Hypothetical protein, conserved	N.D.
Lin297H12 Lin297H12 Lin300A12 Lin301A6	-2.18 -1.81 -1.80	-1.1 ± 0.2 -0.9 ± 0.3 -0.8 ± 0.4	0.015 0.029 0.053	GS882939 GS882940 GS882854	0 0 6e-118	0 6e-115 0	b c	LinJ26_V3.2190 LinJ26 V3.2200	Hypothetical protein, conserved Hypothetical protein, conserved	N.D. N.D.
Lin297C3 Lin297H12 Lin300A12 Lin301A6	-2.18 -1.81 -1.80	$\begin{array}{c} -1.1 \pm 0.2 \\ -0.9 \pm 0.3 \\ -0.8 \pm 0.4 \end{array}$	0.015 0.029 0.053	GS882939 GS882940 GS882854	0 0 6e-118	0 6e-115 0	b c	LinJ26_V3.2190 LinJ26_V3.2200 LinJ26_V3.2210	Hypothetical protein, conserved Hypothetical protein, conserved Hypothetical protein, conserved	N.D. N.D. N.D.

Table S9. Clones that probably contain differentially regulated gRNA genes from minicircle sequences.

Clone	F	$Log_2F \pm SD$	р	GenBank	Content
Lin100B7 u	S/L 1.72	0.8 ± 0.2	0.029	GS882953	Contig 917. Possible minicircle sequence.
Lin110D9	1.75	0.8 ± 0.1	0.006	GS882954	Contig 957. Possible minicircle sequence.
Lin117A10	1.73	0.8 ± 0.2	0.023	GS882955	Contig 957. Possible minicircle sequence.
Lin232H8	2.01	1.0 ± 0.1	0.004	GS882956	Contig 957. Possible minicircle sequence.
Lin228H1 d	S/A -2.10	-1.1 ± 0.1	0.036	GS882957	Contig 957. Possible minicircle sequence.
Lin43C12 d	L/A -19.32	-4.3 ± 1.7	0.048	GS882958	Contig 957. Possible minicircle sequence.

SUPPLEMENTARY DATA FILE 3

Fig. S3. Multilevel sector charts of α -scores for GO terms annotated in genes.(A, C, E, G) Biological process terms; (B, D, F, H) Molecular function terms. (A, B) uS/L; (C, D) dS/L; (E, F) dS/A; (G, H) dL/A.

Fig. S4. Complete scheme of S/L, S/A and L/A expression profiles.

<u>Colour legend</u>: down-regulated in S/L; up-regulated in S/L; up-regulated in S/A; down-regulated in S/A; down-regulated in L/A; up-regulated in L/A. Abbreviations are defined in the text and in additional file.

Abbreviations: 3'NT/Nase, 3'-nucleotidase/nuclease; 3-HMG-CoA, 3-hydroxymethyl glutaryl-CoA; aCG, acetoglutarate; α -tub, α -tubulina; A22ap, presenilin-like aspartic peptidase, clanAD, family A22A; aap, amino acid permease; ABC, ABC transporter; AC, adenylate cyclase; ADPrf, ADP ribosylation factor; ACP, acyl carrier protein; AFG1, AFG1 ATPase; agm, agmatinase; ALD, fructose-1,6, bisphosphate aldolase; ANC, ADP/ATP translocase; AspCT, aspartate carbamoyl transferase; β -ox, FA β -oxidation; β -prop, β -propeller protein; BT, biotin; C(III)O, coproporphyrinogen III oxidase; C2cp, calpain-like cysteine peptidase, Clan CA, family C2; C54cp, cysteine peptidase, family C54; cdc, cyclin dependent protein kinase; cdkbp, cdc binding protein; cDNAPol I, DNA polimerase I, catalytic subunit; CGL, cystathionine γ-liase; Clathrin-H, clathrin heavy chain; cox, cytochrome c oxidase; Cph, cyclophilin; cPP1, protein phosphatase 1 catalytic subunit; CPS, carbamoyl phosphate synthetase; cyt b5, cytochrome b5; DRPP, developmentally regulated phosphoprotein-like protein; DynLC, dynein light chain; ECH, enoyl-CoA hydratase/isomerase; EIF, eukaryotic translation initiation factor; EndoL-PSP (pb5); endoribonuclease L-PSP (pb5); ETF, electron transfer flavoprotein; F₀s9F9, ATP synthetase regulatory subunit F₀; Fd, ferredoxin; Fibril, fibrilarin; FKBP, FK-506 binding protein; FTase- α , farnesyltransferase a; FtsJ, cell división protein; gMDH, mitocondrial dehydrogenase; GNAT, glucose-6-phosphate N-acetyltransferase; gPEPCK, glycosomal malate phosphoenolpyruvate carboxykinase; gRNA, guide RNA; GS, glycogen synthase; GSK, GS kinase; GT, H⁺glucose symporter; H1, H2A, H2B, H3, H4, histone superfamily genes; HASP, hydrophilic surface protein; HdeAC, histone deacetylase; ICMT, isoprenylcysteine methyltransferase; IPC, inositol phosphoceramide; kDNA, kinetoplast DNA; LPG, lipophosphoglycan; lpg2, lpg biosynthetic protein 2; MAPK(h), mytogen activated protein kinase (homologue); MBAP, membrane-bound acid phosphatase; mcm, minichromosome maintenance protein; MPETs, 4-methyl-(5- β -hydroxyethyl)thiazole monophosphate synthesis protein; mPol ID, mitocondrial DNA polymerase ID; MRP, multidrug resistance protein; Mtap, microtubule associated protein; Ndkb, nucleoside diphosphate kinase b; OAA, oxalacetate; P1/S1, P1/S1 nuclease; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase complex; P-Dol, dolichol phosphate; PES, prostaglandin peroxide synthase; PFR, PAR4, paraflagellar rod proteins; PGFS, prostaglandin F synthetase; PGluM, phosphoglucomutase; PGM, phosphoglycerate mutase; PGM^{BPI}, PG- independent PGM; PI, phosphatidylinositol; PK, protein kinase; INO1, mio-inositol-1-phosphate synthase; PLD, phospholipase D; PMM, phosphomannomutase; PO, protophorphyrinogen oxidase; PP2C, protein phosphatase 2C; PPG, proteophosphoglycan; PRPPS, phosphoribosyl pyrophosphate synthetase; PT3, pteridine transporter 3; RNAPol, RNA polymerase; rPKA, protein kinase A regulatory subunit; rS-non-ATPase, proteasome regulatory non-ATPase subunit; SALp, surface antigen-like protein; SAMDC, S-adenosyl-methionine decarboxylase; SbGRP, sodium stibogluconate resistance protein; SCDH, short chain dehydrogenase; SCL, succinyl-CoA ligase; SerP51, serine peptidase, family S51, peptidase E; Sf3A, splicing factor3A; smc3, structural maintenance of chromosome 3 protein; SpS, spermidine synthase; steroidDH, 3-oxo-5- α -steroid dehydrogenase; Sx, syntaxin; Apcx3, adaptor complex medium chain subunit 3; Thio, thiolase; ^{Thr}tS, threonyl-tRNA synthetase; Tim17, mitochondrial inner membrane translocase; Tom, mitochondrial outer membrane translocase; TPI, triose phosphate isomerase; TR, trypanothione reductase; TRL, translocon; U5snRNA-sf, small nuclear RNA splicing factor U5; UBC2, ubiquitin conjugating enzyme E2; Ubq, ubiquitin; UCH-C12, cysteine peptidase, Clan CA, family C12; vamp, vesicle associated membrane protein; vH⁺-PPase, vacuolar-type proton-translocating pyrophosphatase.

Additional information about S/L, S/A and L/A expression profiles.

Epigenetics, replication and nucleotide metabolism. Histone genes H1 (LinJ27_V3.1120 and LinJ33_V3.3390), H2A (LinJ29_V3.1860/70), H3 (LinJ16_V3.0600) and H4 (36_V3.0020) are up-regulated in L/A. H1 LinJ27_V3.1070, H3 LinJ10_V3.1070 and H4 LinJ31_V3.3320 are down-regulated in S/L and H2B (LinJ19_V3.0040 and LinJ28_V3.0210) is up-regulated in S/A.

Gene expression, protein maturation and transport and secretory pathway. At the transcriptional and post-transcriptional processes, four genes are differentially regulated in the ongoing of the life cycle. To begin with, DNA-directed RNA polymerase II subunit 9 gene is down-regulated in S/L. On the other hand, U5 RNA-splicing factor is up-regulated in S/L, what suggests changes in small nucleolar RNA (snRNA) processing in stationary-phase promastigotes. Meanwhile, a component of a nucleolar small nuclear ribonucleoprotein (snRNP) involved in ribosomal RNA processing (Jansen et al., 1991), is up-regulated in L/A, in contrast to splicing factor 3A, which is down-regulated in L/A. At the translational level, a considerable number of ribosomal components (40S ribosomal S2, S3, S4, S11, S12, S29; 60S ribosomal proteins L7, L11, L12, L18, L19, L31, L36, L38, L44) and four genes involved in translation initiation (initiation factors IF2 and IF2 α , eukaryotic translation initiation factor 3 subunit 8 IF3s8 and eukaryotic initiation factor 5a IF5a) are up-regulated in L/A. Despite some ribosomal proteins are up-regulated in S/L (40S ribosomal proteins S2, S3a, S4, S6, S18, S27-1; 60S ribosomal proteins L1a, L3, L5, L14, L32; and acidic ribosomal protein P2) and in S/A (40S ribosomal proteins S2, S3, S3a, S4, S7, S11, S14, S15a, S23, S24 and S29; 60S ribosomal proteins L1a, L2, L3a, L6, L7, L9, L13a, L18, L18a, L19, L21 and L31), none of the translation regulation factors mentioned have been found to be differentially regulated. An eukaryotic translation initiaton factor (EIF) and a GTP-binding elongation factor from Tu family (EF-Tu) are downregulated in S/L instead.

Hexose metabolism, oxidative phosphorylation and transport. Two non-ligated ATPase subunit 9 genes (F_{0} s9) are up-regulated in L/A. ATP synthesis-coupled proton transport biological function GO term has been annotated on both sequences by means of BLAST2GO software and hydrogen ion transporting ATP synthase activity (rotational mechanism) is the molecular function term associated to these sequences. PFAM and InterPro domain annotations correspond respectively to ATP synthase subunit C and ATPase F₀ complex subunit C. This subunit is included in the ATP synthase complex and contributes to ATP biosynthesis by rotation driven by the proton electrochemical potential gradient. In addition to mitochondrial ATP synthetase complex, two ATPase genes have been found to be up-regulated in L/A: an AFG1-like ATPase and a calcium-motive P-type ATPase (Ca²⁺-P-ATPase). Ca²⁺-P-ATPase is also up-regulated in S/A and belongs to the P-type (E1-E2-type) ATPase superfamily of cation transport enzymes and is included in Ca²⁺-transporting ATPase group (Fagan and Saier, 1994). In addition, six genes that belong to the ATP binding cassette (ABC) superfamily have been detected to be differentially regulated: an ABC transporter/multidrug resistance protein/p-glycoprotein (MRP) is up-regulated in L/A; two sodium stibogluconate-resistance protein genes (SbGRP) are up-regulated in S/L and one of them is down-regulated in S/A and specifically by combined temperature and pH shift as previously reported (Alcolea et al., 2009a); and three different tandemly mapping ABC transporter-like genes are down-regulated in S/A and one of them also in L/A. Other kinds of transporters are differentially regulated in the life cycle. To begin with, a vacuolar-type proton-translocating pyrophosphatase (vH⁺-PPase) is up-regulated in S/A and is involved in the establishment of proton electrochemical potential gradient between the vacuole lumen and the cytosol. Mitochondrial inner membrane pre-protein translocase complex subunit (PF02466) Tim17 is up-regulated in L/A. Finally, aminoacid permease LinJ31_V3.1850 (aap) is up-regulated in S/L and down-regulated in S/A, what suggests that aap transcript levels increase in the progression of the life cycle from procyclic

promastigotes to amastigotes. The up-regulation of aap in the amastigote stage is due to the specific influence of temperature and pH shift (Alcolea et al., 2009a).

As a summary, SCL, several glycolytic and glycogen biosynthetic genes are up-regulated in S/A, gPEPCK is up-regulated in S/L and some genes related with electron transport-coupled oxidative phosphorylation are up-regulated in L/A. Apart from that, amastigotes up-regulate an ABC transporter cluster and down-regulate SbGRP and MRP genes from the same superfamily.

Lipid metabolism. 3,2-trans-enoyl-CoA hidratase isomerase gene (ECH) is down-regulated in S/L. ECH is involved in unsaturated fatty acid oxidation β -ox. Consequently, unsaturated FA may be destined to degradation inside the mitochondrial or glycosomal lumen or to arachidonic acid derivative biosynthetic processes, such prostaglandins. In fact, prostaglandin F synthase gene (PGFS) is also down-regulated in S/L. In addition, PGFS is up-regulated in S/A according to this analysis and was also found as down-regulated in PNA⁻ (metacyclic) promastigotes (Alcolea et al., 2009b) and in temperature-pH-generated amastigote-like forms (Alcolea et al., 2009a), which globally supports the previous suggestion of prostaglandin F2 α role as a competence factor for promastigotes inside the sand-fly vector (Kabututu et al., 2002). Three 3-ketoacyl-CoA thiolase genes (Thiol I) are up-regulated in L/A and two of them also in S/L. These genes are involved in the reversible addition of acetyl-CoA groups to acyl groups in β -ox, as well as in branched chain aminoacid catabolism. ECH (isoform with unsaturated FA substrates) and Thiol I gene up-regulation is not correlated, which could be due to a different regulation of unsaturated and saturated FA β -ox pathways depending on the developmental stage. Regarding FA biosynthetic processes, acyl carrier protein gene (ACP) is up-regulated in L/A.

Proteolysis. A set of protease genes are differentially regulated. Cathepsin L-like protease LinJ08_V3.0960 (Cathepsin-L) is up-regulated in L/A and S/L; AUT2/APG4/ATG4 cysteine peptidase Clan CA family C54 protein (C54cp) is up-regulated in S/A; otubain cysteine peptidase, clan CA, family C65, of unknown function is down-regulated in S/A and L/A; and serine peptidase S51 (SerP51) is up-regulated in S/L and also metacyclic promastigotes (Alcolea et al., 2009b).

Signal transduction and cell cycle regulation. A variety of genes related to signal transduction and cell cycle regulation have been annotated in the genome sequences of three Leishmania species. In addition, L. major, Trypanosoma brucei and T. cruzi kinomes have been compared (Parsons et al., 2005) and protein kinases and their potential usefulness as drug targets have been reviewed (Naula et al., 2005). However, cell cycle regulation and signal transduction processes are poorly understood in *Leishmania* spp. because signaling pathways have not been elucidated yet. Differential gene expression data constitute the first step for a better understanding of the pathways that signal for the response to each stimulus in the ongoing of the differentiation processes. According to the microarray hybridization assays, a cdc2-related kinase and three mitogen activated protein kinase genes (MAPK) are up-regulated under L/A. One out of these MAPK is down-regulated and a cyclin-dependent kinase-binding protein gene (cdkbp) is up-regulated in S/L. In addition, a MAPK homologue (MAPKh) is down-regulated in S/A. Dealing with signal transduction, a beta propeller protein (prop) containing WD40 repeats in circular beta propeller structure (IPR001680) is upregulated in L/A. Four protein kinase genes (PK) have also been detected to be differentially regulated in the development of the parasite's biological cycle, each of them in a distinct stage. As an example, regulatory subunit of a protein kinase A-like protein (rPKA) is up-regulated in S/L, which is related to cAMP signaling pathway in other eukaryotes. In spite of this, a non-receptor type adenylate cyclase gene (AC) is downregulated in S/L, what again evidences the need for studying signal transduction processes in Leishmania parasites. GSK is up-regulated in S/A as mentioned in the manuscript.
-calpain is up-regulated in L/A and S/A. Two other peptidase genes involved in signal transduction have been found as differentially regulated:

presenilin-like aspartic peptidase gene from A22A family (A22Aap) is up-regulated in S/A and serine peptidase E from S51 family (SerP51) in S/L.

Surface molecules and genes of unknown function. Genes from the amastin-tuzin cluster located in chromosome 8 are differentially regulated. some tuzin genes are up-regulated in L/A and some amastin-like genes down-regulated in S/A and up-regulated in S/L. Other amastin gene with the same pattern is LinJ34_V3.2660, while amastin LinJ34_V3.0460 is down-regulated in S/A and L/A. Moreover, two additional tuzin genes are up-regulated in S/L, as well as amastin LinJ19_V3.3010. Other genes of unknown function in the parasite not yet mentioned and their specific differential regulation are: a RING finger protein (RINGfp), up-regulated in L/A; two adjoining short chain dehydrogenase genes (SCDH), down-regulated in S/L; developmentally regulated phosphoprotein-like protein, up-regulated in L/A and down-regulated in S/L; and FtsJ cell division protein (FtsJ), down-regulated in L/A. Finally, a great set of hypothetical and unknown proteins are differentially regulated throughout the parasite's life cycle. In fact, about one half of the total number of annotated genes in the *Leishmania* spp. genomes are not associated to known functions, which highlights the need for characterizing these genes to improve the knowledge on the parasite's biology.

References

- Alcolea, P.J., Alonso, A., Gomez, M.J., Sanchez-Gorostiaga, A., Moreno-Paz, M., Gonzalez-Pastor, J.E., Toraño, A., Parro, V., Larraga, V., 2009a. Temperature increase prevails over acidification in the gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics In Press.
- Alcolea, P.J., Alonso, A., Sanchez-Gorostiaga, A., Moreno-Paz, M., Gomez, M.J., Ramos, I., Parro, V., Larraga, V., 2009b. Genome-wide analysis reveals increased levels of transcripts related with infectivity in peanut lectin non-agglutinated promastigotes of Leishmania infantum. Genomics 93, 551-564.
- Fagan, M.J., Saier, M.H., Jr., 1994. P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol 38, 57-99.
- Kabututu, Z., Martin, S.K., Nozaki, T., Kawazu, S., Okada, T., Munday, C.J., Duszenko, M., Lazarus, M., Thuita, L.W., Urade, Y., Kubata, B.K., 2002. Prostaglandin production from arachidonic acid and evidence for a 9,11-endoperoxide prostaglandin H2 reductase in Leishmania. International journal for parasitology 32, 1693-1700.
- Naula, C., Parsons, M., Mottram, J.C., 2005. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta 1754, 151-159.
- Parsons, M., Worthey, E.A., Ward, P.N., Mottram, J.C., 2005. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6, 127.