(51) Clasificación Internacional de Patentes:
G01R 33/30 (2006.01) C12M 1/34 (2006.01)
G01R 33/465 (2006.01)

(21) Número de la solicitud internacional:
PCT/ES2011/070173

(22) Fecha de presentación internacional:
14 de marzo de 2011 (14.03.2011)

(25) Idioma de presentación:
español

(26) Idioma de publicación:
español

(30) Datos relativos a la prioridad:
P201030382 16 de marzo de 2010 (16.03.2010) ES

(71) Solicitantes (para todos los Estados designados salvo US): CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED EN BIOINGENIERÍA, BIOMATERIALES Y NANOMEDICINA (CIBER-BBN) [ES/ES]; Campus Río Ebro - Edificio 1 + D Bloque 5, 1ª planta, C/ Poeta Mariano Esquivel s/n, E-50018 Zaragoza (ES).

(72) Inventores:

(75) Inventores/Solicitantes (para US solamente):

(74) Mandatario: ILLEGAS TABOADA, Manuel; C/ Recoletos, 13 5º Izda, E-28001 Madrid (ES).

(81) Estados designados (a menos que se indique otra cosa, para toda clase de protección nacional admisible): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KF, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU,

(54) Título: CELL CULTURE DEVICE AND MICROCHAMBER WHICH CAN BE MONITORED USING NUCLEAR MAGNETIC RESONANCE

(54) Título: MICROCAMARA Y DISPOSITIVO DE CULTIVO CELULAR MONITORIZABLES POR RESONANCIA MAGNÉTICA NUCLEAR

(57) Abstract: The invention relates to a cell culture device and microchamber which can be monitored using nuclear magnetic resonance and other imaging techniques, in which the culture microchamber is encapsulated and housed inside a chip. The microchamber and the device are easy for the user to handle, allowing same to be handled or repositioned without requiring complex mounting operations. In addition, the invention allows cultures to be studied for long periods, greater than 24 hours.

(57) Resumen: Microcámara y dispositivo de cultivo celular monitoreables por resonancia magnética nuclear. La presente invención hace referencia a una microcámara y a un dispositivo de cultivo celular, monitoreables por resonancia magnética nuclear y otras técnicas de imagen, donde dicha microcámara de cultivo se encuentra encapsulada y alojada en el interior de un chip. Dicha microcámara y dicho dispositivo resultan de fácil manejo para el usuario, permitiendo su manipulación o su reemplazo sin la necesidad de un montaje laborioso, beneficiando además notablemente el estudio de cultivos durante períodos largos de tiempo, superiores a 24 horas.

FIG. 1

Publicada:

— con informe de búsqueda internacional (Art. 21(3))
— antes de la expiración del plazo para modificar las reivindicaciones y para ser republicada si se reciben modificaciones (Regla 48.2(h))
MICROCÁMARA Y DISPOSITIVO DE CULTIVO CELULAR MONITORIZABLES POR RESONANCIA MAGNÉTICA NUCLEAR

CAMPO DE LA INVENCIÓN

La presente invención hace referencia a una microcámara y a un dispositivo de preparación y cultivo de sistemas celulares, monitorizables por resonancia magnética nuclear y otras técnicas de imagen.

ANTECEDENTES DE LA INVENCIÓN

El cultivo de células in vitro es uno de los métodos fundamentales en la biomedicina actual. La caracterización de biomarcadores en muestras biológicas es capaz, con el uso de las técnicas vigentes, de proporcionar información valiosa para el análisis de especies químicas, así como para facilitar la detección precoz de enfermedades y para el estudio de los sistemas biológicos.

A pesar del gran desarrollo de este campo, aún se desconocen, sin embargo, muchos de los factores que inducen y mantienen la diferenciación observada en distintos tipos de tejidos y que dan lugar, en consecuencia, a diferentes fenotipos. Conocer los mecanismos que regulan dichos factores de diferenciación resulta de especial relevancia en la observación y el estudio del desarrollo de células tumorales y biomarcadores del cáncer.

Las técnicas utilizadas comúnmente en el estado de la técnica para analizar tejidos biológicos incluyen, por ejemplo, el uso de nanosensores y nanopartículas o técnicas basadas en espectrometría de masas, entre otras. Adicionalmente, los citados estudios biológicos pueden realizarse mediante técnicas ópticas, en dispositivos de estructura superficial o tridimensional, cuyo modo de operación se basa en la difusión de dianas en sistemas de detección o en sistemas de resonancia magnética nuclear (RMN), con o sin el uso de agentes de contraste. Un tipo de dichos agentes de contraste incluye la preparación de partículas magnéticas (nanopartículas) que pueden ser
fácilmente manipulables por campos magnéticos débiles. La microscopía por RMN ha ido desarrollándose paralelamente a las técnicas de imagen macroscópicas habituales en aplicaciones clínicas y con animales y, recientemente, se ha comenzado a abordar la obtención de imágenes por RMN de células individuales, así como la obtención de perfiles metabólicos en volúmenes de escala celular. Sin embargo, tanto el aumento de resolución de la técnica, como el reducido tamaño de las muestras vivas a investigar, presentan aún retos tecnológicos importantes.

En un intento de reproducir lo más fielmente posible las condiciones en que las células crecen in vivo y, a su vez, de disponer del máximo control sobre su entorno, existen en la actualidad diversos tipos de dispositivos preparados para su análisis por RMN, y que están basados en la combinación de las técnicas de microfluidica y microfabricación, junto con la construcción de matrices tridimensionales que remedian el entorno celular en el seno de los tejidos vivos. De este modo, tanto el aporte de nutrientes, factores de crecimiento y otras señales, así como el intercambio de gases y las fuerzas mecánicas, pueden ser aproximadas a los valores fisiológicos que se pretende simular. Algunos ejemplos del citado tipo de dispositivos son las solicitudes de patente WO2002/041021, EP1500944 y US 5313162, que describen diferentes diseños de microcámaras de cultivo celular, o “microrreactores”.

La sofisticación progresiva de las técnicas de fotolitografía empleadas en la fabricación de chips y dispositivos electrónicos microscópicos, ha permitido el diseño de sistemas en los que se combina la microfluidica, con tratamientos especiales de las superficies y la integración de diversos tipos de sensores, para implementar laboratorios a microescala o “lab-on-chips” como, por ejemplo, el dispositivo descrito en la solicitud de patente WO 2009/045551. En la construcción de dicho tipo de dispositivos se emplean gran variedad de materiales, predominando el uso de resinas y polímeros (SU-8, PMMA, PMMS, etc.). Dichos sistemas lab-on-chip suponen una considerable mejora frente a desarrollos anteriores, presentando ventajas tales como el ahorro en el volumen del fluido analizado, lo que reduce costes en los agentes reactivos y disminuye la necesidad de grandes muestras de análisis; tiempos menores de
respuesta y de análisis, como consecuencia de que las distancias de difusión son menores; mayor control de los procesos y una respuesta más rápida de los sistemas; la posibilidad de realizar análisis paralelos masivos, así como la producción a gran escala de dispositivos; y proporcionan, además, plataformas más seguras para realizar estudios químicos, biológicos o radiológicos, como consecuencia de su menor volumen.

Si bien el estado de la técnica es capaz de resolver algunos de los desafíos que plantea el desarrollo de microcámaras de cultivo celular, la presente invención supone una mejora frente a ellas, al estar especialmente concebida como una microcámara encapsulada de material transparente y biocompatible, que proporciona una plataforma de dimensiones aptas para un equipo de RMN, pero utilizable, a la vez, junto con técnicas de microscopía, y que resulta al mismo tiempo de fácil manejo para el usuario, permitiendo su manipulación o su reemplazo sin la necesidad de un montaje laborioso. El hecho de tratar con una microcámara encapsulada beneficia notablemente el estudio de cultivos durante periodos largos de tiempo, permitiendo estudios durante tiempos superiores a 24 horas.

Adicionalmente, el diseño de la microcámara de la presente invención, basado en, al menos, dos canales diferenciados para la entrada de las células de cultivo y del medio de cultivo, proporciona un mayor control sobre el flujo de células introducidas, dado que éstas, al poseer su propia vía de entrada, no se ven condicionadas por el flujo propio del medio de cultivo. Dicha característica permite ajustar y corregir el volumen de células de cultivo a medida que las características del experimento lo requieran, sin modificar el flujo del medio empleado para mantener el cultivo estudiado en condiciones óptimas.

La invención resulta especialmente adecuada para estudiar el efecto de fármacos y otros agentes (tales como nanopartículas) permitiendo, además de los usos habituales de inspección visual y obtención de imágenes, el control metabólico de los sistemas celulares mediante RMN, facultad que resulta de especial relevancia para la comprobación y el análisis de efectos tóxicos en las células de cultivo estudiadas.
A lo largo del presente documento, el término “chip” se refiere a un dispositivo plástico de algunos milímetros cuadrados de área, en el que se fabrica la microcámara de cultivo mediante la combinación de procesos de fotolitografía de diferentes capas que se unen entre sí mediante procesos de pegado o técnicas similares de microfabricación, tales como microinyección o “hot embossing”.

El término “encapsulado” se interpreta como un empaquetado compacto del chip procedente de la oblea semiconductora sobre la que se fabrica la microcámara, para efectuar la conexión de dicha microcámara con los demás componentes del dispositivo de cultivo celular.

El término “biocompatible” se refiere, dentro del contexto de la presente invención, a la capacidad de un material para alojar cultivos biológicos vivos, sin producir efectos locales perjudiciales en las funciones o la integridad de dichos cultivos, permitiendo de forma natural su desarrollo celular o su respuesta tisular.

OBJETO DE LA INVENCIÓN

Un objeto de la presente invención es una microcámara de cultivo celular encapsulada, monitorizable por RMN y alojada en el interior de un chip. Se consigue con ello un dispositivo de fácil manejo para el usuario, permitiendo su manipulación o su reemplazo sin la necesidad de un montaje laborioso, beneficiando además notablemente el estudio de cultivos durante periodos largos de tiempo, superiores a 24 horas.

Un objeto de la presente invención es una microcámara de cultivo celular monitorizable por RMN que comprende, adicionalmente, al menos un canal de entrada de las células de cultivo, al menos, un canal de entrada del medio de cultivo y, al menos, un canal de salida. Ello proporciona un mayor control sobre el flujo de células introducidas, dado que éstas, al poseer su propia vía de entrada, no se ven condicionadas por el flujo propio del medio de cultivo. Dicha característica permite, además, ajustar y corregir el volumen de células de cultivo a medida que las características del experimento lo requieran.
Otro objeto de la invención es una microcámara de cultivo celular monitorizable por RMN que comprende, adicionalmente, uno o más canales para la entrada de sensores destinados a la medición de propiedades físicas del cultivo, tales como su temperatura, pH, pNO, pSH₂, pO₂ ó pCO₂, preferentemente fabricados con fibra óptica. Ello permite un mayor control sobre las propiedades físico-químicas del cultivo estudiado.

En concreto, el objeto de la invención es una microcámara de cultivo celular monitorizable por RMN, cuyo volumen está, preferentemente, comprendido entre 1 - 4 mm³ y cuyas dimensiones de longitud y anchura son, preferentemente, iguales o inferiores a 2 mm x 2 mm, con una altura comprendida entre 400 – 1000 μm. Con ello se consigue una microcámara de cultivo idónea para su instalación en aparatos de detección por RMN y específicamente en su sistema de microbobinas, permitiendo conseguir una alta resolución.

Otro objeto de la invención es una microcámara de cultivo cellular monitorizable por RMN donde el chip que aloja dicha microcámara de cultivo está fabricado con materiales transparentes y biocompatibles, preferentemente con un sustrato Glass-SOI (“Silicon on insulator”), SOI-PDMS (Polídimetil siloxano), Glass-SiC (carburo de silicio) ó materiales fotodefinibles (por ejemplo, SU-8). Se consigue con ello microcámaras de cultivo que permiten también su monitorización por medio de dispositivos de microscopía, que favorecen además la pervivencia de las células estudiadas y el mantenimiento de los cultivos en condiciones óptimas durante un mayor tiempo.

Otro objeto de la presente invención es una microcámara de cultivo celular monitorizable por RMN, donde la anchura del canal de entrada de células de cultivo está comprendida entre 150-500 μm. Dicho tamaño resulta especialmente apropiado para el cultivo de neuroesferas (estructuras celulares libres generadas in vitro por células troncales de tejido nervioso) o esferoides obtenidos de otras células trocales o con alta tasa de división, como las células tumorales.

Otro objeto de la presente invención es una microcámara de cultivo celular monitorizable por RMN donde los canales de entrada y de salida se conectan
con una pluralidad de canales de difusión divididos a través de tabiques, estando dichos canales destinados a obtener una distribución más uniforme del flujo de células dentro de la cámara de cultivo, facilitando además el confinamiento de dichas células.

Otro objeto de la presente invención es una microcámara de cultivo celular monitorizable por RMN donde los canales de difusión para la entrada y la salida del medio de cultivo poseen una anchura menor que las células de cultivo. Ello favorece que dichas células permanezcan localizadas en el interior de la zona de cultivo.

Otro objeto de la presente invención es una microcámara de cultivo celular monitorizable por RMN donde los canales de difusión de entrada de las células de cultivo poseen una anchura de, preferentemente, 200 μm, y los canales de difusión de entrada y de salida del medio de cultivo poseen, preferentemente, una anchura comprendida entre 40 – 75 μm, siendo dicho rango suficientemente pequeño para mantener confinadas las células de cultivo dentro de la cámara.

Otro objeto de la presente invención es un dispositivo de cultivo celular que comprende:

i) una microcámara de cultivo celular;

ii) un solenoide plano impreso para la monitorización del cultivo por RMN;

iii) un sistema de fijación encapsulado que comprende el acoplamiento solidario de los elementos i), ii) y una conexión hermética, opcionalmente desacoplable, entre la microcámara y una pluralidad de tubos capilares para la circulación de las células de cultivo y del medio de cultivo;

y que es monitorizable por RMN.

Otro objeto de la presente invención es un dispositivo de cultivo celular que comprende, al menos un equipo de resonancia magnética nuclear para la monitorización del cultivo celular.

Otro objeto de la presente invención es un dispositivo de cultivo celular donde la distancia de contacto entre el solenoide plano impreso y la microcámara es igual o inferior a 50 μm. Esta distancia resulta óptima para una adecuada monitorización por RMN.
Otro objeto de la presente invención es un dispositivo de cultivo celular que comprende, adicionalmente, al menos un equipo de microscopía para la monitorización del cultivo celular.

Otro objeto de la presente invención es un dispositivo de cultivo celular donde los tubos capilares están conectados, opcionalmente, a sistemas de impulsión de los líquidos empleados, a válvulas y/o filtros para regular la circulación de dichos líquidos, así como a contenedores de desecho o a puntos de acceso adicionales para la conexión de otros elementos al sistema.

Otro objeto de la presente invención es un dispositivo donde los sistemas de impulsión del fluido son jeringas reguladas mediante microbombas de inyección.

Otro objeto de la presente invención es un dispositivo donde los tubos capilares que se conectan a los canales de entrada y de salida poseen una longitud de, al menos, 3 m.

Otro objeto de la presente invención es un procedimiento de montaje de un dispositivo de cultivo celular, donde dicho montaje se realiza situando la superficie del chip que aloja la microcámara sobre una base de circuito impreso PCB que posee el solenoide plano impreso, acoplándose dicho chip y la base de circuito impreso a presión entre una base y una cubierta, disponiendo la base de un alojamiento sobre el que se asienta el chip, una abertura en la parte posterior de la base que permite que los sensores salgan del chip, y unos alojamientos sobre los que se insertan conectores fluidicos para conectar la microcámara a una pluralidad de tubos capilares para la circulación de las células de cultivo y del medio de cultivo.

Otro objeto de la presente invención es el uso de una microcámara en el estudio y monitorización de cultivos biológicos, preferentemente que comprenden células tumorales.

Otro objeto de la presente invención es el uso de un dispositivo de cultivo celular en el estudio y monitorización de cultivos biológicos, preferentemente que comprenden células tumorales.
Otro objeto de la presente invención es un método de monitorización de un cultivo celular que comprende el uso de una microcámara, donde se acopla dicha microcámara a un equipo de resonancia magnética nuclear.

Otro objeto de la presente invención es un método donde, adicionalmente, se monitoriza la microcámara por medio de, al menos, un equipo de microscopía.

Otro objeto de la presente invención es un método de monitorización de un cultivo celular que comprende el uso de un dispositivo de cultivo celular, donde se acopla dicho dispositivo a un equipo de resonancia magnética nuclear, adaptándose al sistema de imanes de monitorización del citado equipo de resonancia magnética nuclear.

Otro objeto de la presente invención es un método donde, adicionalmente, se monitoriza el dispositivo de cultivo celular por medio de, al menos, un equipo de microscopía.

Otras características y ventajas de la presente invención se desprenderán de la descripción de la invención que sigue, así como de la realización ilustrativa de las figuras que la acompañan.

DESCRIPCIÓN DE LAS FIGURAS

La Figura 1 representa el chip y la microcámara de cultivo de un dispositivo según la presente invención.

La Figura 2 representa el procedimiento de encapsulado del chip y de la microcámara de cultivo de un dispositivo según la presente invención.

La Figura 3 representa una de las posibles configuraciones para el uso del dispositivo de la invención, donde la microcámara de cultivo está conectada a una pluralidad de tubos capilares, sistemas de inyección y otros elementos para la regulación y el análisis del cultivo estudiado.

La Figura 4 muestra imágenes de monitorización de neuroesferas mediante RMN, para una realización preferente de la presente invención.

La Figura 5 muestra los espectros asociados a la monitorización mostrada en la Figura 4, obtenidos mediante espectroscopio.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

El dispositivo de cultivo celular (1) monitorizable por RMN según la presente invención comprende, al menos, una microcámara de cultivo (2) alojada en el interior de un chip (3). Tal y como se representa en la Figura 1, el chip (3) posee una forma preferentemente cuadrada o rectangular, siendo sus dimensiones de longitud (X), anchura (Y) y altura (Z), preferentemente, de 56.0 x 5.5 x 0.56 mm, respectivamente. Dichas dimensiones resultan adecuadas para la producción en serie del dispositivo, permitiendo aplicar para su fabricación las técnicas habituales empleadas en la producción de chips en microelectrónica para el desarrollo de microcircuitos en obleas.

La microcámara (2) alojada dentro del chip (3) posee, preferentemente, un volumen comprendido entre 1 - 4 mm³. Las dimensiones de longitud (X') y anchura (Y') de dicha microcámara de cultivo (2) son, preferentemente, iguales o inferiores a 2 mm x 2 mm, siendo su altura, preferentemente, igual o inferior a 400 – 1000 µm.

Adicionalmente, la microcámara (2) está conectada a, al menos, un canal de entrada de las células de cultivo (4), al menos, un canal de entrada del medio de cultivo (5) y, al menos, un canal de salida (6). Los canales de entrada (4, 5) y de salida (6) poseen, preferentemente, una anchura comprendida entre 150 - 500 µm.

Los canales de entrada (4, 5) y de salida (6) se conectan con la microcámara (2) por medio de canales de difusión (8, 9, 10) divididos a través de tabiques (11). Los canales de difusión para la entrada de las células de cultivo (8) poseen, según la presente invención, una anchura mayor que la de los canales de difusión de entrada (9) y de salida (10) del medio de cultivo, de forma que se favorezca que las células estudiadas permanezcan en la zona de cultivo (7). En una realización de la presente invención donde las estructuras celulares estudiadas son neuroesferas, los canales de difusión de entrada de las células de cultivo (8) poseen una anchura de, preferentemente, 200 µm, apta para la correcta circulación de dicho tipo de estructuras celulares. En la misma realización, los canales de difusión de entrada (9) y de salida (10) del
medio de cultivo poseen, preferentemente, una anchura comprendida entre 40 – 75 μm, lo que permite mantener confinadas las células de cultivo dentro de la microcámara, sin añadir una complejidad excesiva a la tecnología de fabricación del chip.

El chip (3) donde se aloja la microcámara de cultivo (2) está fabricado con materiales transparentes y biocompatibles, preferentemente con sustratos Glass-SOI (“Silicon on insulator”), SOI-PDMS (Polidimetil siloxano), Glass-SiC (carburo de silicio) o materiales fotodefinibles (por ejemplo, SU-8). El disponer de un chip (3) transparente permite obtener microcámaras de cultivo que permitan, adicionalmente, su monitorización por medio de dispositivos de microscopía, proporcionando así un mayor control sobre las células estudiadas.

Además de los canales de entrada (4, 5) y de salida (6) de las células estudiadas y del medio de cultivo, la microcámara (2) según la presente invención puede presentar uno o más canales (12) para a la entrada de sensores (13) destinados a la medición de propiedades físicas del cultivo celular, tales como su temperatura, pH, pNO, pSH₂, pO₂ ó pCO₂. Ello permite un mayor control sobre las propiedades físico-químicas del cultivo estudiado. Preferentemente, dichos sensores (13) son sensores de fibra óptica.

Las dimensiones y el sistema de canales de la microcámara de cultivo según la presente invención resultan, junto con su capacidad de ser monitorizable tanto por RMN como por sistemas de microscopía, especialmente adecuados para probar el efecto de fármacos y otros agentes, tales como nanopartículas (entendidas éstas como cuerpos o partículas de un tamaño inferior a 100 nm), que permite, además de los usos de obtención de imágenes por inspección visual, el control metabólico de los sistemas celulares estudiados (mediante la espectroscopia de RMN).

El encapsulado de la microcámara de cultivo (2) según la presente invención está representado en la Figura 2. En dicha figura, se muestra cómo la superficie del chip (3) que aloja la microcámara (2) se sitúa sobre una base de circuito impreso (14) PCB (“printed circuit board”) que posee una placa de vidrio (15) sobre la que se monta un solenoide plano impreso (16), de modo que el conjunto sea transparente, para poder visualizar la microcámara. Dicho
solenóide (16) es un componente necesario en equipos de monitorización por RMN. Con el fin de obtener un acoplamiento óptimo entre la microcámara (2) y el solenoide plano impreso (16), para lograr una adecuada monitorización, la distancia entre sus superficies no ha de superar los 50 μm.

El encapsulado realiza varias funciones: fija el chip (3) a la placa de circuito impreso (14) con el solenoide (16) para RMN; permite introducir y extraer los diferentes contenidos de la microcámara (2); y garantiza el sellado de los diferentes elementos. Tal y como se muestra en la Figura 2, el montaje del encapsulado se realiza mediante una base (17) y una cubierta (18), ambas realizadas en resina epoxi u otro material plástico o cerámico. La base (17) dispone de un alojamiento (19) sobre el que se asienta el chip (3). Sobre el alojamiento (19) se colocan unas juntas (20) de material elástico. Dichas juntas (20) aseguran la estanqueidad entre el chip (3) y la base (17). Una abertura (21) en la parte posterior de la base (17) permite que los sensores de fibra óptica (13) salgan del chip sin impedimentos. La base dispone de unos alojamientos (22) sobre los que se insertan conectores fluidicos (23) que permiten conectar de forma hermética, a través de tubos, el encapsulado a diferentes elementos del dispositivo, tales como microbombas, jeringas, dispositivos de análisis, etcétera. Los conectores fluidicos (23), de material plástico, se amarran en los alojamientos (22) de la base (17), mediante presión, adhesión, juntas elásticas, sistemas de rosca, biconos o mediante cualquier otro método que los fije a la base (17) y garantice la estanqueidad de la conexión, permitiendo, al mismo tiempo, el desacople del dispositivo de cultivo celular (1) según las necesidades del experimento realizado. La base (17) dispone, asimismo, de conductos internos (24) que comunican los conectores fluidicos (23) con los canales (4, 5, 6) del chip (3). La cubierta (18) se fija a la base (17) a presión para garantizar que las juntas (20) efectúen un sellado correcto. Ello se realiza mediante tornillos (25), abrazaderas, grapas, o cualquier otro medio, siempre de materialaislante eléctrico, como por ejemplo el plástico. Esta fijación, además de garantizar el sellado, mantiene a todos los elementos del encapsulado unidos, fijando también el encapsulado a la placa de circuito impreso (14) con el solenoide (16).
Las ventajas que un dispositivo encapsulado otorgan a la presente invención están fundamentalmente orientadas a conseguir una microcámara de cultivo que resulte de fácil manejo, permitiendo acoplar y desacoplar de forma sencilla el dispositivo sin necesidad de montajes individualizados. Las propiedades de encapsulamiento del presente dispositivo benefician, adicionalmente, el mantenimiento de los cultivos celulares en condiciones óptimas, sin contaminación, durante periodos largos de tiempo, facilitando el estudio de dichos cultivos durante tiempos superiores a 24 horas.

El montaje encapsulado del dispositivo de cultivo (1) según la presente invención es fácilmente adaptable a los aparatos de RMN empleados habitualmente en el sector y existentes en el mercado. Adicionalmente, y según lo descrito anteriormente, en distintas realizaciones de la invención también es posible acoplar al dispositivo (1) a uno o más aparatos de microscopía, instalados como apoyo a la monitorización realizada por RMN.

La Figura 3 representa, para una posible configuración de la invención, el sistema de conexión del dispositivo de cultivo (1) a una pluralidad de tubos capilares (26), así como los sensores de fibra óptica (13). El dispositivo de cultivo (1) se conecta, a través de los conectores fluidicos (23), a cada uno de los citados tubos capilares (26), acoplando los tubos (26) de entrada de células de cultivo y de entrada del medio de cultivo a sus respectivas jeringas (27) reguladas mediante microbombas de inyección, los sensores de fibra óptica (13) a los dispositivos de análisis empleados para la monitorización de las propiedades físicas deseadas (temperatura, pH, pNO, pSH₂, pO₂ ó pCO₂), y el tubo capilar de salida a un contenedor de desecho (28). Los tubos (26) que conectan los conectores fluidicos (23) de entrada con las jeringas (27) poseen una longitud preferente de, al menos, 3 m, siendo dicha distancia la mínima necesaria entre los sistemas electro mecánicos empleados para la impulsión del fluido y para el control de los sensores, al tiempo que se pueda alcanzar el interior del aparato de RMN donde se aloja la muestra. El sistema de conexión, opcionalmente, puede incluir la presencia de válvulas (29) que permiten regular el flujo de los líquidos empleados, de filtros (30) que facilitan la retención de burbujas generadas por cambios de presión y/o temperatura, o de puntos de
acceso (31) adicionales para la conexión de otros elementos al sistema (microbombas, depósitos, válvulas, etc.), según resulte conveniente para el estudio de un determinado cultivo.

Las Figuras 4 y 5 del presente documento muestran un resumen de los resultados del estudio y monitorización de una muestra biológica mediante imágenes obtenidas por RMN (Figura 4), así como los espectros asociados a dicha muestra (Figura 5), obtenidos mediante espectroscopio, y donde dicha muestra comprende una neuroesfera y un medio de cultivo circundante, alojados en una realización preferente de la microcámara (2) de la invención. Concretamente, dicha realización preferente comprende una microbobina de 500 μm de diámetro bajo un campo magnético de 14 T y, en el interior del dispositivo, una neuroesfera de 350 μm de diámetro cultivada en el interior de la microcámara (2). La Figura 4 muestra las secciones axial (Figura 4a, cuadros superiores) y sagital (Figura 4b, cuadros inferiores) de la neuroesfera cultivada.

La parte central necrótica y la superficie de crecimiento de la neuroesfera se identifican claramente. En la sección sagital se puede observar, además, el espesor de la microcámara (2) (unos 400 μm, en este caso). Como comparación, se muestran dos imágenes de cortes histológicos (Figuras 4b y 4c) donde la Figura 4b corresponde a un corte necrótico de 20 μm de diámetro teñido mediante toluidina, y la Figura 4c corresponde a un corte no necrótico de 10 μm de diámetro teñido mediante hematoxilina-eosina. Las imágenes de la neuroesfera obtenidas en el interior del dispositivo (Figura 4) evidencian la correcta compatibilidad de la microcámara (2) con el equipamiento de RMN (que incluye la placa de PCB (14) junto con el solenoide plano (16) y el sistema compacto de gradientes en el que ha de ubicarse para obtener imágenes de alta resolución), proporcionando una detallada calidad de imagen.

En la figura 5 se muestran también los espectros obtenidos mediante espectroscopio en volúmenes de 8 nL localizados tanto en la neuroesfera (Figura 5a) como en el medio que la rodea (Figura 5b). En dicha figura se identifican las resonancias correspondientes a H2O, lípidos, lactato, n-acetil aspartato (NAA) y glucosa. La asignación de las resonancias obtenidas mediante espectroscopio de lípidos + lactato puede ser directamente justificada
por la detección del núcleo necrótico en el interior de la neuroesfera (de un tamaño aproximado de 350 μm). Cabe hacer notar que estos espectros son los primeros espectros localizados obtenidos en un sistema de monitorización por RMN capaces de distinguir el interior necrótico de una esfera de células pluripotentes. Las muestras de neuroesferas empleadas en RMN pueden ser, asimismo, monitorizadas también por microscopía confocal. Para validar la información obtenida mediante RMN, también se pueden realizar cortes histológicos de las muestras estudiadas por RMN. Las neuroesferas, así como las células diferenciadas, pueden ser caracterizadas mediante, por ejemplo, inmunotinción, empleando anticuerpos contra marcadores específicos. Adicionalmente, mediante, por ejemplo, microscopía electrónica de barrido, se puede comprobar que el crecimiento y adhesión de las neuroesferas sea el adecuado en las superficies de material plástico utilizadas para construir la microcámara (asegurando, así, la bio-compatibilidad de la microcámara). Por último, a través de los resultados del presente ejemplo, es importante volver a recordar que se comprueba que el soporte de estudio constituido por la microcámara (2) de la presente invención no altera el comportamiento global de las neuroesferas y que dicha microcámara (2) resulta, en consecuencia, una herramienta adecuada para el estudio de las neuroesferas y otros cultivos biológicos, tanto mediante monitorización por imagen óptica como a través de RMN.

Una vez descrita la presente invención, cabe resaltar que las realizaciones preferentes de la misma no han de ser consideradas como limitativas frente variaciones de su diseño o de los elementos empleados para su fabricación, siempre que dichas variaciones no alteren la esencia de la invención, así como el objeto de la misma.
REIVINDICACIONES

1.- Microcámara de cultivo celular (2) alojada en el interior de un chip (3) sustancialmente plano, que comprende:
- al menos, un canal de entrada (4) de las células de cultivo;
- al menos, un canal de entrada (5) del medio de cultivo;
- al menos, un canal de salida (6);
- al menos, un canal (12) para la entrada de sensores (13) destinados a la medición de propiedades físicas del cultivo celular, tales como su temperatura, pH, pNO, pSH₂, pO₂ ó pCO₂;
y que es monitorizable por RMN.

2.- Microcámara (2) según la reivindicación 1, donde el chip (3) está fabricado con un material transparente y biocompatible, preferentemente con un sustrato Glass-SOI, SOI-PDMS, Glass-Carburo de silicio o SU-8.

3.- Microcámara (2) según cualquiera de las reivindicaciones 1-2, donde su volumen está comprendido entre 1 - 4 mm³.

4.- Microcámara (2) según cualquiera de las reivindicaciones 1-3, donde sus dimensiones de longitud y anchura son, preferentemente, iguales o inferiores a 2 mm x 2 mm.

5.- Microcámara (2) según cualquiera de las reivindicaciones 1-4, donde la anchura del canal de entrada de células de cultivo (4) está comprendida entre 150-500 μm.

6.- Microcámara (2) según cualquiera de las reivindicaciones 1-5, donde los sensores (13) destinados a la medición de propiedades físicas del cultivo celular están fabricados con fibra óptica.
7.- Microcámara (2) según cualquiera de las reivindicaciones 1-6, donde los canales de entrada (4, 5) y de salida (6) se conectan a canales de difusión para la entrada de células de cultivo (8), canales de difusión para la entrada del medio de cultivo (9) y canales de difusión para la salida del medio de cultivo (10), estando divididos dichos canales de difusión (8, 9, 10) a través de tabiques (11).

8.- Microcámara (2) según la reivindicación 7, donde los canales de difusión de entrada (9) y de salida (10) del medio de cultivo poseen una anchura menor que las células de cultivo estudiadas, de forma que se favorezca que dichas células permanezcan en el interior de la zona de cultivo (7).

9.- Microcámara (2) según cualquiera de las reivindicaciones 7-8, donde los canales de difusión de entrada de las células de cultivo (8) poseen una anchura de, preferentemente, 200 μm, y los canales de difusión de entrada (9) y de salida (10) del medio de cultivo poseen, preferentemente, una anchura comprendida entre 40 – 75 μm.

10.- Dispositivo de cultivo celular (1), que comprende:
 i) una microcámara (2) según cualquiera de las reivindicaciones 1-9;
 ii) un solenoide plano impreso (16) para la monitorización del cultivo por RMN;
 iii) un sistema de fijación encapsulado que comprende el acoplamiento solidario de los elementos i), ii) y una conexión hermética, opcionalmente desacoplable, entre la microcámara (2) y una pluralidad de tubos capilares (26) para la circulación de las células de cultivo y del medio de cultivo; y que es monitorizable por RMN.

11.- Dispositivo (1) según la reivindicación 10, que comprende, al menos un equipo de resonancia magnética nuclear para la monitorización del cultivo celular.
12.- Dispositivo (1) según cualquiera de las reivindicaciones 10-11, donde la distancia de contacto entre el solenoide plano impreso (16) y la microcámara (2) es igual o inferior a 50 µm.

13. Dispositivo (1) según cualquiera de las reivindicaciones 10-12, que comprende, adicionalmente, al menos un equipo de microscopía para la monitorización del cultivo celular.

14.- Dispositivo (1) según cualquiera de las reivindicaciones 10-13, donde los tubos capilares (26) están conectados, opcionalmente, a sistemas de impulsión (27) de los líquidos empleados, a válvulas (29) y/o filtros (30) para regular la circulación de dichos líquidos, así como a contenedores de desecho (28) o a puntos de acceso (31) adicionales para la conexión de otros elementos al sistema.

15.- Dispositivo (1) según la reivindicación 14, donde los sistemas de impulsión (27) del fluido son jeringas reguladas mediante microbombas de inyección.

16.- Dispositivo (1) según cualquiera de las reivindicaciones 10-15, donde los tubos capilares (26) que se conectan a los canales (4, 5, 6) poseen una longitud de, al menos, 3 m.

17.- Procedimiento de montaje de un dispositivo (1) según cualquiera de las reivindicaciones 10-16, donde dicho montaje se realiza situando la superficie del chip (3) que aloja la microcámara (2) sobre una base de circuito impreso (14) PCB que posee el solenoide plano impreso (16) para la monitorización del cultivo por RMN, acoplándose dicho chip (3) y la base de circuito impreso (14) a presión entre una base (17) y una cubierta (18), disponiendo la base (17) de un alojamiento (19) sobre el que se asienta el chip (3), una abertura (21) en la parte posterior de la base (17) que permite que los sensores (13) salgan del chip, y unos alojamientos (22) sobre los que se
insertan conectores fluidicos (23) para conectar la microcámara (2) a una pluralidad de tubos capilares (26) para la circulación de las células de cultivo y del medio de cultivo.

18.- Uso de una microcámara (2) según cualquiera de las reivindicaciones 1-9 en el estudio y monitorización de cultivos biológicos, preferentemente que comprenden células tumorales.

19.- Uso de una microcámara (2) según cualquiera de las reivindicaciones 1-9 en el estudio del efecto de fármacos sobre cultivos biológicos.

20.- Uso de una microcámara (2) según cualquiera de las reivindicaciones 1-9 en el estudio del efecto de nanopartículas sobre cultivos biológicos.

21.- Uso de un dispositivo (1) según cualquiera de las reivindicaciones 10-16 en el estudio y monitorización de cultivos biológicos, preferentemente que comprenden células tumorales.

22.- Uso de un dispositivo (1) según cualquiera de las reivindicaciones 10-16 en el estudio del efecto de fármacos sobre cultivos biológicos.

23.- Uso de un dispositivo (1) según cualquiera de las reivindicaciones 10-16 en el estudio del efecto de nanopartículas sobre cultivos biológicos.

24.- Método de monitorización de un cultivo celular que comprende el uso de una microcámara (2) según cualquiera de las reivindicaciones 1-9, donde se acopla dicha microcámara (2) a un equipo de resonancia magnética nuclear.

25.- Método según la reivindicación 24 donde, adicionalmente, se monitoriza la microcámara (2) por medio de, al menos, un equipo de microscopía.
26.- Método de monitorización de un cultivo celular que comprende el uso de un dispositivo (1) según cualquiera de las reivindicaciones 10-16, donde se acopla dicho dispositivo (1) a un equipo de resonancia magnética nuclear, adaptándose al sistema de imanes de monitorización del citado equipo de resonancia magnética nuclear.

27.- Método según la reivindicación 26 donde, adicionalmente, se monitoriza el dispositivo (1) por medio de, al menos, un equipo de microscopía.
FIG. 4
FIG. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G01R, C12M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

INVENES, EPODOC, WPI, GOOGLE PATENTS, USPTO PATENT DATABASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 0241021 A1 (METABOLIC EXPLORER) 23.05.2002, abstract; figures 1-7; claims 1-17.</td>
<td>1-27</td>
</tr>
<tr>
<td>A</td>
<td>US 5313162 (DE GRAAF et al.) 17.05.1994, abstract; figures 1-5.</td>
<td>1-27</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance.
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure use, exhibition, or other means.
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents, such combination being obvious to a person skilled in the art
 * "&" document member of the same patent family

Date of the actual completion of the international search

26/07/2011

Date of mailing of the international search report

(02/08/2011)

Name and mailing address of the ISA/

OFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Facsimile No.: 91 349 53 04

Authorized officer

M. García Grávalos

Telephone No.

91 3493404

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in the search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO0241021 A</td>
<td>23.05.2002</td>
<td>FR2816713 AB</td>
<td>17.05.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU1837002 A</td>
<td>27.05.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP20010996750</td>
<td>14.11.2001</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP20040014918</td>
<td>25.06.2004</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>US5313162 A</td>
<td>17.05.1994</td>
<td>DE4213058 AC</td>
<td>29.10.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB2255412 AB</td>
<td>04.11.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH683722 A</td>
<td>29.04.1994</td>
</tr>
</tbody>
</table>
CLASSIFICATION OF SUBJECT MATTER

G01R33/30 (2006.01)
G01R33/465 (2006.01)
C12M1/34 (2006.01)
A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD

Ver Hoja Adicional

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
G01R, C12M

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
INVENES, EPDOC, WPI, GOOGLE PATENTS, USPTO PATENT DATABASE

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría®</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevantes para las reivindicaciones n°</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 0241021 A1 (METABOLIC EXPLORER) 23.05.2002, resumen; figuras 1-7; reivindicaciones 1-17.</td>
<td>1-27</td>
</tr>
<tr>
<td>A</td>
<td>US 5313162 (DE GRAAF et al.) 17.05.1994, resumen; figuras 1-5.</td>
<td>1-27</td>
</tr>
</tbody>
</table>

□ En la continuación del recuadro C se relacionan otros documentos ✗ Los documentos de familias de patentes se indican en el anexo

* Categorías especiales de documentos citados:
 "A" documento que define el estado general de la técnica no considerado como particularmente relevante.
 "E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.
 "L" documento que puede plantear dudas sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).
 "O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.
 "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.

"I" documento posterior a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.

"X" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.

"Y" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.

"&" documento que forma parte de la misma familia de patentes.

Fecha en que se ha concluido efectivamente la búsqueda internacional.
26/07/2011

Fecha de expedición del informe de búsqueda internacional.
02-AGOSTO-2011 (02/08/2011)

Nombre y dirección postal de la Administración encargada de la búsqueda internacional
OFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Nº de fax: 91 349 53 04

Formulario PCT/ISA/210 (segunda hoja) (Julio 2009)

Funcionario autorizado
M. García Grávalos

Nº de teléfono 91 3493404
<table>
<thead>
<tr>
<th>Documento de patente citado en el informe de búsqueda</th>
<th>Fecha de Publicación</th>
<th>Miembro(s) de la familia de patentes</th>
<th>Fecha de Publicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO0241021 A</td>
<td>23.05.2002</td>
<td>FR2816713 AB</td>
<td>17.05.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU1837002 A</td>
<td>27.05.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP20010996750</td>
<td>14.11.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP20040014918</td>
<td>25.06.2004</td>
</tr>
<tr>
<td>US5313162 A</td>
<td>17.05.1994</td>
<td>DE4213058 AC</td>
<td>29.10.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB2255412 AB</td>
<td>04.11.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH683722 A</td>
<td>29.04.1994</td>
</tr>
</tbody>
</table>
CLASIFICACIONES DE INVENCIÓN

G01R33/30 (2006.01)
G01R33/465 (2006.01)
C12M1/34 (2006.01)