Development and validation of a multiplex PCR-based DNA
microarray hybridisation method for detecting bacterial antibiotic
resistance genes in cheese
Susana Delgado ^{a,b*} , Fabio Fracchetti ^a , Baltasar Mayo ^b , Sandra Torriani ^a
^a Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15,
37134, Verona, Italy.
^b Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de
Productos Lácteos de Asturias (CSIC), Carretera de Infiesto s/n, 33300-Villaviciosa,
Asturias, Spain.
[*] Corresponding author. Tel.: +34 985892131: fax: +34 989892233.
E-mail address: sdelgado@ipla.csic.es (S. Delgado)

18 Abstract

19

20	The aim of this study was to develop a method for detecting antibiotic resistance
21	(AR) genes in cheese based on a combination of multiplex PCR and a DNA microarray
22	hybridisation system. Twenty oligonucleotide probes were designed targeting 10
23	common AR genes, namely <i>aac</i> (6')- <i>Ie-aph</i> (2'')- <i>Ia</i> , <i>aadE</i> , <i>aphA-3</i> , <i>ermB</i> , <i>tet</i> (L), <i>tet</i> (M),
24	tet(O), tet(S), vanA and vanB. Specificity of the probes was tested by hybridising
25	against DNA from Enterococcus strains harbouring known AR genes. DNA was
26	labelled through two multiplex PCR reactions with fluorescence nucleotides and
27	specific primers flanking the probe sequences. Sensitivity of the microarray was
28	assessed by contamination of a cheese with an Enterococcus faecium strain carrying
29	vanA gene. Two tetracycline resistance genes, tet(M) and tet(S), proved to be present in
30	a series of retail cheeses, while genes <i>aadE</i> , <i>aphA3</i> , <i>ermB</i> , <i>tet</i> (L) and <i>tet</i> (O) were
31	occasionally detected. This method is envisioned as a valuable tool for identification of
32	AR genes in foods.
33	

34 1. Introduction

35

36 The heavy use of antibiotics in human and veterinary medicine has resulted in 37 the appearance of antibiotic resistance (AR) that has spread between bacterial 38 populations. Resistance genes have been the subject of intense investigation since they 39 can be acquired horizontally via conjugation, transformation or transduction, and can be 40 transmitted in groups on plasmids, transposons or integrons (Tenover, 2006). The 41 spread of AR is a critical, global public health concern since the efficacy of drugs for 42 treating infections is reduced when AR genes are present (Levy & Marshall, 2004). The 43 recent findings of AR gene pools in commensal and beneficial bacteria isolated from 44 many retail products indicate AR dissemination to have occurred in food production and 45 processing environments (Duran & Marshall, 2005; Garofalo et al., 2007; Wang et al., 46 2006). Although the true magnitude of the AR reservoir in food ecosystems is yet to be 47 learnt, the possibility of the transfer of resistance (either during food manufacturing or 48 during passage through the gastrointestinal tract) to opportunistic and pathogenic 49 microorganisms clearly exists (Netherwood et al., 1999). This argues for the 50 development of simple, rapid and reliable assays for the detection of AR genes directly 51 in food matrices. The determination of AR gene loads in foods would help to reveal the 52 types and levels of resistances that already exist in different food ecosystems. 53 Nowadays, PCR is the most common method used for studying the carriage of 54 AR genes in food systems, and several reports have described the use of different 55 molecular approaches based on PCR techniques, including quantitative Real Time PCR, 56 for detecting resistance determinants and for monitoring antimicrobial-resistant bacteria 57 in foods (Devirgiliis, Caravelli, Coppola, Barile, & Perozzi, 2008; Garofalo et al., 2007; Manuzon et al., 2007). However, if every possible resistance gene had to be 58

59	independently assessed, the amount of work required would be large and time
60	consuming. Fortunately, multiplex PCR allows multiple gene analyses to be performed
61	at the same time. In addition, DNA microarray technology can be used for screening for
62	the presence of a wide diversity of genes, and has already been successfully used for AR
63	gene detection (Cassone et al., 2006; Perreten et al., 2005).
64	The aim of the present study was to develop a multiplex PCR-based DNA
65	microarray for detecting AR genes in cheese. The detection of AR determinants in
66	oligonucleotide microarray analyses employing fluorescently labelled PCR fragments
67	has been previously described (Grimm et al., 2004; Volokhov, Chizhikov, Chumakov,
68	& Rasooly, 2003; Yu, Susa, Knabbe, Schmid, & Bachmann, 2004). However, studies
69	dealing with the identification of AR genes using microarray technology are scarce,
70	except for those dealing with pathogenic bacteria.
71	This paper describes the development and validation of a microarray method for
72	determining the presence of several AR genes directly in cheese. To the best of our
73	knowledge, this is the first report on the use of a microarray system to establish the
74	resistance gene pool in a food matrix.
75	
76	2. Materials and methods
77	
78	2.1. Bacterial strains
79	
80	Eight Enterococcus strains carrying known resistance determinants were used as
81	a control to test the specificity and sensitivity of the developed microarray-based
82	hybridisation system. The strains Enterococcus faecalis MN1 (aadE, aphA-3, ermB,
02	war P) E facealis Itet [tet(Ω)] E facealis ET25 [and E and (β') is anh($2''$) in anh($4''$

83 vanB), E. faecalis Itet [tet(O)], E. faecalis ET35 [aadE, aac(6')-Ie-aph(2'')-Ia, aphA-3,

84	ermB, tet(M)], Enterococcus faecium EO5 [aadE, aphA-3, ermB, tet(M)], E. faecium
85	ET51 [ermB, tet(L), tet(S)], E. gallinarum ET15 [tet(M), tet(S)] and Enterococcus
86	mundtii ET39 [ermB, tet(L), tet(M)] were previously characterized by Rizzotti et al.
87	(2005) while the strain <i>E. faecium</i> FAIR-E 132 [<i>aac</i> (6')- <i>Ie-aph</i> (2'')- <i>Ia, ermB, vanA</i>]
88	was analysed by Vancanneyt et al. (2002). Enterococci were grown overnight at 37 °C
89	in Brain Heart Infusion (BHI, Fluka BioChemika, Buchs, Switzerland). Genomic DNA
90	was isolated from 2 mL overnight bacterial cultures using the Gen Elute Bacterial
91	Genomic DNA kit (Sigma-Aldrich, St. Louis MO, USA). DNA was quantified using an
92	Eppendorf BioPhotometer Plus apparatus (Eppendorf, Hamburg, Germany).
93	
94	2.2. Multiplex PCR amplification and fluorescent labelling
95	
96	Two multiplex PCR reactions were designed for amplifying 10 common AR
96 97	Two multiplex PCR reactions were designed for amplifying 10 common AR genes: <i>aac</i> (6')- <i>Ie-aph</i> (2'')- <i>Ia</i> , <i>aadE</i> , <i>aphA-3</i> , <i>ermB</i> , <i>tet</i> (L), <i>tet</i> (M), <i>tet</i> (O), <i>tet</i> (S), <i>vanA</i>
97	genes: $aac(6')$ -Ie- $aph(2'')$ -Ia, $aadE$, $aphA$ -3, $ermB$, $tet(L)$, $tet(M)$, $tet(O)$, $tet(S)$, $vanA$
97 98	genes: <i>aac</i> (6')- <i>Ie-aph</i> (2'')- <i>Ia</i> , <i>aadE</i> , <i>aphA-3</i> , <i>ermB</i> , <i>tet</i> (L), <i>tet</i> (M), <i>tet</i> (O), <i>tet</i> (S), <i>vanA</i> and <i>vanB</i> . These genes were selected for their wide distribution or clinical importance.
97 98 99	genes: <i>aac</i> (6')- <i>Ie-aph</i> (2'')- <i>Ia</i> , <i>aadE</i> , <i>aphA-3</i> , <i>ermB</i> , <i>tet</i> (L), <i>tet</i> (M), <i>tet</i> (O), <i>tet</i> (S), <i>vanA</i> and <i>vanB</i> . These genes were selected for their wide distribution or clinical importance. These PCR reactions were based on previously published primers (Table 1) and served
97 98 99 100	genes: <i>aac</i> (6')- <i>Ie-aph</i> (2'')- <i>Ia</i> , <i>aadE</i> , <i>aphA-3</i> , <i>ermB</i> , <i>tet</i> (L), <i>tet</i> (M), <i>tet</i> (O), <i>tet</i> (S), <i>vanA</i> and <i>vanB</i> . These genes were selected for their wide distribution or clinical importance. These PCR reactions were based on previously published primers (Table 1) and served to label the target DNA via the incorporation of modified fluorescent nucleotides (Cy5-
97 98 99 100 101	genes: <i>aac</i> (6')- <i>Ie-aph</i> (2'')- <i>Ia</i> , <i>aadE</i> , <i>aphA-3</i> , <i>ermB</i> , <i>tet</i> (L), <i>tet</i> (M), <i>tet</i> (O), <i>tet</i> (S), <i>vanA</i> and <i>vanB</i> . These genes were selected for their wide distribution or clinical importance. These PCR reactions were based on previously published primers (Table 1) and served to label the target DNA via the incorporation of modified fluorescent nucleotides (Cy5-dCTPs, Amersham GE Healthcare, Little Chalfont, UK). The multiplex PCRs were

105 Colorless Flexi Buffer at 1.5× in the reaction (Part number M890A, Promega, Madison,

- 106 USA), 1.5 Units of GoTaq Flexi DNA Polymerase (Promega), 3 mM MgCl₂, 100 μM of
- 107 dATP and dGTP, 90 μM of dTTP and dCTP, and 10 μM of Cy5-dCTP and dUTP
- 108 (Epicentre Biotechnologies, Madison, USA). All primers were used at a final

109	concentration of 0.3 μ M with the exception of primers <i>van</i> A and <i>van</i> B which were
110	included in the M5AR_60 mixture at 1 μ M and 0.5 μ M respectively. The reactions were
111	prepared in 20 μ L volumes containing 30 ng of template DNA. Amplifications were
112	performed in a GeneAmp PCR System 2400 thermocycler (PerkinElmer, Waltham,
113	USA). Thermocycling was performed using an initial denaturing step of 95 °C for 5 min
114	followed by 35 cycles of 95 °C for 45 s, annealing (see Table 1 for temperatures) for 45
115	s, 72 °C for 45 s, and a final extension step of 72 °C for 10 min. Labelled amplicons
116	were then subjected to a fragmentation process with 0.1 Units of uracyl glycosylase
117	(Epicentre) for 20 min at 37 °C.
118	
119	2.3. Probe design and array printing
120	
121	Based on the regions amplified with the multiplex PCRs, highly conserved
122	sequences of the AR genes were selected to design 20 oligonucleotide probes, two
123	probes for each gene. Sequences corresponding to the AR genes of different
124	microorganisms were retrieved from the GenBank database and aligned using ClustalX
125	software (Thompson, Gibson, Plewniak, Jeanmougin, & Higgins, 1997). For the design
126	of the oligonucleotide probe set, BioEdit 5.0 (Hall, 1999) and MEGA 2.1 (Kumar,

127 Tamura, Jakobsen, & Nei, 2001) programs were used. In silico analyses of the probes

128 were performed using Clone Manager Suite 7. 0 software (Sci Ed Central, North

129 Carolina, USA). The melting temperature (Tm) of each probe was calculated using the

130 Nearest Neighbour method and the thermodynamic parameters of Santa Lucia (1998).

131 The analysis was performed using online TMCHECK software available at

132 <u>http://www.bioinformatics-toolkit.org/Web-TmCheck/</u>. The designed probes were 17-

133 18 nucleotides in length. All had a similar Tm and GC content (Table 2).

134	The probes were synthesized with a 5' amino modification and a 12-carbon
135	spacer (Sigma-Genosys, Haverhill, UK) and were spotted in five replicates onto the
136	surface of activated e-surf glass slides (Life Line Lab, Rome, Italy) using a SpotArray
137	24 system (PerkinElmer) with a four-pin printhead configuration. The resulting spots
138	had an average diameter of 200 μ m. The probes were imprinted in 300 mM sodium
139	phosphate buffer pH 8.5 at a concentration of 50 μ M. In each subarray a control probe
140	consisting of an oligonucleotide sequence of soy lectin (LectSoy) (NH ₂ -C12-
141	ATTGACGTGAACTCGAT) was printed as a reference of position and as a positive
142	hybridisation control. The LectSoy probe was complementary to a labelled
143	oligonucleotide target (5'-Cy5-ATCGAGTTCACGTCAAT -3'), which was included in
144	the hybridisation solution.
145	Following manufacturer's instructions for an effective cross-linking, the spotted
146	slides were left overnight in a sealed in-house humidification chamber containing a
147	saturated NaCl solution which generates an environment with 75% relative humidity.
148	Residual reactive groups were blocked by immersion of the slides in a 50 mM
149	ethanolamine, 0.1M Tris-HCl, pH 9.0, solution at 50 °C for 15 min with gentle agitation.
150	Subsequently, slides were washed twice in water followed by two washes at 50 °C for
151	15 min in 4× saline-sodium citrate (SSC) buffer (600 mM NaCl, 60 mM sodium citrate,
152	pH 7.0) containing 0.1% sodium dodecyl sulphate (SDS) and given two final rinses in
153	water. The spotted slides were air dried and maintained dry at room temperature. The
154	quality of the spots was checked with the commercial SpotCheck kit (Genetix, New
155	Milton, UK).
156	

157 2.4. Microarray hybridisation

159	Oligonucleotide-printed slides were prepared by marking out the hybridisation
160	region with a gas-tight reaction chamber (In situ Frames, Eppendorf) and pre-hybridised
161	with 10 mg mL ⁻¹ of bovine serum albumin (BSA, Fluka) at room temperature for 10
162	min immediately prior to hybridisation. 0.5 μ L of a 5 nM solution of Cy5-labelled
163	LectSoy was added to the fluorescent targets and sterile water incorporated to a volume
164	of 43 μ L. The mixtures were heated at 99 °C for 10 min to denature the DNA and then
165	chilled on ice immediately. A hybridisation buffer was then added consisting of 5.5 μ L
166	of 20× SSC (Sigma), 5.5 μ L of SDS 1% and 1.1 μ L of 10 mg mL ⁻¹ BSA. The mixtures
167	were denatured for 2 min, cooled on ice, applied to the pre-hybridised slides, and
168	covered with the supplied plastic cover slip (Eppendorf). Hybridisation was performed
169	over 4 h at 42 °C in a humid hybridisation chamber (Thermomixer Comfort, Eppendorf)
170	with rotation at 1,400 rpm. After hybridisation, slides were washed twice in $2 \times SSC$,
171	0.1% SDS at 42 °C for 5 min each time, then once in 0.2× SSC for 2 min at room
172	temperature, before receiving a final wash in $0.1 \times$ SSC for 2 min at room temperature.
173	The slides were then air dried and kept in the dark.
174	
175	2.5. Detection procedure and data acquisition
176	
177	After hybridisation the microarray slides were scanned for Cy5 detection using a
178	ScanArray 4000XL apparatus (PerkinElmer) equipped with a 633 nm laser. The settings
179	used for the scanner were laser power 75-80% and photomultiplier tube (PMT) 80-85%.

180 Analysis of the fluorescent signals was performed using ScanArray Express 4.0

181 software (PerkinElmer). For each spot, the mean pixel intensity was assessed and the

- 182 background signal subtracted. The mean fluorescence intensity of the five replicate
- 183 spots and the standard deviation (intra-probe standard deviation) were calculated for

184 each probe. A probe was confirmed as switch-on only if the value of its fluorescence
185 intensity was at least two fold higher than that of the neighbouring background (Lehner
186 et al., 2005).

187

188 2.6. Cheese samples

189

190 To study the response of the microarray in a food matrix, an industrial cheese 191 (sample M, Table 3), which was shown to be free of the vanA gene by specific PCR, 192 was artificially inoculated with the vancomycin-resistant strain E. faecium FAIR-E 132 193 $(vanA^{+})$. For the inoculation, the strain was grown overnight in broth medium and its 194 concentration calculated by plate counting and OD measured at 600 nm using a UV/VIS spectrophotometer (ATI-Unicam, Cambridge, UK). The culture was serially diluted in 195 196 saline solution (0.9% NaCl) and spiked with a sterile syringe into the matrix of 5 g portions to reach four different concentrations: 10^4 , 10^5 , 10^6 and 10^7 colony forming 197 units (cfu) g^{-1} of cheese. Duplicate contaminated samples and unspiked cheese were 198 then subjected to total DNA extraction. Additionally, four artisanal cheeses from 199 200 Northeast Italy (Table 3) were also analysed for the presence of indigenous AR genes. 201

202 2.7. Extraction of total microbial DNA from cheese

203

Cheese samples were homogenised 1/10 in 2% sodium citrate using a Stomacher (Seward, Worthing, UK) at 260 rpm for 1 min. Initially, bacterial biomass was extracted from the samples over a series of purification steps with ammonium hydroxide, absolute ethanol, petroleum ether, 10% SDS, 6 M urea and 3 M sodium acetate following the protocol of Drake, Small, Spence and Swanson (1996). The DNA was then purified

209	from the cells using the Gen Elute Bacterial Genomic DNA kit. The amount of DNA
210	recovered was determined using the BioPhotometer. Purified DNA (~ 20 ng) from
211	cheeses was used as a template for multiplex PCR and the labelled amplicons were
212	subjected to microarray analysis.
213	
214	2.8. Capillary electrophoresis of multiplex PCR amplicons
215	
216	To confirm the results obtained with the microarray and the effectiveness of the
217	method, multiplex PCR amplicons were further analysed by capillary electrophoresis in
218	an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto CA, USA). Aliquots of
219	the multiplex PCR products (1 μ L) were placed on a DNA microchip (LabChip 7500,
220	Agilent) and analysed according to the manufacturer's instructions. LabChip technology
221	and the Bioanalyzer 2100 allow for the separation of small DNA fragments by capillary
222	electrophoresis better than that achieved though 2% conventional agarose gel
223	electrophoresis (Nachamkin et al., 2001). In addition, the software automatically
224	calculates the size and DNA concentration of each fragment in relation to internal and
225	external standards.
226	
227	2.9. Processed data and reproducibility
228	
229	The reproducibility of the complete PCR-based microarray method was
230	evaluated by means of different approaches; in each hybridisation experiment the
231	presence of a particular AR gene was evaluated with two specific probes, each of which
232	was spotted in five replicates. The mean fluorescence intensity and the standard
233	deviation of each probe were calculated in every assay. Labelling and microarray

234	hybridisation of the eight enterococcal strains were performed twice in independent
235	experiments. Moreover, for a particular probe we compared the signals obtained with
236	the different AR positive strains, i.e., probes for $aac(6')$ -Ie-aph(2'')-Ia gene, strains
237	ET35 and FAIR-E 132; probes for <i>aadE</i> gene, strains MN1, ET35 and EO5; probes for
238	aphA-3 gene, strains MN1, ET35 and EO5; probes for ermB gene, strains MN1, ET35,
239	EO5, ET51, ET39 and FAIR-E 132; probes for <i>tet</i> (L) gene, strains ET51 and ET39;
240	probes for <i>tet</i> (M) gene, strains ET35, EO5, ET15 and ET39; probes for <i>tet</i> (S)gene,
241	strains ET51 and ET15. Finally, contaminated and non-contaminated cheese samples
242	were analysed in duplicate.
243	
244	3. Results
245	
246	3.1. Validation of the AR probes
247	
248	To validate the probes, a total of eight Enterococcus strains of different species
249	and origin, all of which harbour known resistance determinants, were screened using the
250	microarray system. The purified DNA, amplified and fluorescently labelled in the
251	multiplex PCR reactions, was used to verify the specificity of the microarray probes
252	targeting the AR genes. Fig. 1 shows the hybridisation images of representative strains.
253	Spots of LectSoy probe served both as a positive control for the hybridisation and as a
254	reference for positioning all other spots on the grid. Quantification of the hybridisation
255	signals revealed that the specific probes designed (two probes per AR gene) showed
256	fluorescence values of >1,000 intensity units and were at least 10 times higher than the
257	background signal, with consistency within both the five replicate spots. Most probes
258	(at least one for each gene) showed fluorescence values ranging from 2,000 to 8,000

intensity units in the two replicates (Fig. 2) and in all the assays with the different AR
positive strains. It should be noted that the response was quite variable when comparing
signals obtained after hybridisation with different strains (Fig. 3). The probe tetM_142R
was the only one showing a recurrent low efficiency, indicating that it should be redesigned.

264

265

3.2. Cheese analysis using the microarray

266

Based on the results obtained with the enterococcal strains, a threshold limit of
1,000 intensity units was established by calculating the mean of unspecific fluorescence
signals plus three standard deviations. The presence of a particular AR gene in a cheese
was considered positive if at least one of the two specific probes had a fluorescence
intensity higher than this value in two replicates.

The detection limit of the developed microarray was estimated with a 272 273 contaminated cheese (cheese M, Table 3), following the entire proposed experimental 274 procedure, i.e., purifying DNA from the cheese, labelling the DNA by multiplex PCR, 275 and hybridisation. The cheese was artificially contaminated at different concentrations with the vancomycin-resistant strain E. faecium FAIR-E 132, which carries the vanA 276 277 gene. The absence of this gene in the original cheese was verified by specific PCR before inoculation of the strain. With an inoculum of 10^7 cfu g⁻¹ of the *vanA* positive 278 strain the signal intensity of both *vanA* probes in the microarray was around 10 times 279 higher than the established cut-off. With smaller inocula (10^6 cfu g⁻¹ and 10^5 cfu g⁻¹), 280 281 the intensity of the *vanA* probes was similar to that obtained with the DNA from a pure 282 culture of the strain and within the detection limit. However, when the contamination level was 10⁴ cfu g⁻¹, the signal of both probes was low (below 1,000 intensity units). 283

284	The microarray was then used to analyse the presence of AR determinants in
285	four other Italian cheeses including soft and ripened varieties made from raw or
286	pasteurized milk (Table 3). Table 4 summarises the genes detected and in Fig. 4 are
287	displayed some of the microarray hybridisation patterns obtained. The genes $tet(M)$ and
288	<i>tet</i> (S) were found in all cheeses. In addition, the <i>tet</i> (O) gene was identified in all
289	artisanal cheeses, while the presence of <i>tet</i> (L) was revealed only in the industrial cheese.
290	The gene <i>aphA-3</i> was evidenced in the two cheeses made from raw milk, which in
291	addition harboured <i>aadE</i> and <i>ermB</i> genes (one in each sample). The genes <i>vanA</i> and
292	<i>vanB</i> , encoding vancomycin resistance, and the <i>aac</i> (6')- <i>Ie-aph</i> (2'')- <i>Ia</i> gene, responsible
293	for high-level gentamicin resistance, were not detected.
294	
295	3.3. Cheese analysis by capillary electrophoresis
296	
297	To assess the effectiveness of the microarray, the results obtained were
298	compared with those achieved by analysing the multiplex PCR products of the samples
299	using the Agilent 2100 Bioanalyzer. Fig. 5 shows the electrophoretograms obtained and
300	the gel-like images generated from the different samples. The peaks in the
301	
	chromatograms correspond to the amplification products of the different AR genes
302	chromatograms correspond to the amplification products of the different AR genes detected, except for the 50 bp and 10,380 bp peaks which correspond to two internal
302 303	
	detected, except for the 50 bp and 10,380 bp peaks which correspond to two internal
303	detected, except for the 50 bp and 10,380 bp peaks which correspond to two internal reference markers. The results proved to be consistent with the AR gene content
303 304	detected, except for the 50 bp and 10,380 bp peaks which correspond to two internal reference markers. The results proved to be consistent with the AR gene content identified by the microarray, although amplicons obtained from some cheeses could not
303 304 305	detected, except for the 50 bp and 10,380 bp peaks which correspond to two internal reference markers. The results proved to be consistent with the AR gene content identified by the microarray, although amplicons obtained from some cheeses could not be easily distinguished by this methodology (Fig. 5; samples 10 and 11 corresponding

309 **4. Discussion**

310

The direct labelling of total bacterial DNA by random amplification is the method of choice when using microarrays (Vora, Meador, Stenger, & Andreadis, 2004) since it allows any target sequence present in the genomes to be labelled. Unfortunately, a large amount of target DNA is necessary for this type of labelling, which limits its use in complex samples such as cheese. Thus, the use of a target-specific PCR strategy to label the genes was more convenient to identify the presence of AR determinants in cheese.

318 The PCR-based microarray system was validated firstly using DNA from 319 enterococcal cultures. Duplicate analysis of the positive strains demonstrated the high 320 specificity of the designed oligonucleotide probes. Although varying within a certain 321 range of fluorescence values, the results were quite reproducible by analysing the same 322 strain in two replicates and unequivocal specific patters of distinct positive spots were 323 recorded. When hybridising different strains the variability in fluorescence was higher, 324 probably due to differences in the location of AR genes (plasmid or chromosomally 325 encoded genes) and/or to the presence of different AR genes.

326 Based on the fluorescence values obtained with the enterococci, and following 327 comparable criteria to those reported in similar studies (Cassone et al., 2006; Frye et al., 328 2006; Vora et al., 2004), a cut-off value of 1,000 intensity units was established for the 329 analysis of AR genes in cheese. When a cheese was inoculated with a vancomycinresistant strain at a concentration of 10^5 cfu g⁻¹ or higher, the fluorescence signal 330 331 obtained with the developed microarray was over the threshold limit, and unambiguous 332 microarray images with switch on *vanA* spots were obtained in both duplicates. 333 Consequently, we consider that for reliable detection in cheese, AR gene-carrying

334	bacteria should be above this concentration. Notwithstanding, when using culture-
335	independent microbial techniques, such as this microarray system, it is certainly
336	difficult to ensure the absence of DNA extraction biases, since not all bacterial groups
337	present within the cheese matrix can be released in the same way (Mayo, Marzotto,
338	Flórez, & Torriani, 2008).
339	On the other hand, AR gene-carrying bacteria in cheese can be alive, dead or
340	even on a viable-but-non-culturable (VBNC) state. Analysis of resistances by culturing
341	in media-containing antibiotics will neither reveal those carried by VBNC cells nor
342	those present in dead bacteria. However, under appropriate conditions, all these AR
343	determinants could be transferred to harmful microbes in food and in the
344	gastrointestinal tract (Netherwood et al., 1999), thus contributing to their spread.
345	Compared to capillary electrophoresis, the microarray system provided distinct
346	advantages in the detection and differentiation of AR genes, and was shown to be a
347	good, practical tool for assessing the incidence of important AR genes in cheese
348	matrices. In fact, the microarray technology allows for the simultaneous detection of
349	several PCR products, even though they may have similar dimensions. Moreover, the
350	hybridisation step introduces the possibility of detecting only the desired PCR products.
351	Also, the sensitivity of the microarray technology is potentially greater than
352	electrophoresis and might be even improved by enhancing the ratio between Cy5 and
353	dCTPs in the PCR reactions or by increasing the settings of the scanner. With a
354	threshold of 1,000 intensity units any risk of false positive results is avoid, even in the
355	case of a high background signal. It was only because of this very restrictive condition
356	that the hybridisation signal obtained with cheese inoculated with 10^4 cfu g ⁻¹ was
357	considered negative. In the near future it is likely that the detection cut-off of the system

will be improved by optimising the experimental procedures and increasing thehybridisation efficiency of the probes.

360 In this study, the presence of different AR genes was detected by the microarray 361 in both soft and ripened cheese samples of different varieties made from raw or 362 pasteurized cows' milk, including one industrial cheese. Antibiotic-resistant bacteria 363 have been shown to be present in a large variety of fermented foods. Moreover, up to 364 10^7 cfu of antibiotic-resistant bacteria per gram of food have been reported in studies 365 examining several Cheddar-type retail cheeses (Wang et al., 2006). In the present work, 366 tetracycline resistance genes were shown to be abundant in the Italian cheeses analysed, 367 with *tet*(M) and *tet*(S) as the most prevalent. Tetracycline is a broad spectrum antibiotic 368 and bacterial resistance to it is rather common. These two particular tetracycline 369 resistance genes have been reported widespread in different food products of animal 370 origin (Garofalo et al., 2007; Manuzon et al., 2007; Wang et al., 2006) and have been 371 associated not only with enterococci but also with commensal lactic acid bacteria 372 usually present in cheese such as Lactobacillus plantarum (Gevers et al., 2003), 373 Streptococcus thermophilus (Ge et al., 2007) and Lactococcus lactis (Flórez, Ammor, & 374 Mayo, 2008).

375 Although the use of microarrays has been recommended as the most suitable 376 technique for the determination of resistance genes (Holzman, 2003; Perreten et al., 377 2005), to date their use has been restricted to the analysis of individual bacterial isolates 378 (Cassone et al., 2006; Frye et al., 2006; van Hoek, Scholtens, Cloeckaert, & Aarts, 2005; 379 Volokhov et al., 2003; Yu et al., 2004). However, in microbial complex samples such as 380 food matrices powerful genetic tools - such as that proposed in this work - are necessary 381 to identify the presence of antimicrobial resistance determinants. Recently Patterson, 382 Colangeli, Spigaglia and Scott (2007) used macroarrays to investigate the distribution of

383	AR genes in environmental samples (bacterial DNA extracted from soil and faeces), but
384	to the best of our knowledge the present study is the first to report the use of a
385	microarray method for detecting an unknown resistance gene pool directly in a food
386	system.
387	
388	5. Conclusions
389	
390	The experimental procedure developed here offers a useful way of rapidly
391	collecting data on the load and distribution of AR genes in cheese samples. Although
392	the repertoire of probes for AR detection is not yet complete, the proposed multiplex
393	PCR-based DNA microarray should be of use in assessing the presence of AR genes in
394	other food samples in which the presence of antibiotic resistant bacteria is suspected.
395	
396	Acknowledgments
397	
398	This research was partly supported by the Joint Project 2005 "DEVICE" funded
399	jointly by the Università degli Studi di Verona and Biodiversity S.P.A., and by a Spain-
400	Italy bilateral collaboration program (references IT2009-0080 and IT105MD12L).S.
401	Delgado was granted with a postdoctoral fellowship from Fundación Alonso Martín
402	Escudero (Spain).
403	
404	References
405	

- 406 Cassone, M., D'Andrea, M. M., Iannelli, F., Oggioni, M. R., Rossolini, G. M., & Pozzi,
- 407 G. (2006). DNA microarray for detection of macrolide resistance genes.
- 408 *Antimicrobial Agents and Chemotherapy*, 50, 2038-2041.
- 409 Clark, N. C., Olsvik, O., Swenson, J. M., Spiegel, C. A., & Tenover, F. C. (1999).
- 410 Detection of a streptomycin/spectinomycin adenylyltransferase gene (*aadA*) in
- 411 Enterococcus faecalis. Antimicrobial Agents and Chemotherapy, 43, 157-160.
- 412 Derbise, A., Aubert, S., & El Solh, N. (1997). Mapping the regions carrying the three
- 413 contiguous antibiotic resistance genes *aadE*, *sat4*, and *aphA-3* in the genomes of
- 414 staphylococci. Antimicrobial Agents and Chemotherapy, 41, 1024-1032.
- 415 Devirgiliis, C., Caravelli, A., Coppola, D., Barile, S., & Perozzi, G. (2008). Antibiotic
- 416 resistance and microbial composition along the manufacturing process of Mozzarella
- 417 di Bufala Campana. International Journal of Food Microbiology, 128, 378-384.
- 418 Drake, M., Small, C. L., Spence, K. D., & Swanson, B. G. (1996). Rapid detection and
- 419 identification of *Lactobacillus* spp. in dairy products by using the polymerase chain
- 420 reaction. *Journal of Food Protection*, 59, 1031-1036.
- 421 Duran, G. M., & Marshall, D. L. (2005). Ready-to-eat shrimp as an international vehicle
- 422 of antibiotic-resistant bacteria. *Journal of Food Protection*, 68, 2395–2401.
- 423 Dutka-Malen, S., Evers, S., & Courvalin, P. (1995). Detection of glycopeptide
- 424 resistance genotypes and identification to the species level of clinically relevant
- 425 enterococci by PCR. *Journal of Clinical Microbiology*, *33*, 24-27.
- 426 Flórez, A. B., Ammor, M. S., & Mayo, B. (2008). Identification of *tet*(M) in two
- 427 *Lactococcus lactis* strains isolated from a Spanish traditional starter-free cheese
- 428 made of raw milk and conjugative transfer of tetracycline resistance to lactococci and
- 429 enterococci. International Journal of Food Microbiology, 121, 189-194.

- 430 Frye, J. G., Jesse, T., Long, F., Rondeau, G., Porwollik, S., McClelland, M., et al.
- 431 (2006). DNA microarray detection of antimicrobial resistance genes in diverse
- 432 bacteria. International Journal of Antimicrobial Agents, 27, 138-151.
- 433 Garofalo, C., Vignaroli, C., Zandri, G., Aquilanti, L., Bordoni, D., Osimani, A., et al.
- 434 (2007). Direct detection of antibiotic resistance genes in specimens of chicken and
- 435 pork meat. *International Journal of Food Microbiology*, *113*, 75-83.
- 436 Ge, B., Jiang, P., Han, F., Saleh, N. K., Dhiman, N., Fedorko, D. P., et al. (2007).
- 437 Identification and antimicrobial susceptibility of lactic acid bacteria from retail

438 fermented foods. *Journal of Food Protection*, 70, 2606-2612.

- 439 Gevers, D., Masco, L., Baert, L., Huys, G., Debevere, J., & Swings, J. (2003).
- 440 Prevalence and diversity of tetracycline resistant lactic acid bacteria and their *tet*
- 441 genes along the process line of fermented dry sausages. *Systematic and Applied*
- 442 *Microbiology*, 26, 277-283.
- 443 Grimm, V., Ezaki, S., Susa, M., Knabbe, C., Schmid, R.D., & Bachmann, T. T. (2004).
- 444 Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer
- 445 resistance. *Journal of Clinical Microbiology*, *42*, 3766-3774.
- 446 Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and
- 447 analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series*, 41, 95448 95.
- Holzman, D. (2003). Microarray analyses may speed antibiotic resistance testing. *ASM News*, *69*, 538-539.
- 451 Kao, S. J., You, I., Clewell, D. B., Donabedian, S. M., Zervos, M. J., Petrin, J., et al.
- 452 (2000). Detection of the high-level aminoglycoside resistance gene aph(2")-Ib in
- 453 *Enterococcus faecium. Antimicrobial Agents and Chemotherapy*, 44, 2876-2879.

- 454 Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). MEGA2: molecular
- 455 evolutionary genetics analysis software. *Bioinformatics*, *17*, 1244-1245.
- 456 Lehner, A., Loy, A., Behr, T., Gaenge, H., Ludwig, W., Wagner, M., et al. (2005).
- 457 Oligonucleotide microarray for identification of *Enterococcus* species. *FEMS*
- 458 *Microbiology Letters*, 246, 133-142.
- 459 Levy S, B., & Marshall B. (2004). Antimicrobial resistance worldwide: causes,
- 460 challenges and responses. *Nature Medicine*, *10*, 122-129.
- 461 Manuzon, M. Y., Hanna, S. E., Luo, H., Yu, Z., Harper, W. J., & Wang, H. H. (2007).
- 462 Quantitative assessment of the tetracycline resistance gene pool in cheese samples by
- 463 real-time TaqMan PCR. *Applied and Environmental Microbiology*, 73, 1676-1677.
- 464 Mayo, B., Marzotto, M., Flórez, A. B., & Torriani, S. (2008). State-of-the-art of culture
- 465 independent techniques in dairy microbiology. In B. Mayo, P. López & G. Pérez-
- 466 Martínez (Eds.), *Molecular Updates in Dairy Microbiology* (pp. 1-27). Kerala, India:
- 467 Research Signpost.
- 468 Nachamkin, I., Panaro, N. J., Li, M., Ung, H., Yuen, P. K., Kricka, L. J., et al. (2001).
- 469 Agilent 2100 bioanalyzer for restriction fragment length polymorphism analysis of
- 470 the Campylobacter jejuni flagellin gene. Journal of Clinical Microbiology, 39, 754-
- 471 757.
- 472 Netherwood, T., Bowden, R., Harrosin, P., O'Donnel, A. G., Parker, D. S., & Gilbert, H.
- 473 J. (1999). Gene transfer in the gastrointestinal tract. *Applied and Environmental*
- 474 *Microbiology*, 65, 5139-5141.
- 475 Ng, L. K., Martin, I., Alfa, M., & Mulvey, M. (2001). Multiplex PCR for the detection
- 476 of tetracycline resistant genes. *Molecular and Cellular Probes*, 15, 209-215.
- 477 Patterson, A. J., Colangeli, R., Spigaglia, P., & Scott, K. P. (2007). Distribution of
- 478 specific tetracycline and erythromycin resistance genes in environmental samples

- 479 assessed by macroarray detection. *Applied and Environmental Microbiology*, 9, 703-
- 480 715.
- 481 Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., & Frey, J. (2005).
- 482 Microarray-based detection of 90 antibiotic resistance genes of Gram-positive
- 483 bacteria. *Journal of Clinical Microbiology*, *43*, 2291-2302.
- 484 Rizzotti, L., Simeoni, D., Cocconcelli, P., Gazzola, S., Dellaglio, F., & Torriani, S.
- 485 (2005). Contribution of enterococci to the spread of antibiotic resistance in the
- 486 production chain of swine meat commodities. Journal of Food Protection, 68, 955-
- 487 965.
- 488 Santa Lucia, J. Jr. (1998). A unified view of polymer, dumbbell, and oligonucleotide
- 489 DNA nearest-neighbour thermodynamics. *Proceedings of the National Academy of*
- 490 Sciences of the United States of America, 95, 1460-1465.
- 491 Sutcliffe, J., Grebe, T., Tait-Kamradt, A., & Wondrack, L. (1996). Detection of
- 492 erythromycin-resistant determinants by PCR. Antimicrobial Agents and
- 493 *Chemotherapy*, 40, 2562-2566,
- 494 Tenover, F. C. (2006). Mechanisms of antimicrobial resistance in bacteria. American
- 495 *Journal of Medicine*, *119*, S3-S10.
- 496 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997).
- 497 The CLUSTAL_X windows interface: flexible strategies for multiple sequence
- 498 alignment aided by quality analysis tools. *Nucleic Acids Research*, 25, 4876-4882.
- 499 Trzcinski, K., Cooper, B. S., Hryniewicz, W., & Dowson, C. G. (2000). Expression of
- 500 resistance to tetracyclines in strains of methicillin-resistant *Staphylococcus aureus*.
- 501 *Journal of Antimicrobial Chemotherapy*, 45, 763-770.
- 502 Vancanneyt, M., Lombardi, A., Andrighetto, C., Knijff, E., Torriani, S., Björkroth, K. J.,
- 503 et al. (2002). Intraspecies genomic groups in *Enterococcus faecium* and their

- 504 correlation with origin and pathogenicity. *Applied and Environmental Microbiology*,
- 505 *68*, 1381-1391.
- 506 van Hoek, A. H., Scholtens, I. M., Cloeckaert, A., & Aarts, H. J. (2005). Detection of
- 507 antibiotic resistance genes in different *Salmonella* serovars by oligonucleotide
- 508 microarray analysis. *Journal of Microbiological Methods*, 62, 13-23.
- 509 Volokhov, D., Chizhikov, V., Chumakov, K., & Rasooly, A. (2003). Microarray
- analysis of erythromycin resistance determinants. *Journal of Applied Microbiology*,
- *95*, 787-798.
- 512 Vora, G. J., Meador, C. E., Stenger, D. A., & Andreadis, J. D. (2004). Nucleic acid
- 513 amplification strategies for DNA microarray-based pathogen detection. *Applied and*
- 514 Environmental Microbiology, 70, 3047-3054.
- 515 Wang, H. H., Manuzon, M., Lehman, M., Wan, K., Luo, H., Wittum, T. E., et al. (2006).
- 516 Food commensal microbes as a potentially important avenue in transmitting
- 517 antibiotic resistance genes. *FEMS Microbiology Letters*, 254, 226–231.
- 518 Yu, X., Susa, M., Knabbe, C., Schmid, R. D., & Bachmann, T. T., 2004. Development
- 519 and validation of a diagnostic DNA microarray to detect quinolone-resistant
- 520 Escherichia coli among clinical isolates. Journal of Clinical Microbiology, 42, 4083-
- 521 4091.

Table 1.

Table 1. Primers		two multiplex PCR reactions.		R	
Primer	Gene	Sequence (5' to 3')	Amplicon size (bp)	Annealing T (°C)	Reference
aph-1 aph-2	aac(6')-Ie-aph(2'')-Ia	GAGCAATAAGGGCATACCAAAAATC CCGTGCATTTGTCTTAAAAAACTGG	480	55	Kao et al.(2000)
ant(6´)-F ant(6´)-R	aadE	ACTGGCTTAATCAATTTGGG GCCTTTCCGCCACCTCACCG	597	55	Clark, Olsvik, Swenson, Spiegel, & Tenover (1999)
aphA3-F aphA3-R	aphA-3	GCTGCGTAAAAGATACGGAAGG CCCAATCAGGCTTGATCCCC	698	60	Derbise, Aubert, & El Solh (1997)
ermB-I ermB-II	ermB	GAAAAGGTACTCAACCAAATA AGTAACGGTACTTAAATTGTTTAC	639	55	Sutcliffe, Grebe, Tait-Kamradt, & Wondrack (1996)
tetL-up tetL-down	<i>tet</i> (L)	ATAAATTGTTTCGGGTCGGTAAT AACCAGCCAACTAATGACAATGAT	1,077	60	Trzcinski, Cooper, Hryniewicz, & Dowson (2000)
tet(M)-F tet(M)-R	tet(M)	GTGGACAAAGGTACAACGAG CGGTAAAGTTCGTCACACAC	406	55	Ng, Martin, Alfa, & Mulvey (2001)
tet(O)-F tet(O)-R	<i>tet</i> (O)	AACTTAGGCATTCTGGCTCAC TCCCACTGTTCCATATCGTCA	515	60	Ng et al. (2001)
tet(S)-F tet(S)-R	tet(S)	ATGTTTTTGGAACGCCAGAG CATAGACAAGCCGTTGACC	667	55	Ng et al. (2001)
vanA1 vanA2	vanA	GGGAAAACGACAATTGC GTACAATGCGGCCGTTA	732	60	Dutka-Malen, Evers, & Courvalin (1995)
vanB1 vanB2	vanB	ATGGGAAGCCGATAGTC GATTTCGTTCCTCGACC	635	60	Dutka-Malen et al. (1995_

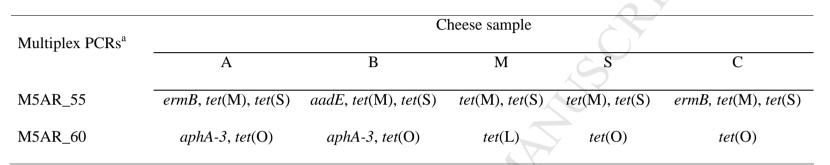
Table 2.

Oligonucleotide probes designed for their inclusion in the microarray.

Probe	Target	Sequence (5'to 3')	Length	Tm ^a	% GC
	gene			(°C)	
aacAaph_72	aac(6')-Ie-	CCTCGTGTAATTCATGTT	18	45.4	38.9
aacAaph_218	aph(2")-Ia	CACACTATCATAACCACT	18	44.7	38.9
aadE_269R	aadE	GTATGATGATTGCTGCA	17	45.0	41.2
aadE_233	uuuL	ATCAGTCGGAACTATGT	17	44.6	41.2
aphA3_295	aphA-3	GCATACAGCTCGATAAT	17	44.9	41.2
aphA3_337	ирпд-5	CAATCCGATATGTCGAT	17	43.8	41.2
ermB_495R	ermB	CACAGATGTTCCAGATAA	18	44.3	38.9
ermB_557R	ermB	GAGAATATCGTCAACTGT	18	44.5	38.9
tetL_121	$tat(\mathbf{I})$	CTACAACCATTACGAGT	17	44.2	41.2
tetL_689R	<i>tet</i> (L)	TTGATAGAAGAGGTCCTT	18	44.6	38.9
tetM_117	<i>tet</i> (M)	GTCTATGATGTTCACCTT	18	44.3	38.9
tetM_142R		GCAGAAGTATATCGTTCA	18	45.3	38.9
tetO_264R	$tat(\mathbf{O})$	AGACGGAGCAGTATTAT	17	45.1	41.2
tetO_217	tet(O)	CTGGCGTATCTATAATGT	18	45.4	38.9
tetS_96	<i>tet</i> (S)	TCCAGGAGTATCTACAAT	18	44.7	38.9
tetS_215	lel(S)	CTAAGTGCATGGAATAGT	18	45.1	38.9
vanA_145	want	GATCCATCTTCACCTGA	17	44.8	47.1
vanA_244	vanA	GCAACGATGTATGTCAA	17	45.4	41.2
vanB_245	n an D	TGTAAGAATGTAGGCCA	17	45.5	41.2
vanB_490R	vanB	CGAGGATGATTTGATTGT	18	44.8	38.9

^a Melting temperature of the probes calculated with the Nearest Neighbour method and the thermodynamic parameters of Santa Lucia (1998).

Table 3.


Italian cheeses analysed for the detection of antibiotic resistance genes.

Sample code	Cheese	Geographical region	Stage of ripening	Origin
А	Malga	Friuli-Venezia-Giulia	Ripened	Artisanal from raw milk
В	Malga	Trentino Alto-Adige	Ripened	Artisanal from raw milk
М	Montasio	Friuli-Venezia-Giulia	Ripened	Industrial from pasteurized milk
S	Stracchino	Trentino Alto-Adige	Fresh-soft	Artisanal from pasteurized milk
С	Caciotta	Trentino Alto-Adige	Fresh-soft	Artisanal from pasteurized milk

Chill and a second seco

Table 4.

Antibiotic resistance genes detected in the cheese samples with the microarray.

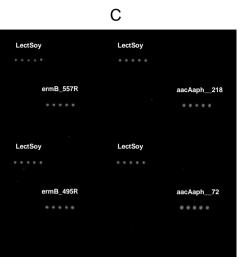
^a M5AR_55, PCR reaction amplify *aac*(6')-*Ie-aph*(2'')-*Ia*, *aadE*, *ermB*, *tet*(M) and *tet*(S) genes; M5AR_60, PCR reaction amplify *aphA-3*, *tet*(L), *tet*(O), *vanA*, and *vanB* genes.

CER

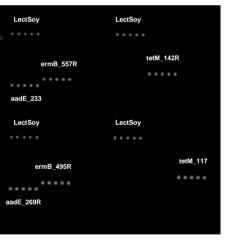
Figure legends 1

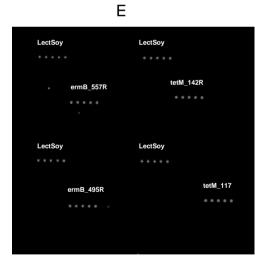
2

2	
3	Fig. 1. Microarray hybridisation images of different enterococcal strains obtained by
4	labelling through multiplex PCR for the following antibiotic resistance genes $aac(6')$ -
5	Ie-aph(2'')-Ia, aadE, ermB, tet(M) and tet(S): A) E. faecalis ET35 [aac(6')-Ie-aph(2'')-
6	Ia^+ , $aadE^+$, $ermB^+$, $tet(M)^+$]; B) E. gallinarum ET15 [$tet(M)^+$, $tet(S)^+$]; C) E. faecium
7	FAIR-E 132 [$aac(6')$ -Ie- $aph(2'')$ -I a^+ , $ermB^+$]; D) E. faecium EO5 [$aadE^+$, $ermB^+$,
8	$tet(M)^+$]; E) E. mundtii ET39 [ermB ⁺ , $tet(M)^+$]. The names of the probes are referred as
9	in Table 2. Spots of the control LectSoy probe are also indicated.
10	
11	Fig. 2. Quantification of the microarray signals (in fluorescence intensity) of the
12	antibiotic resistance probes for hybridisations with DNA from enterococcal strains
13	labelled by the multiplex PCR in replicate experiments (\square , first replicate; \blacksquare , second
14	replicate): A) <i>E. faecium</i> ET51 [<i>ermB</i> ⁺ , <i>tet</i> (S) ⁺] amplified for the resistance genes
15	aac(6')-Ie-aph(2'')-Ia, aadE, ermB, tet(M) and tet(S); B) E. faecalis MN1 (aphA-3 ⁺ ,
16	$vanB^+$) amplified for the resistance genes <i>aphA-3</i> , <i>tet</i> (L), <i>tet</i> (O), <i>vanA</i> , and <i>vanB</i> .
17	
18	Fig. 3. Comparison of microarray signal (in fluorescence intensity) of the 20 antibiotic
10	resistance probes in the different assays with the positive enterococci strains: probes for


resistance probes in the different assays with the positive enterococci strains: probes for 19 20 aac(6')-Ie-aph(2'')-Ia gene, two strains; probes for aadE gene, three strains; probes for 21 aphA-3 gene, three strains; probes for ermB gene, six strains; probes for tet(L) gene, two 22 strains; probes for *tet*(M) gene, four strains; probes for *tet*(S)gene, two strains. Probes 23 for vanA, vanB and tet(O) genes single strains were examined. Data are the average of 24 two independent experiments. The names of the probes are referred as in Table 2.

26	Fig. 4. Microarray hybridisation images of cheeses obtained by labelling of the bacterial
27	DNA with the multiplex PCR for the antibiotic resistance genes <i>aphA-3</i> , <i>tet</i> (L), <i>tet</i> (O),
28	vanA, and vanB. Letters A, B and C illustrate the hybridisation patterns of cheese M
29	$[tet(L)^+]$, cheese C $[tet(O)^+]$, and cheese B $[aphA-3^+, tet(O)^+]$, respectively.
30	
31	Fig. 5. Electrophoretograms (upper panel) and simulated gel (lower panel) obtained by
32	capillary electrophoresis in the Agilent 2100 Bioanalyzer. Samples 1, 2, 3, 4, 5 and 6
33	correspond to the amplicons obtained with the multiplex PCR for the antibiotic
34	resistance genes <i>aphA-3</i> (698 bp), <i>tet</i> (L) [1,077 bp], <i>tet</i> (O) [515 bp], <i>vanA</i> (732 bp) and
35	<i>vanB</i> (635 bp)in the cheeses A [<i>aphA-3</i> ⁺ , <i>tet</i> (O) ⁺], B [<i>aphA-3</i> , <i>tet</i> (O) ⁺], M [<i>tet</i> (L) ⁺], S
36	[<i>tet</i> (O) ⁺], C [<i>tet</i> (O) ⁺] and cheese M contaminated with 10^5 cfu g ⁻¹ vanA ⁺ strain,
37	respectively. Samples 7, 8, 9, 10, 11 and 12 correspond to the amplicons obtained with
38	the multiplex PCR for the antibiotic resistance genes $aac(6')$ -Ie-aph(2'')-Ia (480 bp),
39	aadE (597 bp), ermB (639 bp), tet(M) [406 bp] and tet(S) [667 bp] in the cheeses A
40	$[ermB^{+}, tet(M)^{+}, tet(S)^{+}], B [aadE^{+}, tet(M)^{+}, tet(S)^{+}], M [tet(M)^{+}, tet(S)^{+}], S [tet(M)^{+}, tet(S)^{+}]$
41	$tet(S)^+$], C [$ermB^+$, $tet(M)^+$, $tet(S)^+$] and the strain <i>E</i> . faecalis ET35 [$aadE^+$, $aac(6')$ -Ie-
42	$aph(2'')$ - Ia^+ , $ermB^+$, $tet(M)^+$], respectively. L, 50 - to 10,380 bp marker. The 50 bp and
43	10,380 bp peaks appear in the electrophoretograms as internal references.
44	


	А
LectSoy	LectSoy
ermB_557R aadE_233	tetM_142R aacAaph218
LectSoy	LectSoy
ermB_495R aadE_269R	tetM_117 aacAaph72


В

LectSoy		LectSoy	
		tetM_1	120
	tetS_96	(etm_1	+2N
		· · · · · ·	
LectSoy		LectSoy	
	tetS_215		tetM_117

D

Fig. 1

E. faecium ET51

А

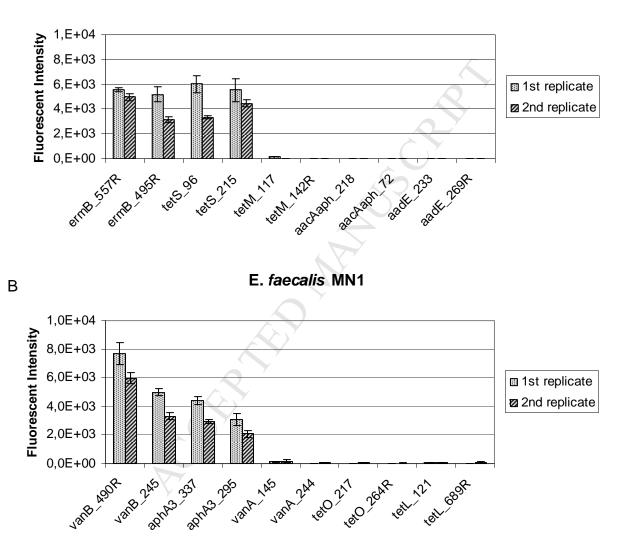


Fig. 2