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Graphical Abstract:  



Research highlights 

► The equivalence between RSPE and the constant potential electrodes was 
verified. ► For 2D circular electrodes their mathematical relationship is provided. 
► It is possible to use electric sources as constant potential regions and vice 
versa. ► Considering constant potential regions as the source term the domain 
remains always the same. ► The above leads to save calculations in modeling 
electrochemical systems with FEM. 
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Abstract 

This work justifies using the right side of Poisson’s equation (RSPE)2 to 

simulate constant potential electrodes (CPEl) in electrochemical processes. Thesehave 

traditionally been considered in the boundary conditions of the corresponding boundary 

value problem (BVP), but in some cases working with the RSPEis much more versatile, 

efficient and suitable. If constant potential regions areconsidered as boundaries, then the 

domain constantly changes as the number,size and position of the regions change; but if 

they are considered as the sourceterm, the domain remains the same, no matter how 

many electrodes there are orhow or where they are located. Some examples will be 

solved in order to clearlyshow that the complicated process of redefining a domain 

                                                           

1Corresponding authors: Tel:+34915538900. FAX:+34915538900 
e-mail addresses: rodrigo.montoya@cenim.csic.es, jcgalvan@cenim.csic.es 
2Also called source terms. 
 



mesh and numbering its corresponding nodes in the finite element method (FEM) is 

sometimesunnecessary when the electrodes are represented with a suitable function on 

theRSPE. These practical examples are simulated using a finite element 

programdeveloped by the authors. 
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Introduction 

As is known, minimization costs and maximization of the efficiency in engineering 

processes are imperative in the competitive electrochemical and anticorrosive industry. 

In this sense the mathematical modeling is a powerful tool; therefore minimization of 

response times in computational codes becomes essential. 

To date, a great number of articles have been published, mainly concerned to cathodic 

protection, which numerically solve the Poisson’s equation in order to predict the 

distribution of electrochemical potentials in a domain of interest [1-17]. In all these 

works, CPEl are usually considered in boundary conditions and the RSPE as zero, 

although it is known that the RSPE can be used to represent polarization current 

densities [5]. 

In this work CPEl will be considered as sites with a continuous charge distribution on 

the RSPE, a clear relation between this and the constant potential regions will be 

verified, and in the case of 2D circular CPEl the explicit mathematical relation will be 

provide. 

The ideas developed in this work are useful not only for saving a huge quantity 



of numerical calculations in modeling electrochemical systems with FEM, e.g. Lithium-

ion batteries, fuel cells, supercapacitors, cathodic protection, corrosion processes, etc. 

but also, where appropriate and depending on the circumstances, to treat electric sources 

as constant potential regions and vice versa. 

In order to simplify the work of plotting the solutions it was decided to write the code in 

the commercial, and well known, Canadian software Maple® using its particular 

programming language. 

We presume any commercial finite element program must build the same answer if the 

same parameters are introduced. Recently we have verified the responses by using the 

commercial software COMSOL® and the results have been exactly the same. 

The case of a CPEl in an insulated system, a trivial case 

To find the potential distribution at equilibrium in the case shown in Figure 1(a) it is 

necessary to solve, if possible, BVP 1, which considers the CPEl as aboundary and is 

posed below, 

 

 

 

 

 

Where φ is the electrochemical potential indomainΩ, k represents the electrolyte 

conductivity and φ0 is the fixed potential of anode Γ5.Γ1, Γ2, Γ3 and Γ4represent 

electrically insulated boundaries. 

Problem 1 presents both Neumann and Dirichlet type boundary conditions, which 

together with the operator used (Laplacian) make for a problem with a unique solution, 

since its corresponding weak formulation a(·, ·) = l(·) has a left side that is bilinear, 



symmetrical, continuous and H-elliptic, while the function l(·) is linear and continuous 

[18, 19]. 

In order to solve problem 1, first of all the corresponding variational formulation 

is generated. This is posed in a space of finite dimension and the finite element method 

is ultimately applied in order to solve the numerical system obtained. 

For more detailed information on the procedure applied, see Appendix I. 

Physical analysis of the situation shown in Figure 1 (a), the boundary conditions used in 

problem 1 and the last matricial system in Appendix I clearly reveal that the solution to 

this trivial system is φ0inΩ, because it is an electrically insulated domain with only a 

portion of the boundary subject to a constantpotential φ0, and thus at equilibrium the 

domain takes this potential. 

The case of an anode and a cathode in a system with insulated boundaries 

If boundary Γ2 in Figure 1(a) is subjected to a current flow denominated PC, which is a 

function that represents the cathodic polarization curve of a metal M; the rest of the 

external boundaries remain electrically insulated and the circular boundary maintains 

the potential φ0, which is anodic with respect to metal M, then the case would represent 

a cathodic protection system and its corresponding BVP is as follows, 

 

 

 

 

 

thevariational formulation and the matricial posing of this problem are obtained in a 

similar way to problem 1, with the difference that the new Neumann condition in Γ2 is 



not considered to define the variation space V because this is not denominated an 

essential boundary condition [18, 19]. 

The final matricial form of the new problem in question would be: 

 

 

 

So it only remains to find the unknown vector {a1,...,aN} using a numerical  method. 

The BVP of problem 2 would be different if it had been decided to consider the constant 

potential condition φ0 for Γ5 on the RSPE and not in the boundary conditions. In this 

case the corresponding BVP would be, 

 

 

 

 

 

Where f(x, y) is the RSPE where the circular electrode is considered. However, this 

problem only has Neumann type conditions, and according to the functional analysis 

theory there is no unique solution [18, 19, 4] and there is no sense to search for its 

physical solution. Figure 1 (b) graphically shows the numerical response obtained by 



FEM in problem 2. This is done by makingφ0 = -1005 mV, k = 4 S/mand  = 

PCxjiaA/m2, wherePCxjia is the function that represents the cathodic polarization curve 

of mild steel in 5% NaCl solution reported in [17]. 

The case of one cathode and two or more anodes in a system with insulated 

boundaries 

In both corrosion engineering and electrochemical science there are a number 

of situations in which testing must be performed with more than one anode and different 

anode positions e.g. the case of potential optimisation in a particular domain region. As 

a consequence, thedomain Ωmesh is enormously complicated because it depends not 

only on the number of selected elements in the domain but also on the system’s 

geometry, which changes according to the selected anode position and with the addition 

of each new anode. 

If the physical problem facing us on this occasion is that represented in Figure 2(a), then 

the corresponding BVP would be very similar to problem (2), except that the new 

system requires an additional boundary. 

However, in this problem one of the anodes may be considered on the RSPE, because in 

this way the corresponding BVP would use both Dirichlet and Neumann conditions, 

thus avoiding the need to satisfy the inadequate compatibility condition [18, 19] 

required to guarantee the existence of a solution in problems that consider only 

Neumann conditions. Thus, the problem in Figure 2(a) may be mathematically 

represented and solved according to BVP 5 or 6 presented below. 

If the two anodes shown in Figure 2(a) are considered as boundaries, then their 

corresponding BVP is, 

 

 



 

 

Whereas, in contrast, if the condition in Γ6 is considered on the RSPE, the 

corresponding BVP is, 

 

 

 

 

 

It should be mentioned that in this last case the Γ6 boundary does not exist and the 

condition of this place being at a certain potential is approximated by 

f(x, y) = r exp{(−s(x −x0)2 −s(y −y0)2}3, where r is a factor that involves the potential or 

the current at which the electrode is found, s is a proportionality factor of the electrode 

diameter, and x0 and y0 are the coordinates of the center of the electrode [15, 16]. 

We are now in a position to solve either of the two above problems to find the potential 

distribution of the case shown in Figure 2(a). Problem 6 may be solved with the same 

mesh used in problem 2, while problem 5 needs a new mesh and will need a different 

one for each new anode position. 

Results and discussion 

Figures 2(b) and 2(c) show the solution to problems 5 and 6, respectively, revealing 

very similar symmetrical potential distributions around the mid horizontal axis of the 

                                                           

3 More about the determination of this function can be seen in the Appendix II. 
 



figure. The main difference between the two figures is that Figure 2(c) shows the 

solution in the lower anode while Figure 2 (b) does not; since this region does not 

belong to domain Ω because the anode is considered as a boundary in the corresponding 

BVP. This is what causes the different color scale in the two figures, since the centre of 

the lower anode in case (b) is more negative and thus needs a greater resolution. 

However, the potential values are very similar in the rest of the domain, which 

demonstrates that the f(x, y) proposed in [15] and [16] to represent circular CPEl on the 

RSPE is correct and responds almost identically to the corresponding simulation of 

circular anodes in the boundary conditions. 

Figure 5 shows, in a quantitative way, the profile of the electrochemical potential of the 

four paths selected from Figure 2 (a). With these results it becomes clearer the real 

equivalency existent between problem (6) and problem (5) using f(x,y) suggested here. 

Similarly, another anode may be added to the system without the need to alter the mesh 

in the preceding problem. In this case it is only necessary to modify f(x, y) by adding a 

term. Specifically, to represent the anode configuration shown in Figure 3(a), f(x,y) was 

considered as r0(exp{(-s(x -x0)2- s(y-y0)2})+r1exp{-s(x-x1)2-s(y-y1)2}) where (x1,y1) are 

the coordinates of the centre of the third anode, so the BVP of the case shown in Figure 

3(a) is identical to problem 5 except for the term r(exp(-s(x-x1)2-s(y-y1)2)) involved in 

function f(x, y). The numerical response of this example is represented in Figure 3(b). 

The similarity of the potential distribution in Figures 3(b) and 3(c) reveals that the 

anodes have the same response when considered either in f(x,y) or in boundary 

conditions.Similar profiles to Figure 5 are obtained in this case. It means, almost 

identical potentials profiles are obtained, in all paths tested, when the three anodes are 

considered as boundaries and when two of them are considered in f(x,y). 

 



It is evident that in the two above examples and in all those where the RSPE is 

considered, the computational code that is used must solve extra numerical integrals that 

involve f(x,y). However, modern numerical integration methods, such as the well-

known quadrature method, place greater emphasis on avoiding the numbering and 

renumbering relationship of the meshing process before writing an integration 

algorithm. 

Figure 4 shows quantitatively the numerical calculations saving when the RSPE is 

employed instead of two and three circular boundary conditions. In all cases coarse (A), 

medium (B) and fine (C) grids were used. It is important to keep in mind that Figure 4 

(I-C) is the mesh used to obtain not only Figure 1(b) but also 2(c) and 3(c). 

When a coarse mesh is employed there is a difference of almost 600 elements between 

the numerical systems used in problems 6 and 5, and this number increases until almost 

9500 with a fine meshing. Both quantities increase twice when a third circular electrode 

is considered. In other words, the corresponding square matrix (called stiffness matrix) 

used to obtained the answer showed in Figure 3(c) has a size 15840×15840 while the 

size of the matrix used to obtain the solution of Figure 3(b) is 34336x34336. 

Talking about numerical calculation savings in terms of nodes in the selected mesh is a 

quantitative way to measure a saving, because others variables like time response 

depends mainly on different factors like the software, the computer and often on the 

users’ skills. For example: using the software developed in this work, the response times 

, in order to obtain the results showed in Figures 2 b), 2 c), 3 b) and 3 c), were 19´42´´, 

11´54´´, 42´10´´, 12´39´´ respectively. However, when using the commercial software 

COMSOL®, the response times for these four cases are almost the same and there are 

no differences > 5 seconds. On the other hand, starting with the same domain showed in 

Figure 1 a) the time wasted to “redraw” a new domain to obtain the responses showed 



in Figures 2 b) and 3 b) could be, depending of the user’ skills, from 1 hour to, even, 

several hours using the code built by the authors and up to half an hour in the case of the 

commercial program. While in the case of Figures 2 c) and 3 c) the user will spend no 

more than a few seconds, in both programs, modifying f(x,y) from its initial value, zero, 

used to obtained the response showed in Figure 1 b). 

 

 

 

 

Conclusions 

The validity of using the RSPE has been demonstrated by finding that, if adequate 

parameters are considered, the solution of a BVP containing two or more constant 

potential electrodes in boundary conditions is almost identical to the solution of the 

corresponding BVP considering the RSPE. Furthermore, the need to work with different 

meshes when taking into consideration different CPEl positions is avoided, so once the 

corresponding domain has been meshed, any number of different positions may be used 

without the need to redefine a new mesh. However, it should be kept in mind, that 

mathematical theory makes it necessary to consider at least one Dirichlet type condition 

in order to be able to represent these regions on the RSPE. 

It has been demonstrated that saving in numerical computations, when the RSPE is 

used, is achieved not only increasing the number of CPEl but also when a refining 

meshing is made. 

It has also been verified that the equation f(x, y), proposed in [15] to represent circular 

CPEl in 2D on the RSPE, is fully suitable; not only because of the adequate potential 



values that are obtained but also because of its versatility and efficiency in representing 

a system with multiple electrodes of different sizes, positions and potentials. 

Using this function offers countless advantages as the number, size or difference in 

potential between the anodes represented increases, since for n anodes f(x, y) is simply 

expressed in the form of r0(exp{(-s0(x-x0)2- s0(y-y0)2})+ ...+ rn−1(exp{(sn-1(x-xn-1)2-sn-

1(y-yn-1)2}) without interfering at all with the meshing of the problem provided that the 

mesh is sufficiently fine. 

In summary, the equivalence between the RSPE [A/m3] and the CPEl [V] has been 

verified and in the case of 2D circular CPEl their explicit mathematical relationship is 

provided. 

Appendix I 

Before going on with the variational formulation of problem 1 it is necessary 

tohomogenise the Dirichlet type boundary condition and redefine the problem as 

follows, 

 

 

 

(4) 

 

Subsequently the variational space ν is defined with the essential boundary conditions  

[18, 19] of problem 7: 

 

                                                           

4To achieve this homogenization it is necessary to make a simple change of variable and 
use another change, at the end of the process, in the reverse direction in order to recover 
the original solution of the physical problem. 
 



where and 

(5), when each member of equation 7 is 

multiplied by v and is integrated in domain Ω, we obtain: , 

to which Green’s theorem is applied to obtain the following equation: 

, 

and using the divergence theorem the latter is transformed into 

. 

Finally, the boundary conditions are used and it is considered that in this particular case 

f(x, y) = 0 to obtain 

 

Before applying FEM it is necessary to address problem 8 in a space of finitedimension, 

for which a partition of Ω  is fixed with N parts and a subspace of νis considered with a 

finite dimension referred to as CN. This will be formed byfunctions 

ϕ: Ω→  

such as: 

• ϕiis continuous 

• ϕi is a polynomial in  2 for i= 1, … , N 

Now the problem is to find   φN  ∈ CN, so that 

 

LetΦ i, i = 1..N a base of CN. Then the solution φN must be a linear combination of Φ I, 

so 

                                                           

5This integral is used in the Lebesgue sense. 
 



 

Where the coefficients ai are converted into the unknown vectors. In this way the 

problem is reduced to 

 

in particular, if v is considered as a base element Φ i, then: 

 

or in matricial form: 

 

 

The problem ends when a numerical algorithm is used to solve the above system. From 

the latter matricial system it follows that the solution is trivial, i.e.{a1, ...,aN} = {0, ..., 

0}, and so when the variable is changed6 the final solution is φ0. 

Appendix II 

The source term f(x,y) was found by searching for a continuous function whose compact 

support was identical to the perimeter of the anode. In other words, a search was 

conducted to find a continuous function whose values outside of the circular anode were 

zero. Achieving this is really complicated, however, a good approximation of a function 

with circular compact support is r exp{(−s(x −x0)2 −s(y −y0)2} because, as seen in 

Figure 6, outside of the ‘protuberance’ the function values are almost nil. Additionally, 

                                                           

6In order to recover the original solution of the physical problem and not that of the 
homogeneous problem. 
 



the centre of this function - and the centre of its ‘protuberance’- is located exactly in 

coordinates (x0,y0), the diameter of the base of this ‘protuberance’ is inversely 

proportional to the parameter S- It means, the diameter of the anode is inversely 

proportional to this parameter- and finally, the height of the function is the parameter r 

and is related to the potential at which the anode is set. 

Certainly, the determination of r depends not only on the potential at which the anode is 

set, but also on the geometry of the domain and on the localization of the (x0,y0). 

Although it is possible to determine r in every possible case, proper treatment of the 

problem must be made and it is not an easy task. However, for the cases studied in this 

paper we ensure r is -4.9 for the case showed in Figure 2 c) and -3.61 for the case of 

three anodes showed in Figure 3c). The value of s does not represent a problem and its 

value, in both cases, was considered as 19.7. 
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List of figures: 
 
Figure 1. a) Schematic representation of a metallic circumference Γ5 with a constant 
potential φ0 immersed in an electrolyte Ω  of conductivity k, which is limited by 
electrically insulated boundaries Γ1, Γ3, Γ4 and another one with a non-nil current flow 
Γ2. b) Graphic representation of the numerical solution of problem 2 found with FEM, 
considering PCxjiaA/m2inΓ2, φ0 = −1.005V in Γ5 and k = 4 mho/m. 
 
Figure 2. a) Schematic representation of two metallic circumferences,Γ5 and Γ6,with a 
constant potential φ0immersed in an electrolyte Ω of conductivity k which is limited by 
electrically insulated boundaries Γ1, Γ3, Γ4 and another one with a non-nil current flow 
Γ2. b) Graphic representations of numerical solution of the case shown in (a) found with 
FEM, considering PCxjiaA/m2 in Γ2, φ0 = −1.005VinΓ5andΓ6,and k = 4 
mho/m. c) Graphic representations of numerical solution of the case shown in a) found 
with FEM, considering PCxjiaA/m2 in Γ2, φ0 = −1.005VinΓ5, k = 4 mho/m and 
using the RSPE in order to approximate the condition φ0=−1.005VinΓ6. 
 
Figure 3.a) Schematic representation of three metallic circumferences Γ5, Γ6 and 
Γ7with a constant potential φ0 immersed in an electrolyte  of conductivity k which is 
limited by electrically insulated boundaries Γ1, Γ3, Γ4 and another one with a non-nil 
current flow Γ2. b) Graphic representations of numerical solution of the case shown in 
a) found with FEM, considering PCxjiaA/m2 in Γ2, φ0 = −1.005V in Γ5, Γ6and 
Γ7 and k = 4 mho/m. c) Graphic representations of numerical solution of the case shown 
in (a) found with FEM, considering PCxjiaA/m2 in Γ2, φ0 = −1.005V in Γ2, φ0 
= −1.005V in Γ5, k = 4 mho/m and using the RSPE in order to approximate the 
condition φ0= −1.005V in Γ6 and Γ7. 
 
Figure 4.Number of nodes used for solving the cases of one (I), two (II) and three (III) 
circular boundaries with coarse (A), medium (B) and fine (C) meshing respectively. 
 
Figure 5. A) simplification of Figure 2 (a) with 4 paths, selected arbitrarily, where the 
potential profiles were obtained for problems 5 and 6 in order to be compared. I) 
potential profiles obtained in path I in A) using the red color line to represent the 
response of problem 5 and the black color representing the response of problem 6. It is 
clear that the red line is interrupted in the two anodes because problem 5 considers these 
ones as boundaries, but the black line is interrupted only in one anode due to problem 6 
considers only one anode as boundary.  II), III) and IV) show the potential profiles 
obtained in paths II), III) and IV), respectively, in A) using the red color line to 
represent the responses of problem 5 and the black color to represent the responses of 
problem 6. 

 
Figure 6. a) Plot of the function r exp{(−s(x −x0)2 −s(y −y0)2} when r=12, x0=y0=0 and 



D=1.  b) It is clear that outside of the protuberance the function could be considered as 
zero. 
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Γ7 and k = 4 mho/m. c) Graphic representations of numerical solution of the case shown 
in (a) found with FEM, considering PCxjiaA/m2 in Γ2, φ0 = −1.005V in Γ2, φ0 
= −1.005V in Γ5, k = 4 mho/m and using the RSPE in order to approximate the 
condition φ0= −1.005V in Γ6 and Γ7. 
  



 
 
 
 
 

 
Figure 4. Number of nodes used for solving the cases of one (I), two (II) and three (III) 
circular boundaries with coarse (A), medium (B) and fine (C) meshing respectively. 
 

 



 

Figure 5. A) simplification of Figure 2 (a) with 4 paths, selected arbitrarily, where the 
potential profiles were obtained for problems 5 and 6 in order to be compared. I) 
potential profiles obtained in path I in A) using the red color line to represent the 
response of problem 5 and the black color representing the response of problem 6. It is 
clear that the red line is interrupted in the two anodes because problem 5 considers these 
ones as boundaries, but the black line is interrupted only in one anode due to problem 6 
considers only one anode as boundary.  II), III) and IV) show the potential profiles 
obtained in paths II), III) and IV), respectively, in A) using the red color line to 
represent the responses of problem 5 and the black color to represent the responses of 
problem 6. 

 
 

 
Figure 6. a) Plot of the function r exp{(−s(x −x0)2 −s(y −y0)2} when r=12, x0=y0=0 and 
D=1.  b) It is clear that outside of the protuberance the function could be considered as 
zero. 
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