Elastic and anelastic relaxations in the relaxor ferroelectric Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}: I. Strain analysis and a static order parameter

M.A. Carpenter1, J.F.J. Bryson1, G. Catalan1,2 and C.J. Howard3

1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
2Campus Universitat Autònoma de Barcelona, ICREA, Bellaterra 08193, Spain
3School of Engineering, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia

PACS number(s): 77.80.Jk, 62.20.de, 62.25.+k, 91.60.Ba

Abstract

The structural evolution of Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3} has been reviewed in terms of characteristic temperatures, length scales and timescales, with a view to considering the overall relaxor behaviour from the perspectives of strain and elasticity. A conventional analysis of lattice parameter data in terms of spontaneous strain and strain/order parameter coupling shows that the relaxor ordering process is accompanied by a significant volume strain which follows the pattern of a static order parameter evolving according to that expected for a tricritical phase transition with $T_c \approx 350$ K. This matches the evolution of the intensity of the elastic central peak in neutron scattering spectra and reflects the development of static (or quasistatic) polar nano regions (PNR’s) as if by a discrete, mean-field phase transition. It also matches the evolution of shear strain in crystals poled by an electric field. Use of a Landau free energy expansion, which includes Γ_4^- order parameter components to describe ferroelectric contributions and an R_1^+ order parameter to describe cation ordering together with their formal coupling with strain, then allows the pattern of elastic softening
expected for a cubic → rhombohedral phase transition to be anticipated. The extent to which observed softening differs from this static mean-field pattern serves to highlight the additional roles of local heterogeneity and relaxation dynamics in determining the relaxor properties of PMN.

1. Introduction

Underlying origins of the distinctive physical properties of relaxor ferroelectrics, such as giant electrostriction, electrooptic effect and large dielectric constant, are usually investigated from the perspective of their response to an applied electric field. Lead magnesium niobate PbMg$_{1/3}$Nb$_{2/3}$O$_3$ (PMN) is regarded as a model relaxor phase in this context, and its dielectric properties have been measured over a wide frequency range from $\sim 10^{-3}$ to 10^{14} Hz (e.g. Bovtun et al 2006, and many references therein). Real (ε') and imaginary (ε'') parts of the complex permittivity reveal aspects of the dynamic behaviour of electronic, phonon and relaxational type polarizations over the correspondingly wide range of time scales. The characteristic broad peak of ε' through the “diffuse” phase transition in the region of ~ 200-300 K together with strong frequency dispersion, in particular, have then been used to inform models of the relaxor behaviour based on the development and freezing of polar nanoregions (PNR’s) which are believed to be responsible for the difference from conventional ferroelectric behaviour (Bokov and Ye 2006a). A thermally activated relaxational process with a single relaxation time would be expected to give variations in ε' and dielectric loss ($\tan\delta = \varepsilon''/\varepsilon'$) that depend on the frequency of the applied electric field according to the Debye equation. Instead, the freezing process of PNR’s involves a wide spectrum of relaxation times and Vogel-Fulcher dynamics (e.g. for PMN: Viehland et al 1990, Dorogovtsev and Yushin 1990, Levstik et al 1998, Glazounov and Tagantsev 1998, Bovtun et al 2004, 2006, Bokov and Ye 2006a, Pirc and Blinc 2007, Zhao et al 2009). The
key parameters of the Vogel-Fulcher equation are a freezing temperature, T_f, and some relaxation time, τ, which are related by

$$\tau = \tau_o \exp \left(\frac{U}{k_B(T - T_f)} \right).$$

(1)

Here τ_o is the inverse of attempt frequency, U is an effective activation energy and T is temperature. In practice different relaxation times from the total relaxation time spectrum may be extracted in different ways from experimental data (e.g. Glazounov and Tagantsev 1998, Bokov and Ye 2006a, b) and different parts of the spectrum may have different freezing temperatures (Bokov and Ye 2006a).

The relaxation dynamics of PNR’s can also be investigated from other perspectives. Most notably, relaxor ferroelectrics display significant electrostriction (e.g. in PMN: Blackwood and Ealey 1993, Zhao et al 1998), which is an overt demonstration of the fact that electric polarization is coupled with strain. Polarisation relaxation in a dynamic electric field must depend also on the dynamics of strain relaxation, therefore. The equivalent elastic property to electric polarisation is strain and the equivalent susceptibility to permittivity is elastic compliance. The latter is more usually expressed in terms of the elastic constants for a single crystal or bulk and shear moduli for a ceramic. It follows that, as proposed by Viehland et al (1990), interactions between PNR’s could occur by both dipole and elastic strain mechanisms. The electric dipole interactions should be relatively strong and short ranging, while correlations via elastic strain fields would be weak but relatively long ranging. Elastic and dielectric responses to external fields will not necessarily be quite the same, therefore. The pattern of strain variations and elastic softening associated with a conventional ferroelectric transition is expected to depend on the evolution of a classical order parameter more or less according to Landau theory. Deviations from this are indicative of the special
characteristics of correlation length scales and relaxational timescales of PNR’s as observed from the perspective of strain correlations rather than of electric dipole correlations.

Strain and elastic moduli are second and fourth rank properties, respectively, in comparison with polarisation and permittivity which are first and second rank properties, so that elastic responses have the potential to convey additional information relating to the role of symmetry in some of the coupling processes which determine relaxor behaviour. There will also be acoustic losses in an alternating stress field which can be described by the internal friction or inverse mechanical quality factor, and which will provide specific information on the relaxation properties of boundary regions between the PNR’s analogous to the dynamic behaviour of twin walls in ferroelastic materials. The present study was devised with the purpose of investigating the properties and behaviour of PNR’s from this perspective of strain and elasticity. PMN was chosen for investigation both because it retains cubic lattice geometry down to low temperatures, without any breaking of macroscopic symmetry, and because of the wealth of experimental data available for its unit cell parameters, dielectric properties and lattice dynamics. In particular, it is already known that there is strong coupling between acoustic phonons and local dynamics of the PNR’s (Stock et al 2005).

In this first of two papers, the overall relaxor behaviour of PMN is reviewed in terms of characteristic temperatures, length scales and timescales of the structural processes involved. The macroscopic strain evolution is then analysed using a Landau free energy expansion which includes the effects of both ferroelectric displacements and cation ordering. It turns out that the volume strain can be described using normal strain/order parameter coupling as if there is a tricritical phase transition with $T_c \approx 350$ K. This leads to a simple prediction of the form of the elastic anomalies which should be expected to occur. In the following paper (Carpenter et al 2011), new data for the elastic properties and acoustic dissipation obtained by Resonant Ultrasound Spectroscopy are combined with elasticity data
from the literature to show the extent to which strain dynamics of the PNR’s follow the local dipole dynamics. Deviations from classical strain/order parameter patterns of elastic softening can be understood in terms of coupling between acoustic modes and relaxational modes of the PNR’s.

2. Statics and dynamics of relaxor behaviour of PMN

2.1 Characteristic temperatures

With falling temperature, the Burns temperature, \(T_d \approx 630 \) K, is marked by the onset of changes in refractive index (Burns and Dacol 1983), a change in thermal expansion (e.g. Bonneau et al 1989, Zhao et al 1998, Dul’kin et al 2003, Dkhil et al 2001, 2009), together with the appearance of a central peak component in Raman spectra (Siny et al 1997, Siny and Katiyar 1998, Svitelskiy et al 2003), quasi-elastic scattering in inelastic neutron scattering spectra (Naberezhnov et al 1999, Hirota et al 2002, Hiraka et al 2004, Gvasaliya et al 2005), and a peak in acoustic emission (Dul’kin et al 2003, Dkhil et al 2009). These effects are all understood to originate from the development of dynamic PNR’s.

The most overt evidence for a second characteristic temperature, \(T^* \approx 500 \) K, is provided by a peak in acoustic emission reported by Dkhil et al (2009). Acoustic emission arises from the abrupt release of mechanical stress and is commonly associated with phase transitions. In PMN the origin must be due to some local effect since there is no macroscopic symmetry change and Dkhil et al (2009) suggested that \(T^* \) marks the temperature at which the PNR’s acquire a static component. Such a clear anomaly does not seem to show up at 500 K in other properties, though a new peak appears in Raman spectra collected below this temperature (Dkhil et al 2009) and elastic diffuse neutron scattering intensity also seems to increase from zero at about the same point (see Fig. 1 of Hiraka et al 2004; Fig. 1 and Fig. 8 of Gehring et al 2009).
The next characteristic temperature is the Curie temperature, \(T_c \approx 400 \) K, estimated by extrapolation of dielectric susceptibility data from above \(T_d \) according to the Curie-Weiss law (Viehland et al 1992). This seems to correspond exactly with the critical temperature for a zone-centre soft optic mode obtained by extrapolation of the square of its frequency to zero from high temperatures, \(390 \pm 30 \) K (Al-Zein et al 2010, Vakhrushev et al 2010). There is also a change in the character of the central peak in neutron scattering spectra at about the same temperature. Immediately below \(T_d \) the central peak is broad and due to quasi-elastic scattering. This increases in intensity below \(\sim 600 \) K, reaches a maximum at \(\sim 370 \) K and then diminishes on further cooling (Gvasaliya et al 2005). A narrow component due to elastic scattering increases in intensity steeply below \(\sim 400 \) K (Hiraka et al 2004, Gvasaliya et al 2005, Gehring et al 2009, Stock et al 2010) and is interpreted as indicating that the PNR’s become static, at least on a time scale of greater than 2 ns (Gehring et al 2009, Stock et al 2010). The elastic central peak remains diffuse, however, indicating that the correlation length of static regions is small. Cowley et al (2009) described this overall behaviour in terms of a random field phase transition at \(\sim 400 \) K. Svitelskiy et al (2003) reported splitting of peaks in Raman spectra below \(350 \) K (see, also, Curecheriu et al 2009) and quoted \(T^* = 350 \pm 25 \) K as the temperature at which “a quasistatic ordering begins to set in, equivalent to one or several underlying or latent structural phase transitions, marked by sharper and split phonon peaks”. Some dynamic component to the ordering remains, however, which from recent neutron inelastic scattering results has its maximum at \(\sim 300-350 \) K and tends to zero at \(\sim 200 \) K (Stock et al 2010). \(350 \) K is also the temperature below which significant diffuse intensity appears in X-ray diffraction patterns and at which there appears to be a change in thermal expansion of single crystal PMN (Dkhil et al 2001).

Finally, the maximum in dielectric permittivity occurs at a frequency-dependent temperature, \(T_m \), which varies between \(\sim 230 \) K at \(\sim 10^3 \) Hz and \(\sim 370 \) K at \(10^{11} \) Hz (Bovtun et
al 2006). This is usually used to obtain a Vogel-Fulcher freezing temperature, T_{VF}, by fitting to $f = (2\pi\tau_o)^{-1}\exp[-E/(T_m-T_{VF})]$. It does not necessarily follow that the parameters in this expression are identical to those of Equation 1 (Bokov and Ye 2006a) but the frequency f is effectively used to give a relaxation time τ directly as $\tau = 1/2\pi f$ and T_{VF} may be assumed to represent the freezing temperature such that the values of T_f obtained are in the vicinity of ~220 K for PMN.

2.2. Characteristic length scales

Although there is no long range order at any temperature in PMN and the structure remains cubic down to 5 K (Bonneau et al 1991, de Mathan et al 1991a), short range order does develop with distinctive length scales. Firstly, direct observations by transmission electron microscopy (TEM) at room temperature have revealed antiphase domains on a scale of ~60 Å associated with B-site cation ordering on the basis of space group $Fm\overline{3}m$ (Hilton et al 1989, 1990). Chen et al (1989) gave dimensions of ~20 – 50 Å for the same microstructure, while Yoshida et al (1998) and Miao et al (2001) gave the dimensions as ~20 – 70 Å. This chemical ordering gives rise to diffuse intensity in neutron diffraction patterns but the intensity is relatively independent of temperature (Gehring et al 2009), indicating that the domains remain unchanged through the interval of PNR formation and freezing. It has been found that there is an increase in intensity of superlattice reflections in X-ray diffraction patterns below room temperature, but this has been attributed to some additional atomic displacements rather than a change in cation order (Gosula et al 2000). A constant microstructure associated with the chemical ordering is also consistent with the observations of Hilton et al (1990) in relation to limited changes of superlattice reflection intensities and diffuseness between ~100 K and ~425 K in electron diffraction patterns. Davies and Akbas (2000) reported that heat treatments at temperatures between 700 and 1400 °C failed to
induce any significant structural modification and Farber et al (2002) concluded that the equilibrium ordering transition temperature is ~950 °C. In this case the antiphase domain texture observed by TEM in samples prepared at higher temperatures arises from short range ordering only.

Diffraction data are consistent with the PNR’s having local rhombohedral symmetry (de Mathan et al 1991a, Takesue et al 2001, Ye et al 2003, Jeong et al 2005). Diffuse neutron scattering data give correlation lengths for the polar ordering as ~10-15 Å at 300, 400 and 500 K, with a small increase to ~20 Å at 250 K followed by a larger increase to ~45-60 Å between 200 and 10 K (Xu et al 2004). Yoshida et al (1998) reported the development of granular strain contrast in TEM images on a scale of ~100 Å at 260 K and a few hundred Å at 200 K, together with the appearance of rhombohedral twin walls within individual PNR’s below 130 K. An additional domain structure has been observed by piezoresponse force microscopy in PbMg$_{1/3}$Nb$_{2/3}$O$_3$-PbTiO$_3$ (PMN-PT) above the ferroelectric-relaxor transition temperature (Shvartsman and Kholkin 2010). The domains appear to be “self-organised agglomerates of static (or quasi-static) PNR’s” (Shvartsman and Kholkin 2010) on a scale of ~100-200 nm. The present authors have not found any reports in the literature of similar features in PMN, but domains in which neighbouring PNR’s interact to produce some degree of self alignment of polarisations via dipole/dipole interactions and elastic strain fields clearly might occur. This and the observations of Yoshida et al (1998) would fit with the original view of Viehland et al (1991) that the freezing process involves correlations between adjacent PNR’s up to a length scale of ~200 Å in PMN.

Neutron pair distribution analysis implies that the volume fraction of PNR’s increases with falling temperature to ~10% at 300 K, then to ~20% at 250 K and ~30% at 15 K (Jeong et al 2005). The change near 250 K is consistent with passage through the percolation threshold, which is ~28% for spherical objects in three dimensions and slightly less than this
for ellipsoidal objects (Jeong et al. 2005, Blinc 2006). The local symmetry of the matrix need not be cubic and the thickness of boundaries between the PNR’s is comparable with the size of the PNR’s themselves (Bokov and Ye 2006). A distinct pattern of thermal expansion indicates that the development of PNR’s is accompanied by a small positive volume strain (e.g. Zhao et al. 1998, Dkhil et al. 2001, 2009, Gehring et al. 2009), which is presumably due to both the increasing volume fraction of PNR’s and the contribution of strain relaxation with increasing polarisation within them. Any additional relaxation of the matrix, say to a locally antiferroelectric structure (Ishchuk 2001), would also contribute to this strain.

2.3. Characteristic timescales

An alternative view of the overall relaxor behaviour of PMN is provided by considering the temperature dependence and interactions of phonons. The E₁ soft optic mode described by Al-Zein et al. (2010) would by itself lead to a conventional ferroelectric transition. The next transverse optic mode (A₁ according to Al-Zein et al. 2010) has also been shown to soften with increasing temperature below T₁ and with decreasing temperature from above Tₐ (Gehring et al. 2001, Wakimoto et al. 2002a, Bovtun et al. 2004, Vakhrushev et al. 2010, Al-Zein et al. 2010, Taniguchi et al. 2010). Complications of damping close to the Γ point attributed to the influence of PNR’s in the temperature interval between T₁ and Tₐ are well documented (e.g. Gehring et al. 2000, 2001, Wakimoto et al. 2002a, Shirane et al. 2005, Bokov and Ye 2006a, Hlinka and Kempa 2008), and a number of analyses of coupling between optic and acoustic modes have also been made (Wakimoto et al. 2002b, Gvasaliya et al. 2005 JPCM, Stock et al. 2005). In one of the most recent analyses (Stock et al. 2005) it was concluded that this coupling is weak, however.

Key additional features of the relaxor behaviour are the relaxational processes which give rise to the central peak in Raman, IR and Brillouin scattering spectra (Siny et al. 1997,
Svitelskiy et al 2003, Kamba et al 2005, Taniguchi et al 2010) and to the quasielastic scattering in inelastic neutron scattering spectra (Hirota et al 2002, Gvasaliya et al 2004a, b, 2005, Gehring et al 2009). Siny et al (1997) determined that the relaxation times involved are \(\sim 10^{-12} \) s for the temperature interval over which the Raman central peak was observed (\(\sim 100-650 \) K) and Gvasaliya et al (2004b) obtained \(\sim 10^{-11} \) s from analysing the peak width of a broad quasi-elastic scattering central peak in inelastic neutron spectra. Essentially the same central peak features have been observed in Brillouin spectra of 0.93PbZn\(_{1/3}\)Nb\(_{2/3}\)O\(_3\)-0.07PbTiO\(_3\) (0.93PZN-0.07PT) from which Tsukada et al (2008) and Tsukada and Kojima (2008) obtained relaxation times of \(\sim 10^{-11} - 10^{-12} \) and \(\sim 10^{-12} - 10^{-13} \) s for two separate relaxation processes. Of particular significance in the context of the elastic properties of PMN is the observation that there is strong coupling between the relaxational central peak/quasi-elastic scattering mode(s) and acoustic phonons (Stock et al 2005). The same conclusion, that PNR dynamics have a strong influence on acoustic modes, has also been reached for PMN-PT (Ko et al 2010) and PZN-PT (Toulouse et al 2005, Xu et al 2008, Ko et al 2008, Tsukada and Kojima 2008, Tsukada et al 2008). While the relaxation dynamics occur on a time scale of \(\sim 10^{-12} \) s, NMR evidence is that polar clusters exist on a time scale of \(\sim 10^{-4}-10^{-5} \) s (Blinc et al 2000).

3. Strain analysis

The starting point used here for considering the relaxor behaviour of PMN from the perspective of strain and elasticity is a conventional Landau treatment for the related ferroelectric transition(s). There are two symmetry-breaking processes: ferroelectric displacements tend to the lower the symmetry from \(Pm\bar{3}m \) to \(R\bar{3}m \), and cation ordering tends to lower the symmetry from \(Pm\bar{3}m \) to \(Fm\bar{3}m \). The order parameters transform as irreducible
representations Γ_4^* and R_1^+, respectively, of $Pm\bar{3}m$. A full Landau expansion for the excess free energy of the combined processes would be

$$G = \frac{1}{2} a_T \Theta_{c\Gamma} \left(\coth \left(\frac{\Theta_{c\Gamma}}{T} \right) \right) \left(q^2_1 + q^2_2 + q^2_3 \right) + \frac{1}{4} b_T \left(q^2_1 + q^2_2 + q^2_3 \right)^2$$

$$+ \frac{1}{4} b'_T \left(q^4_1 + q^4_2 + q^4_3 \right) + \frac{1}{6} c_T \left(q^2_1 q^2_2 + q^2_3 \right)^3 + \frac{1}{6} c'_T \left(q_1 q_2 q_3 \right)^2$$

$$+ \frac{1}{6} \lambda_{2e} \left(q^2_1 - q^2_2 \right) + e_1 \left(2 q^2_3 - q^2_1 - q^2_2 \right) + \lambda_{3R} \left(e_4 q_3 g_2 + e_5 g_3 q_1 + e_6 g_1 q_2 \right)$$

$$+ a_R \Theta_{cR} \left(\coth \left(\frac{\Theta_{cR}}{T} \right) \right) \left(q_1^2 + q_2^2 + q_3^2 \right) + \frac{1}{4} b'_R \left(q^4_1 + q^4_2 + q^4_3 \right) + \lambda_{2e} \left(e^2_4 q_3 + e^2_5 g_3 q_1 + e^2_6 q_1 \right)$$

$$+ \lambda_{3R} \left(e^2_4 + e^2_5 + e^2_6 \right) q^2_1 + \frac{1}{4} \left(C_{11}^o - C_{12}^o \right) \left(e^2_4 + e^2_5 \right)$$

$$+ \frac{1}{6} \left(C_{11}^o + 2 C_{12}^o \right) e^2_4 + \frac{1}{2} C_{44}^o e^2_4 + e^2_5 + e^2_6 + \lambda_{4R} \left(q^2_1 + q^2_2 + q^2_3 \right) q^2_2$$

(2)

where a, b, c, etc., are normal Landau coefficients, $\Theta_{c\Gamma}$ and Θ_{cR} are saturation temperatures for the Γ_4^* and R_1^+ order parameters, $T_{c\Gamma}$ and T_{cR} are critical temperatures, e_i are strains, with $e_4 = (e_1 + e_2 + e_3)$, $e_5 = (e_1 - e_2)$ and $e_6 = (1/\sqrt{3})(2e_3 - e_1 - e_2)$, λ's are strain/order parameter coupling coefficients and C_{ik}^o are elastic constants of the parent cubic phase. The final term represents direct biquadratic coupling of the two order parameters. Different combinations of non-zero order parameters give rise to different product structures, as listed in full in Table 1. A combination of $R3m$ ferroelectric displacements with $Fm\bar{3}m$ cation order gives a structure with $q_1 = q_2 = q_3 \neq 0$ and $q_R \neq 0$ which has space group $R3m$ and a unit cell expressed in terms of basis vectors $(-1,1,0), (0,-1,1), (2,2,2)$ with respect to the parent $Pm\bar{3}m$ structure.

If the ferroelectric transition takes place in a crystal with some fixed degree of cation order, q_{RF}, the effect of the biquadratic coupling term is to renormalise the critical temperature, $T_{c\Gamma}$. Ignoring saturation terms, the new critical temperature would be
\[T^{*}_{c\Gamma} = T^{*}_{c\Gamma} - \frac{2\lambda_{TR} q_{RF}^2}{a^{\Gamma}}, \]

(3)

where \(T^{*}_{c\Gamma} \) is equivalent to the Curie temperature, \(T_c \), from above. In this case, the evolution of parameters such as the soft mode frequency would give different Curie temperatures between samples that had been prepared with different degrees of cation order. More importantly, the development of ferroelectric displacements within antiphase boundaries of the ordered structure, where \(q_{RF} = 0 \), would be different from within the domains, where \(q_{RF} \neq 0 \), and heterogeneity would necessarily follow. The difference depends on the sign and magnitude of \(\lambda_{TR} \). By analogy with \(\text{Pb(Sc}_{1/2}\text{Ta}_{1/2})\text{O}_3 \), as summarised in Burton et al (2005), the ferroelectric transition temperature is expected to increase with increasing \(|q_{RF}| \), implying that \(\lambda_{TR} \) is negative.

There will be two spontaneous strains, \(e_4 \) and \(e_a \), defined with respect to the \(Pm\overline{3}m \) structure, depending on the order parameters according to

\[e_a = -\frac{\lambda_{1\Gamma}(q_1^2 + q_2^2 + q_3^2) + \lambda_{1R} q_{RF}^2}{\frac{1}{3}(C_{11}^0 + 2C_{12}^0)}, \]

(4)

\[e_4 = -\frac{\lambda_{3\Gamma} g_2 g_3}{C_{44}^0 + 2\lambda_{3R} q_{RF}^2}. \]

(5)

The only strain contribution arising from cation ordering would be to the volume strain, \(e_a \), and the magnitude of this would in principle be expected to differ locally between antiphase boundaries and antiphase domains. PMN has local rhombohedral domains at low temperatures but retains average cubic lattice geometry, i.e. \(e_4 = (a/a_o) \cos \alpha = 0 \) since the cosine of the rhombohedral angle, \(\alpha \), over the length scaled averaged by X-ray diffraction is zero. There will still be a volume strain, \(e_a \), from the ferroelectric ordering, however, which should scale with the square of the average ferroelectric order parameter within the PNR’s.
Variations of the volume strain can be represented by the variation of $e_1 (e_a = 3e_1)$ which is determined from measured lattice parameters in the usual way. Figure 1a shows lattice parameter data from Bonneau et al (1991), Zhao et al (1998), Dkhil et al (2009) measured by neutron and X-ray diffraction, for example. The reference parameter of the parent cubic phase, a_o, has been obtained by fitting the function (Salje et al 1991, Meyer et al 2000, 2001, Sondergeld et al 2000, Carpenter et al 2003)

$$a_o = a_1 + a_2 \Theta_{s,ao} \coth \left(\frac{\Theta_{s,ao}}{T} \right)$$

(6)

to data above 600 K. The resulting extrapolations to low temperatures are illustrated in Figure 1a for data of Bonneau et al (1991) and Dkhil et al (2009). Following McKnight et al (2009), the saturation parameter $\Theta_{s,ao}$ was set at 150 K, which is within the expected range for leveling off of normal thermal expansion in oxide perovskites as $T \to 0$ K.

Variations of e_1^2, where $e_1 = (a - a_o)/a_o = e_s/3$, from all the data in Figure 1a are shown in Figure 1b. Absolute values of e_1 are subject to significant uncertainty from the choice of $\Theta_{s,ao}$ and differ between data sets due to uncertainties propagated from fitting of the baseline to limited number of points for a_o at high temperatures. The trend with temperature is clearly the same in each case, however. By analogy with the behaviour of PbTiO$_3$, the ferroelectric transition might be expected to be close to tricritical in character (Whatmore et al 1978), in which case the variation of e_1 is expected to follow

$$e_1^2 \propto q_1^4 \propto \left(\coth \left(\frac{\Theta_{sf}}{T_{cl}^*} \right) \right) - \coth \left(\Theta_{sf} \right),$$

(7)

as occurs also in the mineral lawsonite (Carpenter et al 2003). The only data in Figure 1b that extend to low enough temperatures to clearly include the influence of Θ_{sf} are from the neutron diffraction results of Bonneau et al (1991). Fitting Equation 7 to data between 5 and 200 K gives $T_{cl}^* = 342 \pm 38$ K, $\Theta_{sf} = 91 \pm 45$ K. Keeping Θ_{sf} fixed at 91 K for a fit to X-ray
data of Bonneau *et al* (1991) in the interval 73-240 K gives $T_c^* = 341 \pm 5$ K (Fig. 1b). The data of Zhao *et al* (1998) obtained with a 5kV.cm$^{-1}$ electric field applied to a ceramic sample show a slightly larger strain for the rhombohedral structure below 220 K, but the raw data overlap with those for the cubic phase (Fig 1a) and it is not clear that the difference is due to the electric field rather than simply being derived from the fitting of a_0 to data at high temperature obtained with zero field.

A poled rhombohedral sample has $\alpha = 89.91 \pm 0.02^\circ$ at 80 K after removal of the electric field (de Mathan *et al* 1991), giving $e_4 = 0.0016 \pm 0.0004$ as the equilibrium strain for the ferroelectric equivalent of the cubic relaxor phase. The sample remained rhombohedral up to \sim200 K and the limited data of de Mathan *et al* (1991b) have been used to calculate values of $e_4 (\approx \cos \alpha)$. Within experimental uncertainties, e_4 follows the pattern expected for

$$e_1^2 \propto e_4^2 \propto q_1^4 \propto (T_c - T)$$

(Fig. 1b).

4. Discussion

This treatment essentially follows the view of Cowley *et al* (2009) that there is an effective phase transition in PMN. The strain analysis is permissive of the view that the order parameter within PNR’s below T_c varies in a manner that is close to tricritical in character. Even excluding the uncertainty of the value of $\Theta_{s,a0}$, the extrapolated transition temperature from e_1^2 (340 \pm 40 K) is consistent with the value determined from the evolution of the soft mode frequency at high temperatures ($T_c = 390 \pm 30$ K, Al Zein *et al* 2010; \sim400 K, Vakhrushev *et al* 2010). Approximately tricritical character for an order parameter, q, is also implied by the variation with temperature of the intensity of the elastic part of a diffuse neutron scattering central peak, I_{CP}, in data of Gvasaliya *et al* (2005). As shown in Figure 2a, I_{CP}^2, which would be expected to scale with the order parameter as $I_{CP}^2 \propto q^4$, varies in the
same manner as e_1^2. Equivalent data for elastic diffuse scattering from Gehring et al (2009) are also shown and the fit to these has $\Theta_s = 104 \pm 15$ K, $T_c = 342 \pm 5$ K. Separate treatment of the static component of diffuse scattering intensity gives a closely similar result (Fig. 2b, with data from Fig. 4a of Stock et al 2010). According to Equation 3, there must be differences in the ferroelectric transition temperature between ordered domains and disordered domain walls due simply to renormalisation by the order parameter for cation ordering.

A Landau 246 potential would give slightly higher values of T_c but the implication is still that there is a discrete phase transition and an effective static order parameter which behaves in a manner that is close to tricritical. The overall trend of e_1 and I_{CP} are essentially the same for all the samples represented in Figures 1 and 2, and will be similar to other data sets for thermal expansion that are in the literature. The trend of e_1 is typical of other transitions in perovskites in including a tail in the non-symmetry breaking strain above $T_{c_{1d}}^*$, though this extends to much higher temperatures than in the case, say, of LaAlO$_3$ (Carpenter et al 2010). The absence of a tail in the static component of the diffuse neutron scattering intensity (Fig. 2b) implies that the tail in the strain for PMN is due to the dynamic component of the structural evolution at $T > T_c$. The latter tends to zero at ~ 200 K (Stock et al 2010), more or less where the tail in strain meets the mean field fit to the data extrapolated from lower temperatures.

The magnitude of e_1 at 0 K in zero field is ~ 0.0036 implying a total positive volume strain (e_a) of $\sim 1\%$, though this is subject to uncertainties arising from the choice of $\Theta_{s,ao}$. In the freezing interval observed by dielectric spectroscopy, i.e. ~ 230-370 K, the dynamic tail of the volume strain is larger than would be implied for the purely static component (Fig. 2b). The effect of increasing pressure at temperatures below ~ 400 K should be first to suppress dynamic aspects of the PNR’s, therefore, to give a rhombohedral phase with the enlarged unit cell of a structure which has $q_1 = q_2 = q_3 \neq 0$ and $q_R \neq 0$. Further increases in pressure should
then suppress the ferroelectric order parameter to leave a cubic phase \((Fm\bar{3}m) \) with cation ordering only. Chaabane et al (2003) have reported a reduction of diffuse X-ray scattering in PMN with increasing pressure, and their limited data for an \(h+1/2, k+1/2, l+1/2 \) reflection (where \(h, k, l \) refer to the cubic \(P \) parent structure) are at least consistent with a doubled \(R3m \) structure becoming stable above \(\sim 4 \) GPa at room temperature. Significant changes in single crystal elastic constants have been observed at \(\sim 4.5 \) GPa (Ahart et al 2009) but there is uncertainty about the structure of the high pressure phase (Chaabane et al 2003, Ahart et al 2009). Accurate determinations of both the volume strain and transition pressures would allow this model of the effect of pressure to be tested through the use of the relationship (from Carpenter 2007)

\[
P_c = \frac{a_1 \Theta s \Gamma}{2 \lambda l} \left(\frac{1}{3} \left(C_{11}^0 + 2C_{12}^0 \right) \right) \left(\coth \left(\frac{\Theta s}{T} \right) - \coth \left(\frac{\Theta s}{T_c \Gamma} \right) \right),
\]

(8)

where \(P_c \) is the \(R3m \leftrightarrow Fm\bar{3}m \) transition pressure at temperature \(T \).

Even though PMN is a relaxor ferroelectric, the evolution of its macroscopic strain follows a pattern which would be expected at a conventional ferroelectric phase transition associated with a soft optic mode and a critical temperature of between 350 and 400 K. Use of a Landau free energy expansion should then yield predictions of the form of the elastic constant variations which would represent the limiting case of elastic softening due to strain/order parameter coupling alone. The expansion for \(Pm\bar{3}m \leftrightarrow R3m \) or \(Fm\bar{3}m \leftrightarrow R3m \) (with constant \(q_R \)) transitions is the same as for \(Pm\bar{3}m \leftrightarrow R\bar{3}c \) (\(R\bar{4} \)), so that expressions for the elastic softening will also be the same. These are given in full by Carpenter et al (2010) for the \(Pm\bar{3}m \leftrightarrow R\bar{3}c \) octahedral tilting transition in LaAlO\(_3\). If the elastic constant matrix for a cubic material is diagonalised, the eigenvalues, \(K = \frac{1}{3} (C_{11} + 2C_{12}) \), \(\frac{1}{2} (C_{11} - C_{12}) \) and \(C_{44} \) transform as irreducible representations \(\Gamma_1^2, \Gamma_3^+ \) and \(\Gamma_5^+ \) respectively. The corresponding
eigenvectors are the symmetry-adapted strains e_a, e_o and e_i, and e_t. For a second order transition, eq^2 coupling leads to a discontinuities in C_{44}, $\frac{1}{2}(C_{11} - C_{12})$ and the bulk modulus, K, at $T = T_c$. The rhombohedral phase is expected to be softer than the cubic phase by a fixed amount which depends on the square of the strain/order parameter coupling coefficients, i.e. λ^2_1 for the bulk modulus, λ^2_2 for $\frac{1}{2}(C_{11} - C_{12})$ and λ^2_3 for C_{44}. If the transition is tricritical, the discontinuity is larger and the elastic constants of the low symmetry phase recover in a non-linear manner with falling temperature. These well known patterns are illustrated in Rehwald (1973) and Carpenter and Salje (1998), for example, and the $\beta \leftrightarrow \alpha$ transition in quartz shows the non-linear pattern of softening below the transition point characteristic of a transition which is close to being tricritical (Carpenter et al 1998). For LaAlO$_3$ it was found that RUS measurements on a rhombohedral crystal containing all possible twin orientations could be treated as being cubic, on average, and that the resulting values of C_{44} and $\frac{1}{2}(C_{11} - C_{12})$ which were obtained showed the expected softening due to the cubic \leftrightarrow rhombohedral transition. Thus, a twinned crystal of rhombohedral PMN might be expected to display softening of the form shown in Figure 3 for a tricritical transition.

Coupling terms of the form eq^2 and e^2q^2 do not cause softening of elastic constants in the stability field of the high symmetry phase ahead of the transition point. However, softening of elastic constants which have symmetry properties related to the identity representation, in this case K only, can occur above T_c as a consequence of fluctuations due to interactions between phonon modes with k-vectors just away from the critical point of the Brillouin zone (Höchli 1972, Cummins 1979, Lüthi and Rehwald 1981, Yao et al 1981, Fossum 1985, Carpenter and Salje 1998, Carpenter 2007). This has been added to the expected form of “classical” softening for a ferroelectric transition in PMN shown in Figure 3. Finally, coupling of the form λe^2q^2 leads to renormalisation of the elastic constants according to $C = C_0 + 2\lambda q^2$ (e.g.
see Carpenter and Salje 1998). Differences in cation order between antiphase domains and antiphase boundaries should, in principle, result in the elastic properties of the domains being different from those of the domain walls, therefore.

The small size of PNR’s in the nonergodic phase of PMN does not appear to hinder the development of volume strain, e_v, since the volume strain of a rhombohedral sample at low temperatures (in a 5kV.cm$^{-1}$ field) is at most only ~0.3% greater than that of the cubic structure with no field (using e_1 values from Fig. 1b). Softening of the bulk modulus, which scales with $\lambda_{1\Gamma}^2$, would be expected to be comparable to that associated with a normal ferroelectric transition, therefore. Strain contrast associated with the PNR’s in transmission electron microscope images (e.g. Viehland et al 1995) and the presence of twin walls within individual PNR’s (Yoshida et al 1998) signify that a degree of local e_4 shear strain also develops, though this could be smaller in magnitude than would occur in larger ferroelectric domains (i.e. $< ~0.002$ at 80 K). If the influence of small domain sizes is to reduce the magnitude of the strain by reducing the effective value of the coupling coefficient $\lambda_{3\Gamma}$, the amount of softening of C_{44} would also be expected to be reduced since it scales with $\lambda_{3\Gamma}^2$. On the other hand, shear strains e_o and e_t are strictly zero in the rhombohedral structure so, to a first approximation, the coupling coefficient $\lambda_{2\Gamma}$ should not be renormalized. Softening of $\frac{1}{2}(C_{11} - C_{12})$ should be comparable with the softening which would occur for the true ferroelectric transition.

As set out in the following paper in this series (Carpenter et al 2011), the real elastic properties of PMN do not follow the pattern predicted in this way (solid lines in Fig. 3). Rather they show steeper variations with a minimum located between T_f and T_c (dashed line in Fig. 3). Here, the comparison with LaAlO$_3$ is again instructive. Additional softening of the elastic constants of LaAlO$_3$ within the stability field of the rhombohedral structure is due to
coupling of acoustic modes with a relaxational mode which gives rise to quasi-elastic scattering in Brillouin spectra (Carpenter et al 2010). As with PMN, the relaxation time for the central peak modes (~10^{11} s) is sufficiently short as to allow strong coupling with acoustic modes. The relaxational processes associated with dynamic and quasistatic PNR’s in PMN turn out to dominate the elastic behaviour in comparison with the effects of classical strain/order parameter coupling (Laiho et al 1992, Carpenter et al 2011).

5. Conclusions

Spontaneous strains determined from published lattice parameter data contain information on both static and dynamic aspects of the relaxor ferroelectric behaviour of PMN. Specifically:

1. The volume strain evolves as if there is a discrete phase transition which is tricritical in character with $T_c \approx 350$ K. This matches with the Curie temperature for the soft optic mode and the characteristic temperature for the development of the static part of PNR formation. The static component of the relaxor behaviour thus appears to conform to a simple mean field model.

2. Although the characteristic length scale of PNR’s in PMN remains small, the volume strain provides a measure of the effective order parameter within them. This is matched by data for the shear strain in samples poled in an electric field. The discrete (~tricritical) phase transition thus appears to occur within the PNR’s on a length scale of ~10-50 Å.

3. Additional strain, beyond that expected from coupling with a static order parameter, occurs in the temperature interval of freezing indicated by dielectric measurements, and is interpreted in terms of dynamic contributions down to the freezing temperature, T_f.

4. There is no direct evidence for an anomaly in the evolution of the strain near T^*, unless this corresponds with the first appearance of a dynamic component of the volume strain. Data
from the literature generally do not extend to high enough temperatures to be able to discern exactly how this onset might actually be associated with the Burns temperature, T_d, however.

5. Predictions of the pattern of variations for elastic constants based on a conventional Landau description of the ($Fm\bar{3}m$ - $R3m$) ferroelectric phase transition do not match up with observations, signifying that the elastic softening arises predominantly as a consequence of dynamic aspects of the relaxor behaviour. As is taken up in the companion paper (Carpenter et al 2011), relaxational mode(s) accompanying the PNR formation occur on a sufficiently short time scale to allow strong coupling with acoustic modes.

Acknowledgements

Ekhard Salje is thanked for many stimulating and invaluable discussions.

References

Blackwood G H and Ealey M A 1993 Smart Mater. Struct. 2 124–33

Blinc R 2006 Ferroelectrics 330 1–7

Bokov A A and Ye Z-G 2006a J. Mat. Sci. 41 31–52

Cummins H Z 1979 *Phil. Trans. R. Soc. A* 293 393–405

Dorogovtsev S N and Yushin N K 1990 *Ferroelectrics* 112 27–44

Gehring P M, Wakimoto S, Ye Z-G and Shirane G 2001 *Phys. Rev. Lett.* 87 277601

Hlinka J and Kempa M 2008 *Phase Transitions* 81 491–508

Ishchuk V M 2001 *Ferroelectrics* 255 73–109

Pirc R and Bline R 2007 *Phys. Rev. B* **76** 020101

Shvartsman V V and Kholkin A L 2010 *J. Appl. Phys.* **108** 042007

Stokes H T, Hatch D M and Campbell B J 2007 ISOTROPY

http://stokes.byu.edu/isotropy.html

Takesue N, Fujii Y and You H 2001 Phys. Rev. B 64 184112

Table 1. Space groups, non-zero order parameter components, and lattice vectors for (origin = (0,0,0)), for combined R-point ordering and gamma-point ferroelectric displacements, as obtained from ISOTROPY (Stokes et al 2007).

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Order parameter components</th>
<th>Relationships between order parameter components</th>
<th>Lattice vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Pm\bar{3}m$</td>
<td>0 0 000</td>
<td>R_1^+ Γ_4^-</td>
<td>(0,0,0)(0,0,0)(0,0,0)</td>
</tr>
<tr>
<td>$P4mm$</td>
<td>$q_1$00</td>
<td>$q_1 = q_2$</td>
<td>(0,1,0)(0,0,1)(1,0,0)</td>
</tr>
<tr>
<td>$Amm2$</td>
<td>$q_1 q_2$0</td>
<td>$q_1 = q_2$, $q_1 \neq q_2$</td>
<td>(0,0,1)(1,0,0)(1,1,0)</td>
</tr>
<tr>
<td>$R3m$</td>
<td>$q_1 q_2 q_3$</td>
<td>$q_1 = q_2 = q_3$</td>
<td>(1,1,0)(0,1,1)(1,1,1)</td>
</tr>
<tr>
<td>Pm</td>
<td>$q_1 q_2$0</td>
<td>$q_1 \neq q_2$</td>
<td>(0,1,0)(0,0,1)(1,0,0)</td>
</tr>
<tr>
<td>Cm</td>
<td>$q_1 q_2 q_3$</td>
<td>$q_1 = q_2 \neq q_3$</td>
<td>(1,1,0)(0,1,0)(0,0,1)</td>
</tr>
<tr>
<td>$P1$</td>
<td>$q_1 q_2 q_3$</td>
<td>$q_1 \neq q_2 \neq q_3$</td>
<td>(1,0,0)(0,1,0)(0,0,1)</td>
</tr>
<tr>
<td>$Fm\bar{3}m$</td>
<td>q_R 000</td>
<td></td>
<td>(2,0,0)(0,2,0)(0,0,2)</td>
</tr>
<tr>
<td>$I4mm$</td>
<td>q_R $q_1$00</td>
<td></td>
<td>(0,1,1)(0,1,1)(2,0,0)</td>
</tr>
<tr>
<td>$Imm2$</td>
<td>q_R $q_1 q_2$0</td>
<td>$q_1 = q_2$</td>
<td>(1,1,0)(0,0,2)(0,1,0)</td>
</tr>
<tr>
<td>$R3m$</td>
<td>q_R $q_1 q_2 q_3$</td>
<td>$q_1 = q_2 = q_3$</td>
<td>(1,1,0)(0,1,1)(2,2,2)</td>
</tr>
<tr>
<td>Cm</td>
<td>q_R $q_1 q_2$0</td>
<td>$q_1 \neq q_2$</td>
<td>(0,1,0)(0,0,1)(1,0,0)</td>
</tr>
<tr>
<td>Cm</td>
<td>q_R $q_1 q_2 q_3$</td>
<td>$q_1 = q_2 \neq q_3$</td>
<td>(0,1,0)(0,1,0)(1,1,0)</td>
</tr>
<tr>
<td>$P1$</td>
<td>q_R $q_1 q_2 q_3$</td>
<td>$q_1 \neq q_2 \neq q_3$</td>
<td>(1,0,1)(1,1,0)(1,1,0)</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1. Strain analysis of transformation behaviour associated with T_c. (a) Lattice parameter data from the literature showing the well known change in thermal expansion in the vicinity of 400 K. Lines through the neutron diffraction data of Bonneau *et al* (1991) and X-ray diffraction data of Dkhil *et al* (2009) represent the variation of the reference parameter, a_0, as given by fits of Equation 6 for temperatures above 600 K. (b) Solid lines through data for e_1^2 are fits of Equation 7 which show that the strain evolution below ~350-400 K can be represented as a Landau tricritical evolution of the order parameter. Data for cosα^2 are from a sample initially cooled in an electric field to induce transformation to the rhombohedral ferroelectric structure.

Figure 2. Comparisons of strain evolution with intensity data from central peaks in neutron scattering spectra. (a) The square of the intensity of central peak data from Fig. 8a of Gehring *et al* (2009), and Fig. 15 of Gvasliya *et al* (2005) shows the same evolution with temperature as e_1^2. (b) Data from Figure 4a of Stock *et al* (2010) for the static part of the intensity, I_{static}, also vary in a manner that is indistinguishable from the variation of e_1^2, apart from in the temperature interval ~250 -450 K where there is a distinct tail in e_1 but almost none in I_{static}.

Figure 3. Schematic comparison of the form of elastic softening expected from coupling between strain and a classical static parameter (solid curves) with the form of observed variations (dotted curves), following Laiho *et al* (1992). The horizontal broken line represents the evolution of single crystal elastic constants for the high temperature structure in the absence of any relaxor or ferroelectric ordering, excluding the normal influences of thermal expansion. The solid curve above T_c represents the form of softening that would be expected.
for the bulk modulus, K, ahead of the transition due to interactions between phonon modes with k-vectors just away from the critical point. The solid curve below T_c represents the form of softening/stiffening of bulk and shear moduli that would be expected for a normal ferroelectric transition with tricritical character. The observed softening (summarised in Carpenter et al 2011) is distinguished by steeper softening over a wide range of temperatures as $T \to T_c$ from above, in both shear and bulk moduli, a frequency-dependent minimum at $T_f < T < T_c$, followed by an approximately linear recovery of the shear modulus and saturation as $T \to 0$ K.