Ecology and History of a Wooded Landscape in Southern Spain

T. Marañón¹ and J.F. Ojeda²
¹ IRNA, CSIC, PO Box 1052, 41080 Sevilla, Spain;
² Dept. Physical Geography and Regional Analysis, University of Sevilla, 41004 Sevilla, Spain

An extensive oak woodland, of about 1000 km², dominated by evergreen cork oak (Quercus suber) and semideciduous Q. canariensis, is found in southern Spain, near the Strait of Gibraltar, and contrasts with the paradigm of deforested Mediterranean mountains. Several factors, ecological, geographical and historical, have contributed to the origin and maintenance of this forested landscape. The rough relief and the acidic, nutrient-poor soils (derived from Oligo-Miocene sandstone) made this area unsuitable for cultivation. The oceanic influence favours the growth of oak trees. In particular, the cork oak is well suited to acidic soils and the humid Mediterranean climate. Three historical milestones seem relevant to the preservation of this woodland. Its location at a frontier during medieval times (thirteenth to fifteenth centuries) discouraged villages and reduced human pressure on the woodland resources. The rise of the value of cork helped to preserve the cork oak woodland during early nineteenth century industrial times. Contemporary consciousness about the conservation of woodland landscapes (somewhat unusual in the Mediterranean region) led to their designation as Los Alcornocales (meaning 'The cork oak woodlands') Natural Park, devoted to the eco-development of the region.

Introduction

When one thinks about a Mediterranean mountain landscape, the usual image that comes to mind is barren limestone with some pines killed by fire, or perhaps overgrazed scrubland on eroded soils. Deforestation has been extensive and repeated all around the Mediterranean Basin, and it is often cited as a classical example of non-sustainable use of natural resources (Thirgood, 1981) (Table 10.1). Despite this paradigm of generally deforested mountain landscapes in the Mediterranean Basin (McNeill, 1992) there are some significant exceptions;

Climatic change: Early twentieth century archaeologists (e.g. Huntington, 1915) believed that the decline of classical civilizations was due to a climatic deterioration and progressive desiccation.

Agricultural clearance: The increasing population growth and the improvement of agricultural technologies have caused an extensive transformation of forests into grasslands and croplands; this replacement has been almost complete in the lowlands.

Exploitation for timber and fuel: Especially important was the demand for ship building for the fleets of the Mediterranean naval powers (Phoenician, Greek, Roman, Venetian, Genoese, Spaniard and French) which was continuous until the end of the nineteenth century (e.g. Paola and Ciclioli, 1998). The need for fuel for the smelting of minerals has caused local significant impact in certain areas. More extensive has been the use of wood or charcoal for fuel, still important in rural areas of North Africa.

Wars and invasions: Woodland has suffered devastation by battling armies throughout history, and there are the present-day conflicts in the former Yugoslavia, the Near-East and Algeria.

Fire: Shepherds have traditionally used fires to improve grazing; nowadays, however, arsonists and negligent tourists start most of the summer forest fires.

Grazing: There is much literature about the pernicious action of the goat, the infamous 'black locust' of Mediterranean foresters, impeding woodland regeneration.

one is the extensive sylvo-pastoral dehesa covering about 55,000 km² in Western Iberia (Marañón, 1988; Rackham, Chapter 1, this volume). In this chapter we describe a lesser known oak woodland of about 1000 km² in the Strait of Gibraltar Region and propose a combination of ecological factors and favourable historical events to explain the exceptional survival of this wooded mountain landscape in the much deforested Mediterranean Basin. Why does this woodland exist and why has it not been transformed into a sylvo-pastoral savanna-like system?

Physical Factors

The southernmost tip of the Iberian Peninsula, the 'Gaditan Cape', lies between 36°37' N and 5°6' W, at the meeting point between the Atlantic Ocean and the Mediterranean Sea (Fig. 10.1). The climate is Mediterranean-type, with humid, cool winters and warm, dry summers. Most of the rain falls in winter, when temperature and evapotranspiration (ETP) are low, leading to an excess of water and runoff, but in summer the precipitation is almost nil, the temperature and thus ETP are high and, once the water stored in the soil is exhausted, there are two to three months of drought stress. The average annual precipitation is about 700 mm, but in the mountains it may increase locally up to 2000 mm, due to the geographical location (Fig. 10.1). The Guadalquivir valley and the gulf of Cádiz are open towards the Atlantic Ocean, facilitating the entrance of low-pressure, humid fronts coming from the southwest. When these prevailing, wet winds encounter the Aljibe and

Fig. 10.1. Location of the study area of oak woodland. Insert maps of rock types and Quercus.}

Grazalema region are the most important wetlands during the summers, with only occasional drought stress.

The Gaditano limestone of the Middle Miocene (Aljibe formation at its peak), which outcrops near Cádiz, is well known (Didon, 1963; Didon and Zúñiga, 1973). The limestone is bedded and forms small mounds and knolls, and within it are large rock outcrops of dolomitic limestone that are surrounded by low scrub vegetation.

Oak Woodland

This physical-geographical unit has a Mediterranean oak, Quercus ilex, with a high wood density and a large trunk diameter.
n, 1915) believed that the opening of agricultural estuaries and
for ship building for the Venetian, Genovese, and Genoese, used local significant
arable for fuel, still
ries throughout the Near-East and Assyrians, however, arsonists
that the infamous 'black

Fig. 10.1. Location of the Gadirian Cape, in the south of the Iberian Peninsula, and inset maps of annual precipitation isolines (a) after JA. 1995) and of the Oligo-
Miocene sandstone formation (b) (after Didon et al., 1973).

Gadirian Cape, lies between the Atlantic and the Mediterranean. Most of the rain falls in autumn and winter, and evaporation is almost nil, which has contributed to the growth of vegetation. The average annual rainfall is 550 mm, increasing in the mountains (Fig. 10.1). The climate is influenced by the Atlantic fronts coming from the west, which affect the Aljibe and the rest of the territory.

Oak Woodland

This physical scenario contains a woodland dominated by evergreen cork oak, Quercus suber, with an average density of 163 trees ha⁻¹ and average trunk diameter of 23 cm (Ojeda et al., 1994). Q. suber is a West-Mediterranean...
oak tree favoured by a less dry climate and acidic soils. A deciduous oak, *Q. pyrenaica*, also of West-Mediterranean distribution, but frost-tolerant, occupies a few thickets at altitudes higher than 900 m above sea level. In the more fertile and humid valley bottoms, the semi-deciduous, Iberian–North African oak, *Q. canariensis*, is dominant, probably displacing the cork oaks by competition. Another two oak species are present in the area: the acidity-tolerant prostrate shrub, *Q. lusitanica*, found mostly in heathlands on ridges, and the calcicole shrub, *Q. coccifera*, at the fringes of the sandstone formation, on marl and clay soils (Ojeda et al., 1994). Surprisingly, the otherwise common holm oak, *Q. rotundifolia*, is absent from the area although it grows on limestone mountains nearby.

The diversity of the tree species is low; one to four species were recorded on average in a set of 100 m transects. Exceptionally, up to seven species, including tall arborescent shrubs, were sampled in riparian forests (Ojeda et al., 1994). European forests were decimated during the glaciations; only a few tree species persisted in refuges and were able to recolonize northwards (but see Adams and Woodward (1989) for an alternative explanation).

The shrub understorey is relatively species-rich. In a study measuring lineal cover in 100 m transects, up to 25 woody species per sample were recorded, and a trend towards higher species richness at intermediate levels of the environmental gradient, in the cork oak woodland, was found. Most of the endemic species were found at one of the gradient extremes, in the heathlands on ridges. At the other gradient extreme, in the understorey of *Q. canariensis* woodlands, shrubs tend to belong to less-diversified genera, that is they are more isolated from the taxonomic point of view (Fig. 10.2; Ojeda et al., 1994, 1996; Arroyo, 1997).

The Gibraltar area is located at the western edge of the Mediterranean region, which borders with the Euro-Siberian (north), the Saharo-Arabian (south), the Macaronesian (south-western) and the Iberian–North African (south-eastern) biogeographical regions. The presence of more numerous, more diverse and more abundant Macaronesian Mediterranean species in the south-eastern and Iberian–North African regions suggests that the Mediterranean region was much larger in the past, as a result of the lower sea level, and that it was a rich and continuous faunistic province.
A deciduous oak, *Q. suber*, but frost-tolerant, grows up to 500 m above sea level. In the deciduous, Iberian–North Macaronesian species, the cork oak by far dominates the area: the acidophytic heathlands on ridges, the sandstone formations, and the otherwise dry area although it grows best on clay-soils; four species were found, predominantly, up to seven species in riparian forests experiencing the glaciations, enough to recolonize northwards (negative explanation).

A study measuring total species per sample showed intermediate levels of diversity. Greater diversity was found. Most of the vegetation extremes, in the understory of *Q. suber*, diversified genera that few (Fig. 10.2; Ojeda et al., 1994).

As the Mediterranean is dominated by the Saharo-Arabian (south), the Macaronesian (west) and the Irano-Turanian (east) regions. Most of the shrub species have a Mediterranean distribution. Endemic species are more numerous in heathlands on ridges than in woodland. Euro-Siberian species are important (but still less than 25%) only in the more humid, deciduous *Q. canariensis* woodland. There are few species with Macaronesian connections, but none with Saharo-Arabian or Irano-Turanian distributions. In summary, most of the woody species in these oak woodlands are truly Mediterranean, a considerable portion is endemic to the South Iberia/North Morocco region, and the influence from neighbouring floristic regions seems small (Fig. 10.3; Ojeda et al., 1994, '96).

Historical Milestones

The ecological history of the oak woodlands in the Strait of Gibraltar region from the last glaciation until the present is poorly known. There are few palaeoecological studies in the area (Gutiérrez et al., 1996) and researchers have to deal with the added difficulties of finding suitable organic-rich sediments in this semi-arid environment, and distinguishing between several *Quercus* species of similar pollen types but contrasted habit and ecology (deciduous vs. evergreen, trees vs. shrubs). Precise documentation of woodland types and the extent of this area have been available only since the Cadastre of Marquis of Ensenada, which was produced as recently as 240 years ago (Bauer, 1991).

Given the general deforestation of the Mediterranean Basin, why does this extensive oak woodland of about 1000 km² persist? Why has it not been clear-cut, burnt, ploughed or overgrazed? We propose three 'favourable' historical events that have contributed to the preservation of this woodland.
Medieval frontier

The Arabs invaded North Africa and most of the Iberian Peninsula in the eighth century, and during the subsequent 700 years there were battles and moving frontiers between Arab and Christian territories. The last stronghold of the Arabs was the kingdom of Granada, which had a relatively stable territory for about 200 years, until it was conquered at the end of the fifteenth century. Between the Arab and Christian border lines (Fig. 10.4) there was a

Fig. 10.4. Medieval frontier (after Torres, 1974) and location of Natural Parks (outlined areas). In the insert map, communication flows from Algeciras bay are drawn. See also contrasted village patterns at both sides of the frontier.

Value of cork

A second harvest has occurred, in 1750, of the same plant. In the nineteenth century, the total number of cork oak trees was reduced to 70% of its pre-1800 level. Cork oak trees are harvested approximately every 9 years, with the aim of minimizing destructive harvesting.

The primary use of cork is in the manufacture of corkscrews, and it is a valuable material in other industries as well. Cork is used in the production of bottles, in the manufacture of furniture, and in the production of insulating materials. Cork is also used in the production of soundproofing materials, and it is a valuable material in the production of flooring.

In conclusion, cork is a valuable material that has been used for centuries. Its durability and insulating properties make it a valuable material for a variety of applications.
no-man's land. On both sides of that frontier we find villages today that still retain as part of the name a reference to their historical location (Spanish 'frontera' for frontier), for example Castellar de la Frontera and Jimena de la Frontera on the old Arab side, and Jerez de la Frontera and Arcos de la Frontera on the Christian side.

The between-frontiers situation impeded the settlement of villages, reduced the pressure of agriculture and grazing, and favoured the regeneration and persistence of wooded lands (López Ontiveros et al., 1991). The present-day distribution of towns and villages is largely inherited from this medieval period. In fact, there are no human settlements inside the limits of the present 8700 km² of the Los Alcornocales Natural Park. Moreover, the fewer and larger villages in the old Christian territory can still be distinguished from the smaller and more dense villages on the old Arab side. Five present-day Natural Parks – Grazalema, Subbética, Mágina, Cazorla and Sierra María (Fig. 10.4) – are wooded areas following approximately that old frontier strip.

Historically, the Aljibe mountains have also been isolated from neighbouring towns. Although the nearby Bay of Algeciras harbours two very active ports, Algeciras and Gibraltar, it has very little relation with this abrupt, little inhabited area; instead it is more connected with the coastal towns of Cádiz and Málaga, and with the inland Ronda by the Guadíaro river (Fig. 10.4). However, a highway is currently being planned between Algeciras and Jerez crossing through this woodland.

Value of cork

A second historical milestone started with the invention in France, in about 1750, of the cork stopper for glass wine bottles. By the middle of the nineteenth century, the fabrication of cork stoppers, and thus the harvesting of cork oak bark, was industrialized on a large scale. In 1865 the harvesting of cork in public woodland in southern Spain was put out to tender for the first time (González et al., 1996).

Cork is the outer layer of the bark of Quercus suber, and can be stripped off relatively easily. In this process the cambium must be left undamaged, allowing a new layer of cork to be regenerated. The extraction takes place every 9 years and, although it may shorten the life of the tree, it is not destructive for the woodland, that is, cork is a renewable resource.

The pricing of cork was crucial at that time because the period coincided in Spain with a political movement towards a general privatization of public lands, then owned by the Crown, the church or, in some cases, the village. The purpose of this 'desamortización' was to improve the productivity of the lands by taking them out of so-called 'dead hands'. Despite the laudable intentions the result was catastrophic for the woodland, because most of the newcomers buying the land immediately clear-cut the forest for profit and cultivated the land – not always with success (Bauer, 1991; Blanco et al., 1991).

In contrast, in the cork oak woodland of southern Spain, government foresters designed a woodland management plan, starting in 1890, to renew
the population of oaks and to rationalize the harvesting of cork. That planning ended the chaotic traditional use of public woodland: cutting for fuel or for tannins (for the leather industry), or burning to improve the grazing. However, this 'production' management of woodland brought some negative effects, such as the elimination of ancient oaks, classified as non-productive after 160–200 years old. With this widespread practice we lost many witnesses of our woodland history. Another undesirable effect of the foresters’ plan was the selective elimination of Quercus canariensis. This species had been used for pollarding and for acorn-feeding of pigs, but after about 1950 its economic value decreased and it was partly cleared out, despite its high ecological value (González et al., 1996). Management plans need to take into account the effects of different silvicultural practices on biodiversity.

The historical interactions between humans and oak forests have resulted in two dominant wooded landscapes in southern Spain: the oak-savanna dehesa and the cork oak woodland (Ojeda, 1989). The holm oak, Quercus rotundifolia, produces valuable acorns, traditionally used to feed free-range pigs, so that the oak forest has been historically transformed into a savanna landscape of pruned trees and grassland understorey (Avila, 1988; Marañón, 1988). On the other hand, the acorns of cork oaks, Quercus suber, are less valuable as a foodstuff and the tree’s main value resides in its cork, and as a result, a relatively dense woodland landscape is selected, which can be considered as a partly 'reconstructed' woodland (Avila, 1988).

Woodland conservation

The transition to a democratic regime in Spain coincided with an international sensitivity towards nature conservation which was recognized in the new Spanish Constitution (BOE 1976, article 45). Later, a national law for the Conservation of Natural Areas and Flora and Fauna was passed (BOE, 1989). A model of autonomic regions is now being built in Spain and environmental policy is decided by regional governments. The Andalusian Region (in southern Spain) has a Law for the Inventory of Protected Natural Areas (BOJA, 1989), in which different types of protected landscape are recognized (e.g. Natural Park, Natural Reserve and Natural Monument), and protected areas now cover some 17% of the region. The regulation of environmental planning is established in the Law through the application of a set of plans (e.g. Plan for the Ordination of Natural Resources, and Plan for Use and Management).

Los Alcornocales Natural Park was declared in 1989, partly to protect the unusual wooded landscape, and partly because of its high biodiversity and richness in endemic species. About 23% of its area is publicly owned and 77% is private. More than 100,000 people live near the Park and use its natural resources. One of the objectives of the Park is to promote eco-development, by regulating traditional uses such as cork extraction, grazing by free-range cows, pigs and goats, hunting, harvesting of pine-cones and heath burls (for pipe wood), and promoting new activities such as eco-tourism (Sanchez, 1994).

Table 10.2. Ecological substrate and associated plant communities.

<table>
<thead>
<tr>
<th>Ecological</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

The existing deformed ecological substrate is dominated by woody plants. The villages in the woodlands finally became known as Natura.

Acknowledgements

The ecological studies were supported by the government. The Director of the Park helped in the project.

References

Bauer, E. Conde.
BOE (1989).
Lightning onto the woodland: cutting for planting to improve the woodland brought some benefits, classified as non-traditional practices. One desirable effect of the Quercus canariensis. This is feeding of pigs, but after partly cleared out, it was partly cleared out, 2000. Management plans to agricultural practices on the forests have resulted in some: the oak-savanna ecosystem. The holm oak, Quercus suber, was used to feed free-range pigs, which formed into a savanna ecosystem. Avila, 1988; Marañón, 1988; Quercus suber, are less valued in its cork, and as a product, which can be sold.

Table 10.2. Environmental and historical factors preserving oak woodlands in the Gaditan Cape (southern Spain).

| Physical | Rough relief with peaks up to 1992 m
| | Sandstone substrate covered by acid, nutrient-poor soils
| | High annual precipitation (760–2000 mm) with summer fog
| Ecological | Dominance by Quercus suber
| | High plant biodiversity and endemic richness
| Historical | Location as medieval frontier (thirteenth–fifteenth century)
| | Value of cork (nineteenth century)
| | Woodland conservation (twentieth century)

Conclusion

The existence and preservation of this 1000 km² oak woodland in the much-deforested Mediterranean is the result of a combination of physical, ecological and historical factors (Table 10.2). The rough relief, sandstone substrates, and high precipitation set the conditions for both a woodland dominated by Quercus suber and a high biodiversity and richness in endemic plants. The location as a medieval frontier limited the establishment of villages in this wooded area; the pricing of cork protected these cork oak woodlands in a period of woodland privatization and deforestation; and finally the future of the woodland seems optimistic with its legal declaration as a Natural Park in 1989.

Acknowledgements

The ecological study was carried out with Juan Arroyo and Fernando Ojeda, supported by the Spanish DGICYT (project 91/894), and Javier Sánchez, Director of Los Alcornocales National Park provided facilities. Vicente Jurado helped in tracing historical documents, Eulogio Parrilla Alcalá, Joaquín Mendoza Pérez and Juan Cara helped with the figures.

References

BOJA (1989) Ley 2/89, de 18 de julio, por la que se establece un inventario de Espacios Naturales Protegidos de Andalucía y se establecen medidas adicionales para su protección. BOJA, Sevilla.

