Key words: myeloproliferative syndrome, eosinophilia, lymphoblastic lymphoma, Bcr-Abl

Correspondence: Rosangela Invernizzi, M.D., Medicina Interna ed Oncologia Medica, Policlinico S. Matteo, Piazzale Golgi, 27100 Pavia, Italy. E-mail: r.invernizzi@smatteo.pv.it

References


Chronic Myeloid Leukemias

c-myc expression in cell lines derived from chronic myeloid leukaemia

We analyzed proliferation and c-myc expression in three chronic myeloid leukemia (CML)-derived cell lines treated with interferon-α, hydroxyurea, busulfan and imatinib. We found that c-Myc levels did not universally correlate with CML cell proliferation and that c-Myc down-regulation correlated to imatinib activity but not to imatinib-induced apoptosis.

haematologica 2004; 89:241-243
(http://www.haematologica.org/2004/1/241)

The molecular hallmark of chronic myeloid leukemia (CML) is the Bcr-Abl kinase, generated by the 9;22 translocation.1 CML has been treated with busulfan, hydroxyurea and interferon-α.2 Recently, the Bcr-Abl inhibitor imatinib (STI571, Gleevec®) was introduced for CML therapy and has displaced other drugs.3 c-Myc is a transcription factor involved in cell proliferation,4 and c-myc expression has been found to be elevated in CML blast crisis.56 Bcr-Abl and c-Myc co-operate in cell transformation7 and Bcr-Abl activates c-myc transcription.8-9

We studied c-myc expression in response to the four drugs used to treat CML (hydroxyurea, busulfan, interferon-α and imatinib) on three CML-derived cell lines (KU812, MEG01 and K562). We used drug concentrations slightly above the minimal cytostatic concentrations for the three cell lines: 2000 UI/mL interferon-α, 0.5 mM hydroxyurea, 0.5 mM busulfan and 0.5 µM imatinib. Proliferation (as determined by cell counting and 3H-thymidine incorporation) and c-myc expression (analyzed by Northern and Western blots) were monitored during 3 days of treatment. The results are summarized in Table 1. We found that each drug inhibited cell growth. However, growth arrest was reversed when imatinib, interferon-α, and hydroxyurea were removed from the media. Consistent with the different mechanisms of action, we found a differential regulation of c-myc in response to the drugs. It was expected that c-myc expression would correlate with proliferation, as shown for the KU812 and MEG01 cell lines treated with hydroxyurea and busulfan. Cells with repressed c-myc were always non-proliferating, suggesting that CML growth requires c-Myc. However, there was no universal correlation between c-myc repression and cessation of proliferation: a) in the three cell lines, interferon-α arrested

Table 1. Effects of interferon-α, hydroxyurea, busulfan and imatinib on c-myc expression and cell proliferation of CML-derived cells.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Effect</th>
<th>IFNα (2000 UI/mL)</th>
<th>Hydroxyurea (0.5 mM)</th>
<th>Busulfan (0.5 mM)</th>
<th>Imatinib (0.5 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KU812</td>
<td>Growth arrest c-myc</td>
<td>+ reversible</td>
<td>++ reversible</td>
<td>++ irreversible</td>
<td>++ reversible</td>
</tr>
<tr>
<td>MEG01</td>
<td>Growth arrest c-myc</td>
<td>+ reversible</td>
<td>++ reversible</td>
<td>++ irreversible</td>
<td>++ reversible</td>
</tr>
<tr>
<td>K562</td>
<td>Growth arrest c-myc</td>
<td>+ reversible</td>
<td>+ reversible</td>
<td>++ irreversible</td>
<td>++ reversible</td>
</tr>
</tbody>
</table>

++ denotes a faster or more profound inhibition of cell growth than +, as assessed by thymidine incorporation and cell counting. The data are summarized from three independent experiments in each case. ↓ denotes c-myc down-regulation, as assessed by Northern blot analysis. "Reversible" refers to the recovery of c-myc mRNA levels after removal of the corresponding drug by cell washing. NT: not tested.
growth after 48 h, but c-myc expression remained unabated; b) in MEG01 cells, c-myc expression increased after removal of busulfan but cells did not resume growth; c) in the K562 line, c-myc expression was unchanged in response to interferon-α, hydroxyurea, and busulfan, despite the antiproliferative effect of these drugs.

Imatinib was the only drug that down-regulated c-myc in K562 cells, and did so in a time- and dose-dependent manner (Figure 1A). When imatinib was removed, cells resumed normal growth rates after 72 h (Figure 1B), whereas c-myc expression reached control levels after 24 h (Figure 1C) when Bcr-Abl kinase activity was recovered. Moreover, imatinib repressed c-myc in K562-Bcl2 transfectants10 (Figure 1D) despite their partial resistance to imatinib-mediated proliferative arrest and total resistance to imatinib-induced apoptosis (Figure 1E).

Thus, c-myc repression correlated with imatinib-mediated inhibition of Bcr-Abl (confirming that Bcr-Abl acti-
vates c-myc expression) but not with imatinib’s pro-apoptotic effects. In summary, c-myc expression is not linked to CML cell proliferation as the growth of cells can be arrested in the presence of high c-myc expression, indicating that c-Myc is not sufficient to trigger cell proliferation. However, c-myc expression could serve as a molecular marker of imatinib activity.

M. Teresa Gómez-Casares,* Jose P. Vaqué,“ Angelina Lemes,* Teresa Molera,* M. Dolores Delgado,* Javier León”
*Servicio de Hematología, Hospital Dr. Negrín, Las Palmas, Spain; “Grupo de Biología Molecular del Cáncer, Departamento de Biología Molecular and Unidad de Biomedicina-CSIC, Universidad de Cantabria, Santander, Spain

Acknowledgments: we thank Silvia de la Iglesia, Maria Perera, Teresa Ramirez, Pilar Gutierrez, Pilar Frade, and Guillermo Santana for technical assistance, Elizabeth Buchdunger (Novartis) for providing the imatinib, M. Jesus Alos (Roche) for providing the interferon α, and Carlos Richard for critical reading of the manuscript.

Funding: this study was supported by grants SAF2002-04193 from Spanish Ministry of Science and Technology to J.L., and FIS01-1129 from Spanish Ministry of Health to M.D.D.

Key words: c-myc, CML, imatinib, interferon-α, hydroxyurea.

Correspondence: Javier León, Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 3901 Santander, Spain. Phone: international +34.9.42201952; Fax: international +34.9.42201945. E-mail: leonj@unican.es

Letters to the Editor

Disorders of Hemostasis

Recombinant factor VIIa for the management of severe hemorrhages in patients with hematologic malignancies

Seven patients with hematologic malignancies were treated with recombinant activated factor VII (rFVIIa) for severe bleeding episodes complicating diagnostic procedures or high-dose chemotherapy associated or not with stem cell transplantation. All patients were thrombocytopenic and refractory to standard support. After administration of rFVIIa, 2 complete responses, 3 partial responses and 2 failures were documented.

Severe bleeding can be a fatal complication of intensive treatment for acute leukemia, and is thus associated with reduced survival. Administration of platelet concentrates is the most common treatment but substantial limitations frequently make this approach unsatisfactory. Recently, recombinant activated factor VII (rFVIIa, Novoseven) has been successfully used for the management of bleeding in patients with hemophilia A and B with inhibitors, congenital or acquired platelet disorders, severe thrombocytopenia associated with hematologic malignancies, or bleeding complications after bone marrow transplantation. The mechanism by which rFVIIa can stop bleeding in patients with thrombocytopenia and the doses needed are currently being investigated. From March 2001 to December 2002, seven patients with hematologic malignancies were treated with rFVIIa for severe bleeding episodes that were refractory to standard anti-hemorrhagic therapies. The clinical characteristics, the type and probable cause of the hemorrhage and the planned treatment are reported in Table 1. Two patients affected by acute myeloid leukemia (AML) received rFVIIa during or before induction therapy. Five patients received rFVIIa during the course of allogeneic stem cell transplantation. The initial indications for rFVIIa were a post-liver biopsy hemorrhage and uterine bleeding in the two AML patients; subsequently, gastrointestinal bleeding in the context of severe acute graft-versus-host disease (GVHD) in 3 cases, gastrointestinal bleeding and hemorrhagic cystitis in 1 were treated during the course of allogeneic stem cell transplantation. The type of bleeding was evaluated through a score proposed by Nevo et al. Hemorrhages were diffuse in all cases, except in 1 patient in whom bleeding followed a liver biopsy, and were objectively assessed by instrumental procedures. All patients were thrombocytopenic at the time of rFVIIa infusion and had proved refractory to standard anti-hemorrhagic measures, including intravascular administration of prostaglandin in the patients with hemorrhagic cystitis. No patient had evidence of disseminated intravascular coagulation or a history of a prior bleeding diathesis. Informed consent for the experimental use of rFVIIa was obtained from all the patients or the minor’s legal guardian.

The planned administration of rFVIIa was 100 µg/kg (or 40 µg/kg in the case of the presence or a history of thrombosis) every 6 hours, for a total of 6 doses (Table 2). Platelet transfusions were continued during rFVIIa administration to provide a substrate useful for the action of the drug. Treatment efficacy was evaluated 96 hours after the last dose of rFVIIa and was based on daily clinical records and on the number of red blood cell units required to maintain the hemoglobin lev-