Resumen:
Brazo manipulador de cargas con pares de actuación reducidos.
La patente describe un brazo manipulador (1, 1', 1'') de cargas con bajos pares de actuación, que comprende varios estabones (6, 6', 6'', 10, 10', 10'') intermedios unidos entre sí por articulaciones (5, 5', 5'', 9, 9', 9''), donde el último estabón (14', 14, 14'') está unido a una articulación activa (13, 13', 13''), comprendiendo un mecanismo de cuatro barras (11a, 11a', 11a'', 11b, 11b', 11b'', 12, 12', 12'', 15, 15', 15''), que se proyecta hacia abajo en dirección vertical, tiene un punto de enganche (23) al que se acopla la carga.
DESCRIPCIÓN

Brazo manipulador de cargas con pares de actuación reducidos.

Objeto de la invención

El objeto principal de la presente invención es un brazo manipulador de cargas pesadas que reduce los pares de actuación requeridos para mover las cargas. Está dirigido tanto a manipuladores automáticos como a aquellos que son guiados total o parcialmente por operarios.

Antecedentes de la invención

La manipulación de cargas pesadas en puestos fijos de instalaciones industriales ha sido un área de aplicación tradicional de los robots manipuladores. Sin embargo, la capacidad sensorial de estos sistemas es muy inferior a la capacidad sensorial humana. Por estos motivos, en los últimos años se han descrito manipuladores con diferentes grados de libertad pasivos y un número limitado de grados de libertad activos para elevar las cargas. En este contexto, un grado de libertad pasivo es aquel que se mueve directamente con la fuerza que ejerce el operario, mientras que para la manipulación de altas mercancías se emplean grados de libertad activos, que son aquellos que se mueven empleando medios hidráulicos, eléctricos o similares.

Los documentos US 4,557,659 y US 6,299,139 describen algunos dispositivos manipuladores de este tipo. El documento US 6,204,620 dispone de un sistema de guía basado en la fuerza que ejerce el operario sobre unos dispositivos sensorizados. Estos dispositivos se basan en sensores de fuerza o galgas extensométricas que normalmente sólo consideran las componentes verticales, mientras que las componentes horizontales son pasivas y es el operario quien aplica directamente la fuerza.

El documento de número de solicitud ES200202196 describe un dispositivo manipulador para uso en entornos industriales y de servicios que asiste a los operarios en la manipulación e instalación de objetos pesados. En particular, este dispositivo está especialmente indicado para manipulación e instalación de diferentes elementos en construcción de viviendas como: paneles prefabricados para tabiquería, puertas, ventanas, etc.

Descripción de la invención

En el presente documento, llamaremos “eslabones” a cada uno de los elementos del brazo manipulador que están conectados entre sí por “articulaciones”. Así, cada articulación corresponde a un grado de libertad del brazo manipulador. Por otro lado, diremos que una articulación es “activa” cuando es accionada por medios hidráulicos, eléctricos, o similares, en contraposición con una articulación “pasiva”, que es accionada por el propio operario. Finalmente, se emplearán los términos “distal” y “proximal” para hacer referencia a los extremos de los eslabones respectivamente más lejanos y más cercanos a la base a la que está anclado el brazo manipulador de la invención.

La presente invención está dirigida a un brazo manipulador de cargas pesadas, que comprende varios eslabones intermedios unidos entre sí por articulaciones activas y/o pasivas, y donde el último eslabón, que está siempre unido a una articulación activa, comprende un mecanismo de cuatro barras cuya barra de extremo se proyecta hacia abajo en dirección vertical y tiene un punto de enganche al que se acopla la carga.

Mediante el empleo del mecanismo de cuatro barras en esta posición se consigue una reducción drástica de los pares y fuerzas requeridos para elevar las cargas. Además, todos los eslabones intermedios están situados por encima de la cabeza del operario, en particular a una altura superior a 2,0 metros, permitiendo que éste se mueva libremente bajo la estructura del brazo manipulador y reduciendo así el riesgo de accidentes.

Normalmente, el mecanismo de cuatro barras que constituye el último eslabón del brazo manipulador es recto. Sin embargo, en realizaciones preferidas de la invención el mecanismo de cuatro barras tiene una curvatura hacia arriba o hacia abajo, lo cual permite aumentar su volumen de trabajo, como se observará en las figuras más adelante en el presente documento.

En una realización preferida más de la invención, la barra de extremo del brazo manipulador de la invención comprende además una muñeca. Una muñeca es un conjunto de articulaciones que permiten orientar las cargas en función de las necesidades de tareas específicas. La muñeca de la invención puede comprender cualquier número de articulaciones dispuestas de cualquier modo. En una realización preferida de la invención, la muñeca comprende una articulación de orientación, para orientar la carga en un plano horizontal, aunque también puede comprender una articulación de cabezado, para orientar la carga en un plano perpendicular, y también una articulación de balanceo, para balancear la carga. Estas articulaciones se pueden mover de forma independiente o acoplada en diferentes combinaciones, aunque en una realización particular de la invención las articulaciones de cabezado y balanceo se mueven de forma acoplada.

Finalmente, la presente invención comprende además un sensor dispuesto junto al punto de enganche que proporciona la fuerza y el par originados por la carga en el que menos una dirección, preferiblemente tres. Estas medidas serán empleadas por el sistema de control del brazo manipulador para adecuar sus movimientos a las condiciones de la carga.

Descripción de los dibujos

Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:

Figura 1.- Muestra un esquema del brazo manipulador de acuerdo con una primera realización preferida de la invención.

Figura 2a y 2b.- Muestran respectivamente una vista lateral y una vista superior del dispositivo de la Fig. 1.

Figura 3a y 3b.- Muestran respectivamente una vista lateral y una vista superior de una segunda realización preferida del brazo manipulador de la invención.

Figura 4.- Muestra una vista lateral de una realización preferida más del brazo manipulador de la invención.

Figura 5.- Muestra otra vista lateral de aún otra realización preferida del brazo manipulador de la invención donde se aprecia el bastidor de anclaje al techo.
Figuras 6.- Muestra una realización preferida de una muñeca de acuerdo con la invención donde las articulaciones de cabeceo y balanceo se mueven independientemente.

Figura 7.- Muestra una realización preferida de una muñeca de acuerdo con la invención donde las articulaciones de cabeceo y balanceo se mueven conjuntamente.

Figura 8.- Muestra un ejemplo de realización en el que la muñeca comprende únicamente una articulación de orientación.

Realización preferente de la invención

Se describen a continuación algunas realizaciones preferidas de la invención, haciendo referencia a las figuras adjuntas. Las Figs. 1, 2a y 2b, en particular, muestran un brazo manipulador (1) para el manejo y desplazamiento de cargas elevadas con pares de actuación reducidos.

El brazo manipulador (1) de este ejemplo consta de un sustentáculo o columna (2) cuyo extremo proximal está fijado a una base (3) anclada al suelo, y que permite mantener toda la estructura del brazo manipulador (1) por encima de la cabeza del operario. Sobre el extremo distal de la columna (2) se sitúa una primera articulación rotatoria (5) de eje vertical, que puede estar accionada por medios eléctricos, hidráulicos, neumáticos u otros, y que en el presente ejemplo es accionada por un motor eléctrico (50). Esta primera articulación rotatoria (5) está conectada al extremo proximal de un primer eslabón (6), de modo que produce un giro relativo de dicho primer eslabón (6) respecto de la columna (2). En este ejemplo, el primer eslabón (6) está formado por una estructura parecida a una viga. A su vez, el extremo distal del primer eslabón (6) dispone de una segunda articulación rotatoria (9) de eje vertical que lo conecta con un segundo eslabón (10), y que está accionada por un segundo motor eléctrico (51). En esta realización particular de la invención, el segundo eslabón (10) está formado por una plancha (40) unida a un par de soportes que constituyen la barra (12), como se explicará más adelante. El segundo eslabón (10) aloja un tercer motor eléctrico (52) junto a su extremo distal para accionar una tercera articulación rotatoria (13) de eje horizontal. Esta tercera articulación rotatoria (13) es siempre activa, ya que es la responsable de compensar o elevar el peso de la carga. La tercera articulación rotatoria (13) produce el movimiento relativo del tercer eslabón rotatorio (14) con respecto del segundo eslabón rotatorio (10).

Este tercer eslabón rotatorio (14) está formado por un mecanismo de cuatro barras (11a, 11b, 12, 15) que forman un paralelogramo. Las cuatro barras (11a, 11b, 12, 15) están conectadas por tres articulaciones pasivas (16a, 16b, 16c), además de la tercera articulación rotatoria (13), que es activa. La barra de extremo (15), que en este ejemplo es recta, debe ser lo suficientemente larga como para que su extremo distal alcance objetos sobre el suelo a una altura especificada por cada aplicación particular.

Las Figs. 3a y 3b muestran una segunda realización de un brazo manipulador (1') de acuerdo con la invención donde el mecanismo de cuatro barras (11a', 11b', 12', 15') comprende una curvatura hacia abajo en las barras (11a', 11b') y la permite solaparse sobre el primer eslabón (6') al girar la segunda articulación rotatoria (9'). Esto permite aumentar considerablemente el volumen de trabajo del brazo manipulador (1') alrededor de la segunda articulación rotatoria (9'). Nótese la diferencia en los ángulos máximos de giro (α, α') en las segundas articulaciones rotatorias (9, 9') de los brazos manipuladores (1, 1') de las Figs. 2b y 3b.

La Fig. 4 describe otra realización particular de un brazo manipulador (1") que comprende un mecanismo de cuatro barras (11a", 11b", 12", 15"), donde las barras (11a", 11b") comprenden una curvatura hacia arriba (1''), de modo que se aumenta el volumen de trabajo del brazo manipulador (1'').

La Fig. 5 muestra otra realización particular más de un brazo manipulador (1'') que está fijado al techo mediante una columna (2''), eliminándose así obstáculos del paso del operario.

Finalmente, el brazo manipulador (1) del presente ejemplo particular comprende además en la barra de extremo (15) una muñeca (60) de tres articulaciones (19, 20, 21) movidas por sendos motores eléctricos (53, 54, 55), lo cual permite orientar la carga que se está moviendo, como se muestra en las Figs. 6 y 7. Una articulación de orientación (19) orienta la carga en un plano horizontal, una articulación de balanceo (20) orienta la carga en un plano perpendicular y una articulación de balanceo (21) hace provocar el balanceo de la carga. Las articulaciones de la muñeca (19, 20, 21) pueden ser independientes (cada articulación (19, 20, 21) es accionada independientemente por un actuador (Fig. 6) o acopladas (los movimientos en las articulaciones (19, 20, 21) se realizan mediante la acción conjunta de los actuadores (Fig. 7)). Un ejemplo de este último caso lo constituyen los mecanismos diferenciales en cualquiera de sus variantes.

Además, entre la articulación de balanceo (21) y el punto de enganche (23a, 23b) de la carga se dispone un sensor (22) que proporciona un vector de fuerzas (tres componentes) y un vector de par (tres componentes). Con este dispositivo, el brazo manipulador (1) de la invención es capaz de detectar los movimientos que el operario imprime sobre la carga, bien directamente o bien a través de una empuñadura o agarre (24) con un número de elementos de comunicación con el operario (botones, visores, etc.). Este sensor (22) es fundamental para que el operario indique al controlador del brazo manipulador (1) y a la muñeca (60) los movimientos que desea realizar con la carga.

Por último, la Fig. 8 muestra un último ejemplo en el que la muñeca (60) comprende únicamente una articulación de orientación (19) para orientar la carga enganchada al extremo 23c.

Finalmente el dispositivo se completa con un computador que, entre otras tareas, recoge las señales del sensor (22), las filtra convenientemente, las interpreta y en consecuencia genera las señales necesarias para que los diferentes actuadores generen las trayectorias necesarias.
REIVINDICACIONES

1. Brazo manipulator (1, 1', 1'') de cargas con par de actuación reducido, que comprende varios eslabones (6, 6', 6'', 10, 10', 10'') intermedios unidos entre sí por articulaciones (5, 5', 5'', 9, 9', 9''), caracterizado porque el último eslabón (14, 14', 14'') está unido a una articulación activa (13, 13', 13''), comprendiendo un mecanismo de cuatro barras (11a, 11a', 11b, 11b', 11b'', 12, 12', 12'', 15, 15', 15''), al que se proyecta hacia abajo en dirección vertical, tiene un punto de enganche (23) al que se acopla la carga.

2. Brazo manipulator (1, 1', 1'') de acuerdo con la reivindicación 1, caracterizado porque el mecanismo de cuatro barras (11a, 11b, 12, 15) es recto.

3. Brazo manipulator (1, 1', 1'') de acuerdo con la reivindicación 1, caracterizado porque el mecanismo de cuatro barras (11a', 11b', 12', 15') comprende una curvatura hacia abajo que permite aumentar su volumen de trabajo.

4. Brazo manipulator (1, 1', 1'') de acuerdo con la reivindicación 1, caracterizado porque el mecanismo de cuatro barras (11a'', 11b'', 12'', 15'') comprende una curvatura hacia arriba que permite aumentar su volumen de trabajo.

5. Brazo manipulator (1, 1', 1'') de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque la barra de extre (15, 15', 15'') comprende además una muñeca (60).

6. Brazo manipulator (1, 1', 1'') de acuerdo con la reivindicación 5, caracterizado porque la muñeca (60) comprende al menos una articulación de orientación (19) que permite orientar la carga que se manipula en un plano horizontal.

7. Brazo manipulator (1, 1', 1'') de acuerdo con la reivindicación 6, caracterizado porque la muñeca (60) comprende además una articulación de cabecera (20) que permite orientar la carga que se manipula en un plano perpendicular.

8. Brazo manipulator (1, 1', 1'') de acuerdo con la reivindicación 7, caracterizado porque la muñeca (60) comprende además una articulación de balanceo (21) que permite balancear la carga que se manipula.

9. Brazo manipulator (1, 1', 1'') de acuerdo con la reivindicación 8, caracterizado porque la articulación de balanceo (19), la articulación de cabecera (20) y la articulación de balanceo (21) de la muñeca se mueven independientemente.

10. Brazo manipulator (1, 1', 1'') de acuerdo con la reivindicación 8, caracterizado porque la articulación de cabecera (20) y la articulación de balanceo (21) de la muñeca se mueven de forma acoplada.

11. Brazo manipulator (1, 1', 1'') de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque comprende un sensor (22) dispuesto al punto de enganche (23) que proporciona la fuerza y el par originados por la carga en al menos una dirección.

12. Brazo manipulator (1, 1', 1'') de acuerdo con cualquiera de las reivindicaciones 1-10, caracterizado porque comprende un sensor (22) dispuesto al punto de enganche (23) que proporciona la fuerza y el par originados por la carga en al menos tres direcciones.

13. Brazo manipulator (1, 1', 1'') de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque los eslabones (6, 6', 6'', 10, 10', 10'') intermedios se desplazan a una altura mayor que 2,0 metros, reduciéndose así el riesgo de accidentes.
FIG. 8
INFORME SOBRE EL ESTADO DE LA TECNICA

Int. Cl.: B25J9/10 (2006.01)
B66C23/00 (2006.01)

DOCUMENTOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Documentos citados</th>
<th>Reivindicaciones afectadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,Y</td>
<td>FR 2628405 A1 (BADER, W.) 15.09.1989, página 9, línea 27 - página 17, línea 35; figuras 1,2.</td>
<td>1,2,5,6,11</td>
</tr>
<tr>
<td>Y</td>
<td>ES 2203522 T3 (MÜNNEKEHOFF, G.) 10.05.2001, página 8, líneas 50-65; figuras 13,14.</td>
<td>11</td>
</tr>
<tr>
<td>X</td>
<td>ES 2098897 T3 (COMAU S.P.A.) 01.05.1997, todo el documento.</td>
<td>1,2,5,6</td>
</tr>
<tr>
<td>X</td>
<td>US 2008092373 A1 (LIM) 24.04.2008, párrafos [0020]-[0024]; figuras 1-3.</td>
<td>1,2</td>
</tr>
<tr>
<td>A</td>
<td>US 5971677 A (LAN) 26.10.1999, columna 2, línea 60 - columna 3, línea 17; figuras 1,10.</td>
<td>1,2</td>
</tr>
<tr>
<td>A</td>
<td>DE 20316090 U1 (FUCHS, R.) 15.01.2004, resumen; figuras.</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Categoría de los documentos citados
X: de particular relevancia
Y: de particular relevancia combinado con otro/s de la misma categoría
A: refleja el estado de la técnica
O: referido a divulgación no escrita
P: publicado entre la fecha de prioridad y la de presentación de la solicitud
E: documento anterior, pero publicado después de la fecha de presentación de la solicitud

El presente informe ha sido realizado
☒ para todas las reivindicaciones
☐ para las reivindicaciones nº: TODAS

Fecha de realización del informe
12.11.2010

Examinador
F. García Sanz

Página
1/4
CLASIFICACIÓN OBJETO DE LA SOLICITUD

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
B25J, B66C

Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

INVENES, EPODOC
Fecha de Realización de la Opinión Escrita:

Declaración

<table>
<thead>
<tr>
<th>Novedad (Art. 6.1 LP 11/1986)</th>
<th>Reivindicaciones 3, 4, 7-13</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reivindicaciones 1, 2, 5, 6</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actividad inventiva (Art. 8.1 LP11/1986)</th>
<th>Reivindicaciones 3, 4, 7-10, 12, 13</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reivindicaciones 1, 2, 5, 6, 11</td>
<td>NO</td>
</tr>
</tbody>
</table>

Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión.-

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.
1. Documentos considerados.-

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

<table>
<thead>
<tr>
<th>Documento</th>
<th>Número Publicación o Identificación</th>
<th>Fecha Publicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>FR 2628405 A1 (BADER, W.)</td>
<td>15.09.1989</td>
</tr>
<tr>
<td>D02</td>
<td>ES 2203522 T3 (MUNNEKEHOF, G.)</td>
<td>10.05.2001</td>
</tr>
</tbody>
</table>

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

La invención se refiere fundamentalmente a un brazo manipulador de cargas que tiene varios eslabones y un mecanismo de cuatro barras, proyectándose la última en dirección vertical hacia abajo y disponiendo de un punto de enganche para la carga.

El documento D01, que se considera el más próximo del estado de la técnica, da a conocer (las referencias entre paréntesis son de dicho documento) un aparato de manipulación (10) de artículos pesados, en particular de elementos de construcción, con pares de actuación reducidos, que comprende varios eslabones intermedios unidos entre sí por articulaciones, caracterizado porque el último eslabón (12) está unido a una articulación activa, comprendiendo un mecanismo de cuatro barras (13, 14, 18, 21) cuya barra de extremo (18), que se proyecta hacia abajo en dirección vertical, tiene un punto de enganche/agarre (63) en el que se acopia la carga.

Además, en D01, el mecanismo de cuatro barras es recto y la barra de extremo comprende un cojinete pivotante (61) a modo de muñeca, permitiendo dicho cojinete orientar en el sentido de la flecha (62) la carga que se manipula, es decir, en un plano horizontal (segundo párrafo de la página 15 y figura 1). También, se hace referencia a un sensor en la zona de agarre de la barra de extremo (segundo párrafo de la página 17).

Por otra parte, el documento D02 (las referencias entre paréntesis son de dicho documento) da a conocer un sistema para controlar los movimientos de un dispositivo elevador de cargas que, en su barra de extremo o asa de servicio (70), tiene un gancho (16) como dispositivo de toma de carga, estando dispuesto asimismo un sensor (72) junto a dicho punto de enganche para establecer la fuerza vertical de servicio originada por la carga. Lógicamente, también son conocidos en la técnica los sensores que suministran el valor del par de servicio.

Por lo expuesto anteriormente, el objeto técnico de la presente invención, en la medida que puede ser interpretado, no tiene novedad, ya que el documento D01 es particularmente relevante para dicho objeto, y por tanto dicho objeto carece también de actividad inventiva, todo ello según las exigencias de los Artículos 6.1 y 8.1 de la Ley de Patentes 11/86.