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Abstract

Understanding the demographic and evolutionary processes within and between populations is essential for developing
effective management strategies. Thus, for establishing good conservation policies both genetic and phenotypic studies are
crucial. We carried out an integrated analysis of genetic and phenotypic characters of the critically endangered Balearic
shearwater Puffinus mauretanicus (182 individuals) and compared them with those of 2 nearby colonies of Yelkouan
shearwater P. yelkouan (40 individuals), a species for which hybridization has been hypothesized. The results of the
microsatellite analyses were compared with previous mitochondrial DNA analyses. Genetic variability was low in the
Balearic shearwater and high levels of inbreeding were revealed at local scale. Most dispersal in Balearic shearwaters was to
neighboring sites, even though low levels of population structure were found. The admixture between the 2 species was
much higher at nuclear than at mitochondrial level, but phenotypic characters would seem to indicate that a lower level of
admixture exists. Individual nuclear DNA, mtDNA, and phenotype did not match at individual level, showing that
migration alone cannot explain this phenomenon. We suggest that these 2 young shearwater species could have been
involved in processes of divergence and admixing. However, due to the longer coalescence times in nuclear markers,
incomplete lineage sorting cannot be ruled out.
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The evolution of genetic distinctiveness in populations is the
result of the interaction between processes tending to
produce local genetic differentiation (mutation, genetic drift,
and natural selection) and forces tending to produce genetic
homogeneity (gene flow) (Wright 1943; Slatkin 1985, 1987;
Grant 1998; Bohonak 1999). Thus, gene flow may either
constrain evolution by preventing adaptation to local
conditions or promote evolution by spreading new genes
and combinations of genes throughout a species’ range.
Therefore, the degree of genetic differentiation is de-
termined by both historical demography and the amount of
contemporary gene flow. Beyond the general aim of
assessing the demographic and evolutionary processes in
natural populations, assessing genetic distinctiveness is
especially relevant in endangered species given that some
genetic factors may affect species viability. On the one hand,
genetic variation increases the ability of populations to

respond adaptively to future environmental change, while,
on the other hand, gene flow may protect populations from
processes such as the reduction in genetic diversity due to
genetic drift and inbreeding (Frankham et al. 2002; Keller
and Waller 2002), even though in some cases it may also
prevent local adaptation (Mayr 1963).

Populations which have evolved separately over a long
period of time may come into contact and produce a mixed
population, thereby incorporating genes from one geneti-
cally distinct population into another (Futuyma 1998). This
process may also occur between 2 different species, resulting
in natural hybridization. In spite of its rarity at individual
level, natural hybridization is quite common at specific level
(Mallet 2005, 2007), being an important process in the
shaping of the evolutionary trajectories of numerous animal
and plant clades (e.g., Dowling and DeMarais 1993; Howard
1993; Barton 2001; Johnston et al. 2003; Rieseberg et al.
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2003; Grant and Grant 2006). This seems to be particularly
common in birds (Grant and Grant 1992; Arnold 1997), in
which speciation may involve little genetic differentiation,
and in which postmating barriers seem to evolve slower
than in other vertebrates (Prager and Wilson 1975;
Fitzpatrick 2004). The overall frequency of hybridization
in birds is more than 9%, although the distribution of such
events is not spread evenly across the 23 orders (Arnold
1997). Despite having been documented in several seabird
species, including Procellariformes (Kuroda 1967; Hunter
1983; Pierotti 1987; Bell 1996; Andersson 1999; Austin et al.
2004; Sternkopf et al. 2010; Brown et al. 2011), natural
hybridization seems to be more frequent in terrestrial birds
than in seabirds (Arnold 1997).

Natural hybridization can either promote evolutionary
divergence between taxa, for example, by reinforcement
(Servedio 2004; Hoskin et al. 2005; Urbanelli and Porretta
2008) or prevent it (Mayr 1963; Coyne and Orr 2004);
species’ integrity will depend on rates of dispersal and gene
flow between taxa, as well as on the natural selection acting
on the 2 species involved and on the resulting hybrids.
Hybridization may then potentially lead to: 1) the
establishment of a stable and localized hybrid zone that
does not lead to the disappearance of the original species; 2)
the disappearance of one of the two original species; or even
3) the appearance of a new species, resulting from hybrid
speciation (Mallet 2007). One possible cause of the
disappearance of one of the two original species may be
due to genetic swamping: the interbreeding between the
species can cause a ‘‘swamping’’ of the rarer species’ gene
pool, creating hybrids that drive the originally purebred
native stock to complete extinction.

Thus, attention should be paid to hybridization in
endangered species, in part as a way of understanding the
factors that influence the evolutionary trajectory of a species
and in part because hybridization could lead to extinction or
genetic swamping (Rhymer and Simberloff 1996; Allendorf
et al. 2001; Genovart 2009). Genetic studies are thus crucial
for establishing good conservation policies. However,
researchers should not use molecular markers to the
exclusion of other phenotypic data that may reveal
important information about ecological adaptations—which
neutral markers fail to reveal.

The aim of this study was to analyze variation in genetic
and phenotypic characters in a critically endangered seabird,
the Balearic shearwater Puffinus mauretanicus, and compare it
to its closest sibling species, the Yelkouan shearwater
P. yelkouan, with which it is thought to hybridize (Genovart
et al. 2005). The taxonomy of this group is much debated
and has undergone changes in recent years (Austin 1996);
although the Balearic shearwater was once considered to be
a subspecies of the Yelkouan shearwater (Sibley and Monroe
1990; Yésou et al. 1990), they are now considered to be
different young species that are separable by morphometrics
and coloration (Walker et al. 1990; Heidrich et al. 1998;
Sangster et al. 2002; Ruiz and Martı́ 2004). Mitochondrial
DNA (mtDNA) has been previously analyzed in the
Balearic shearwater (Genovart et al. 2007). Variation in

mtDNA patterns suggest that, after a range expansion
during the Pleistocene, the very recent demographic decline
in this critically endangered species has not yet decreased
genetic variability in its mtDNA. Furthermore, despite its
observed philopatry (Aguilar 2000; Ruiz and Martı́ 2004),
a weak population structure has been revealed. Both
shearwater species clearly differ in mtDNA, and genetic
evidence has been found for maternal introgression from
Yelkouan shearwaters into a peripheral colony of Balearic
shearwaters (Menorca Island; Figure 1) (Genovart et al.
2007). Multilocus microsatellite data analyses should allow
us also to assess male-related patterns, which will be
necessary to confirm the hybridization between these 2
species in Menorca.

In this study, we analyzed microsatellite loci and
phenotypic characters in the critically endangered Balearic
shearwater and in 2 neighboring colonies of Yelkouan
shearwater in order to: 1) measure inbreeding and levels of
variability in the endangered Balearic shearwater; 2) reveal
ongoing demographic processes and population structure in
these species; and 3) analyze the relationship between these
2 recently diverged species as a means of studying in more
detail the introgression process previously detected in
Menorca.

Materials and Methods

Species

The Balearic shearwater is a seabird endemic to the Balearic
Archipelago, and its entire world population is estimated at
just 1800–2000 breeding pairs. It is considered to be
critically endangered and recent studies have suggested
a mean extinction time for this species of approximately 40
years (Oro et al. 2004). The distribution of the Yelkouan
shearwater is larger and includes the central and eastern
Mediterranean, as well as the Black Sea (Bourgeois and Vidal
2008), and its population is estimated at approximately
14 000–50 000 breeding pairs (Zotier et al. 1992; BirdLife
International 2004; IUCN 2007). Currently, its risk of
extinction is considered to be low (BirdLife International
2006; IUCN 2007), although more data is needed as it is still
a poorly known species and recent studies have suggested
a serious population decline (Bourgeois and Vidal 2008) and
very low adult survival rates (Oppel et al. 2011). Except in
Menorca, where introgression has been detected (Genovart
et al. 2007), no other mixed colonies have been detected and
the 2 species can be clearly separated by morphometrics and
coloration, since the Balearic shearwater is larger and darker
than the Yelkouan (Sangster et al. 2002).

Sampling and Laboratory Methods

Blood samples were taken from 182 Balearic shearwaters
from throughout almost all of its breeding range and from
40 Yelkouan shearwaters from 2 neighboring colonies on
the Hyères Islands (N 5 25) and Sardegna (N 5 15) (see
Figure 1 and Table 1). Sampled adults included in the
genetic analysis are also analyzed for morphology and
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plumage (see below). The total DNA was isolated from
ethanol-preserved samples using the standard phenol–
chloroform extraction method (Sambrook et al. 1989). As
cytochrome b has proved to be a suitable marker for
comparing these 2 species (Genovart et al. 2007), we
sequenced 800 bp of the mtDNA cytochrome B gene from
3 Yelkouan shearwaters from Sardegna to be compared with
previously found haplotypes (N 5 112) and with fragments
obtained from GenBank (accession numbers: DQ230131–
230316, AJ004216, AJ004217, AJ004222, AJ004224, and
AY219971; see details in Genovart et al. 2007). For nuclear
data, shearwaters were genotyped at 8 microsatellite loci
(González et al. 2009). Polymerase chain reaction products
were analyzed using an ABI3100 automatic sequencer and
the ABI software GeneMapper v. 3.7. All the individuals
used in the mitochondrial analysis (N 5 115) were included
in the microsatellite analysis (N 5 222).

Phylogenetic Analysis

A total of 115 sequences were analyzed, and we used the
Manx shearwater (Puffinus puffinus) as an outgroup; the best-

fitting substitution model was selected using hierarchical

likelihood ratio tests implemented in Modeltest 3.06 (Posada

and Crandall 1998). Using MEGA software v.4 (Tamura

et al. 2007), we calculated the net distances between

Balearic, Yelkouan, and Manx shearwaters. A Bayesian

posterior probability approach was used to show relation-

ships between taxa using MrBayes software v.3.01b

(Huelsenbeck and Ronquist 2001). The Bayesian inference

was obtained with random starting trees without constraints.

Five simultaneous Markov chains were run for 2 000 000

generations and trees were sampled every 100 generations.

We used 1 cold and 3 heated chains per replicate. The model

parameters were treated as unknown, thereby allowing

Figure 1. Location of breeding sites of Balearic and Yelkouan shearwaters shown by stars and dots, respectively. Sampled

colonies of the 2 species are indicated by solid symbols.
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variable values to be estimated by each analysis. Analyses
were repeated in 2 separate runs to ensure that trees
converged on the same topology and similar parameters.

All further genetic analysis refers to microsatellite data.

Genetic Variability

We measured the mean number of alleles per locus, as well
as the observed and unbiased expected heterozygosity, and
the inbreeding coefficient (Fis), and tested for deviations
from the Hardy–Weinberg equilibrium. We also estimated
the variances of FIT, FIS, and FST using the Jackknife
resampling method (Weir 1990); this yields a confidence
interval of estimates for each parameter. Using permutations
(.1000), we tested for the occurrence of nonrandom
associations of pairs of loci (linkage disequilibrium). All
analyses were conducted with the program Genetix v. 4.05
(Belkhir et al. 1996).

Genetic Structure

Using Arlequin v.2 (Schneider et al. 2000), we derived an
FIT pairwise distance matrix between sampling localities
(Weir and Cockerham 1984) and estimated their significance
levels using permutation tests (.1000 times). We used the
sequential Bonferroni correction in tests involving multiple
comparisons (Rice 1989). Additionally, we computed
a hierarchical analysis of molecular variance (AMOVA,
Excoffier et al. 1992) that provides estimates of the
percentage of total variance accounted for within and
between populations. Statistical significance was determined
by .1000 permutations of the genotypes. Given that we
found no significant differences between neighboring
colonies, we were able to pool colonies of Balearic
shearwaters into 4 groups corresponding to 4 major
geographical units—Mallorca, Cabrera, Menorca, and
the Pitiüses Islands (Eivissa and Formentera) (see

Figure 1),—that were then used as population units. Using
these groups, along with the 2 colonies of Yelkouan
shearwater, we computed 2 different types of AMOVA
analyses: 1) considering only Balearic shearwaters and 2)
considering both Balearic and the 2 colonies of Yelkouan
shearwaters.

We also examined the population structure and the
extent of hybridization using an individual-based Bayesian
clustering approach with Structure (Pritchard et al. 2000).
This program assumes a model with a specific number of
populations (K) and then assigns individual genotypes to all
the different populations. To evaluate the population
structure in Balearic shearwaters, only individuals from the
Balearic archipelago were analyzed. We computed 20 runs
with values of K ranging from 1 to 10. The estimation of K
was based on Evanno’s method (Evanno et al. 2005). To
analyze the extent of hybridization between these 2 species,
we analyzed individuals from both species, and we forced to
run structure under the hypothesis of K 5 2, that is,
a 2-population model, where it is assumed that there are
2 populations (species) contributing to the gene pool of the
sample. Putatively admixed individuals can be estimated by
assuming that they inherit some fraction of their genome (q)
from each parental population (Pritchard et al. 2000).
Simulations have shown that the threshold q value of 0.20
performed better (Vähä and Primmer 2006): thus, if an
individual had a q value between 0 and ,0.20 or .0.80, it
was classified as parental, while any individual with a q value
between 0.20 and 0.80 was classified as a hybrid. In both
analyses, the admixture ancestry model was run with the
assumption of correlated allele frequencies (Falush et al.
2003) and each replicate was run for 1, 000, 000 iterations
after a burn-in of 100, 000 runs. We used the most recent
version of this program, which allows a weak population
structure to be inferred with the assistance of sampling
information (Hubisz et al. 2009).

Table 1 Genetic diversity descriptors, globally and at population level in 11 colonies of Balearic shearwater and 2 colonies of
Yelkouan shearwater

N P a He (SD) Ho (SD) FIS (CI 95%)

Balearic shearwaters Mallorca, Sa Cella 14 6 3.75 0.50 ± 0.32 0.36 ± 0.31 0.29 (0.06–0.43)*
Mallorca, Malgrats 20 7 4.00 0.53 ± 0.29 0.33 ± 0.24 0.40 (0.21–0.52)*
Mallorca, Dragonera 10 5 3.13 0.42 ± 0.32 0.30 ± 0.31 0.30 (�0.04 to 0.47)*
Menorca 26 7 5.00 0.49 ± 0.29 0.34 ± 0.24 0.30 (0.16–0.42)*
Cabrera, Es Blanquer 35 7 5.00 0.50 ± 0.30 0.37 ± 0.27 0.26 (0.13–0.35)*
Cabrera, Llumeta 5 4 5.00 0.55 ± 0.35 0.57 ± 0.37 �0.04 (�0.43 to �0.04)
Cabrera, Corral 9 5 2.5 0.34 ± 0.28 0.29 ± 0.29 0.16 (�011 to 0.23)
Eivissa, Es Bosc 20 6 3.63 0.48 ± 0.30 0.35 ± 0.27 0.26 (0.09–0.38)*
Eivissa, Conillera 20 6 3.75 0.51 ± 0.32 0.35 ± 0.24 0.31 (0.14–0.41)*
Eivissa, Espartar 12 6 3.50 0.51 ± 0.32 0.36 ± 0.26 0.30 (0.07–0.40)*
Formentera, Espardell 11 4 3.75 0.51 ± 0.30 0.43 ± 0.27 0.17 (�0.11 to 0.36)
Mean 3.91 0.49 0.37

Yelkouan shearwaters Hyerès Islands 15 7 3.63 0.50 ± 0.32 0.34 ± 0.30 0.23 (0.11–0.31)*
Sardegna 25 6 4.63 0.53 ± 0.30 0.41 ± 0.30 0.32 (0.10–0.45)*

N, individuals sampled; P, number of polymorphic loci; a, average number of alleles per locus; Ho and He, observed and unbiased expected heterozygosity

(Nei 1978); and mean estimates of FIS (Weir and Cockerham 1984), followed by a 95% confidence interval (95 % CI). Global departure (P , 0.01) from

Hardy–Weinberg equilibrium is indicated with asterisk.
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Patterns of differentiation among individuals were
visualized by a factorial correspondence analysis of multi-

locus scores (MCA) computed using Genetix v.4.05 (8 loci,
2 factors) (Belkhir et al. 1996). Conventionally, the first axis
contributes most to the total inertia and usually displays the
differentiation between species. We also specifically looked
at the position of individuals from Menorca with Yelkouan
mtDNA haplotypes so as to further separate hybridization
from simple migration processes.

Phenotypic Information

Body measurements were collected from 362 adults from 7
colonies of Balearic shearwater and 1 colony of Yelkouan
shearwater (Sardegna). All adults were captured in colonies
during the breeding period. Head-plus-bill length, minimum
bill depth and tarsus length were measured with a digital
caliper (±0.02 mm) and wing length with a ruler (±0.5 mm)
(for more details on measurements, see Genovart et al.
2003). Individual coloration patterns were registered for 456
individuals. Coloration was described on a scale (1–5) in
terms of the extent of the pectoral collar, and the ventral
and undertail feather coloration (see also Bretagnolle et al.
2000), with the whitest individuals being classed as 1 and the
darkest as 5. More precisely, individuals classed as 1 had no
complete collar, white abdomen, and almost white undertail
feathers, whereas birds classed as 5 had a nearly complete
collar, a darkly mottled abdomen, and dark or mostly dark
undertail feathers. For subsequent analyses, we grouped
individuals into 3 coloration groups for the sake of
simplicity: mostly white (1 and 2), intermediate (3), and
mostly dark (4 and 5). Individuals were sexed using either
molecular techniques (Ellegren 1996) (ca. 20% of individ-
uals) or applying a specific discriminant function (Genovart
et al. 2003).

A principal component analysis (PCA) of morphomet-
rics was used to obtain an index of individual body size
(BSI) and a General Linear Model was applied to analyze the
relationship between this BSI and coloration pattern, sex
and colony.

Another PCA using morphometrics (Head-plus-bill
length, minimum bill depth, and tarsus length) and the
coloration index was performed to visualized patterns of
phenotypic differentiation among individuals. Given that
this is a sexually dimorphic species (Genovart et al. 2003),
different PCAs were carried out for males and females. We
used SPSS version 14.0 and R (www.r-project.org) to
perform statistical analyses.

Results

Phylogenetic Analysis

The selected model that best fitted the data was a HKY85
with among-site mutation heterogeneity (G 5 0.016).
Accordingly, the Bayesian design allowed for 2 parameters
(Nst 5 2) and for the gamma distribution shape to be
estimated. The consensus tree distinguished 2 major clades

with high posterior probabilities (Figure 2). Individuals from
Sardegna clustered with the Yelkouan haplotypes obtained
from GenBank and with the introgressed Balearic shear-
waters. From the 16 individuals with introgressed mtDNA,
15 showed the same Yelkouan haplotype, corresponding to
1 haplotype obtained from GenBank (YG12; Figure 2);
a single individual had a previously undescribed Yelkouan
haplotype (B13; Figure 2). All individuals from Sardegna
also had previously undescribed Yelkouan haplotypes (Y2,
Y3, and Y4; Figure 2). The second major cluster included all
remaining Balearic haplotypes grouped in a well-differentiated
‘‘Balearic clade’’ (Figure 2). The net uncorrected divergence
between these 2 Mediterranean taxa was 1% and the p-
distances of both taxa from the Manx shearwater were
about 2.5%.

All further genetic results refer to microsatellite data.

Genetic Variability

The mean number of alleles per locus ranged from 2 to 15,
with a mean of 3.91 (±0.81) and 4.13 (±0.71) for Balearic
and Yelkouan shearwater, respectively. The observed and
unbiased expected heterozygosity at the 8 microsatellite loci
in different colonies are shown in Table 1. We detected
a departure from the Hardy–Weinberg expectations of
a heterozygote deficiency in all colonies except for the 1 on
the island of Espardell and 2 on Cabrera (Llumeta and Es
Corral), however, it should be noted that these 3 colonies
had the smallest sample sizes. A deficit in heterozygotes may
be mimicked by null alleles (Pemberton et al. 1995). This
was checked by assuming that some of the homozygotes
were heterozygotes for the null allele and that individuals
failing to amplify were homozygous for the null allele. This
explanation was not supported since the loci with the
highest proportions of heterozygote deficiency did not show
higher proportions of nonamplifications. Additionally, when
the Jackknife procedure was applied, the FIS values, ranging
from 0.21 to 0.32 (global FIS 5 0.28), did not significantly
differ. None of the pairs of loci showed linkage disequilib-
rium after Bonferroni corrections.

Population Structure in Balearic Shearwaters

Pairwise genetic comparisons between colonies of Balearic
shearwaters had low levels of differentiation and there were
no significant differences between neighboring colonies.
Significant differences only appeared between Malgrats
(Mallorca) and Menorca (FST 5 0.28), Malgrats and Llumeta
(Cabrera) (FST 5 0.32), and Dragonera (Mallorca) and Es
Bosc (Pitiüses) (FST 5 0.43). However, if the individuals are
grouped into the 4 major geographical units (thereby
avoiding the highly restrictive sequential Bonferroni correc-
tions), with the exception of Cabrera and Mallorca, and
Cabrera and Menorca, the 4 main groups all differ
significantly from each other (Mallorca–Menorca FST 5

0.039, Pitiuses–Menorca FST 5 0.030, Pitiuses–Mallorca
FST 5 0.025, Pitiuses–Cabrera FST 5 0.019; Table 2). Thus,
in agreement with previous mtDNA results (Genovart et al.
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2007), Cabrera was found to be the most connected island of
all the islands and Menorca the most isolated. In the
AMOVA analysis, the overall FST value was small but highly
significant (FST 5 0.031, P, 0.0001). The hierarchical model
that explained the most variance grouped individuals into 3
main groups corresponding to: Menorca, Mallorca, and
Cabrera, and the Pitiüses Islands. Although significant (P 5

0.02), the variation explained by these 3 groups was low (1.36
%) and about 96% of the variation was assigned to variability
within populations.

When applying the Bayesian clustering approach, we also
chose the model with 3 population clusters as the best fit for
our data (Supplementary Figure S1). However, Evanno’s

method cannot assess whether or not K 5 1 is the best K
and so we cannot reject K 5 1 as the uppermost level of
structuring.

Differentiation between Balearic and Yelkouan Shearwaters

As with mtDNA, FST pairwise differences revealed
statistically significant differences between the 2 Mediterra-
nean species, albeit of a lower magnitude than expected
(Table 2, Supplementary Table S1). Apart for those from
Menorca, individuals from the Hyères Islands were
significantly different from the Balearic shearwaters (FST
between 0.04 and 0.067; Table 2). Birds from Sardegna had

Figure 2. Majority rule consensus tree obtained after the Bayesian inference and posterior probabilities of the relationship

between mtDNA haplotypes of the 2 shearwater species (model: Nst 5 2 and gamma-distributed mutation rates across sites).

B: indicate haplotypes observed in shearwaters from the Balearic Islands, BG: haplotypes of Balearic shearwaters obtained from

GenBank, Y: haplotypes obtained from shearwaters from Sardegna, YG: haplotypes of Yelkouan shearwaters obtained from

GenBank. Only clades supported by posterior probabilities.0.90 are shown. Number between parentheses represents the number

of individuals sharing the same haplotype.

Table 2 Microsatellite DNA FST pairwise distance matrices (Weir and Cockerham 1984)

Balearic shearwater colonies Yelkouan shearwater colonies

Menorca Mallorca Cabrera Pitiusses Sardegna Hyerès Isl.

Balearic shearwater colonies
Menorca 0.000
Mallorca 0.039 0.000
Cabrera 0.015 0.013 0.000
Pitiusses 0.030 0.025 0.019 0.000

Yelkouan shearwater colonies
Sardegna 0.039 0.067 0.064 0.042 0.000
Hyerès Isl. 0.031 0.066 0.058 0.064 0.052 0.000

Distance is calculated between shearwater colonies grouped in the major geographic units (for details, see text). Significant values after permutation test

(.1000 times) are shown in bold.
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greater differences from individuals from Mallorca and
Cabrera than from birds breeding on the Pitiüses Islands
and were not significantly different from those from
Menorca (Table 2). In the AMOVA analysis, the overall
FST value for all populations was also unexpectedly low (FST
5 0.042, P , 0.0001) and, even though the best models do
separate Balearic shearwaters from Yelkouan shearwaters,
surprisingly, the main part of the variance (about 95 %) was
still explained by differences within populations.

When applying the Bayesian clustering approach forcing
k 5 2, one of the clusters was mostly present in Balearic
shearwaters and another in Yelkouan shearwaters; neverthe-
less, most individuals did have mixed ancestry (Table 3).

Representation of the MCA on the 2 principal axes is
shown in Figure 3. The first axis of the MCA captured about
38% of the total inertia contained in the data set, while the
second captured about 22%. The analysis not only showed
some differentiation between Balearic and Yelkouan shear-
waters but also between Yelkouan shearwaters from the
Hyères Islands and those from Sardegna. When we specifically
looked at the position of individuals from Menorca with
Yelkouan mtDNA haplotypes, we observed that some

clustered with Yelkouan shearwaters, while others clearly fall
into the Balearic cluster (open and closed symbols in Figure 3).

Phenotypic Variation

As expected in a sexually dimorphic species, body size was
strongly influenced by sex (F237 5 101.1, P , 0.001). We
also detected a high correlation between BSI and coloration
patterns in both sexes (F237 5 8.9, P , 0.001) (Figure 4),
and between BSI and breeding colony (F237 5 7.47, P ,

0.001). Coloration pattern also clearly differed depending on
the breeding colony (Figure 5), with individuals from
Mallorca and the Pitiüsses colonies being darker and those
from Menorca whiter (64% of the individuals had Yelkouan
shearwater coloration).

PCA allowed us to visualize patterns of phenotypic
variation in males and females (Figure 6). Clear differences
in the phenotype appear between Balearic shearwaters
(excluding those from Menorca) and Yelkouan shearwaters.
In males, the first axis of the PCA captured about 47% of
the total inertia contained in the data set, whereas the
second axis captured about 20%. In females, the differen-
tiation between taxa was more apparent and the first axis of
the PCA captured about 56% of the total inertia, whereas
the second captured about 18%.

In Menorca, individual phenotypic variation was not
correlated with genetics because some of the individuals with
Yelkouan phenotype had Balearic-type nuclear or mtDNA,
whereas others had Yelkouan-type nuclear or mtDNA.

Table 3 Pure parental individuals (both Yelkouan and Balearic
shearwater) and proportion of membership number of each
shearwater colonies grouped in the major geographic units in
each of the 2 clusters (for details see text)

Proportion of
membership

Pure parental
individuals

Cluster 1 Cluster 2 Balearic/Yelkouan N

Menorca 0.57 0.43 3/2 26
Mallorca 0.60 0.40 15/3 44
Cabrera 0.70 0.30 14/0 50
Pitı̈usses 0.50 0.50 6/3 63
Sardegna 0.22 0.78 0/8 15
Hyerès Isl. 0.19 0.81 0/17 25

Figure 3. Patterns of differentiation among individuals

visualized by factorial correspondence analysis of multilocus

scores (8 loci, 2 factors). Each colony is represented by

a different symbol. Those Balearic shearwaters with mtDNA

haplotypes corresponding to Yelkouan shearwater haplotypes

are represented by closed symbols.

Figure 4. A PCA of morphometrics was used to obtain an

index of body size (BSI). Individuals were grouped into 3

coloration groups: white, intermediate, and dark. We detected

a high correlation between BSI and coloration patterns in both

males (solid dots) and females (open dots).
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Discussion

Genetic Variability in Balearic Shearwaters

Genovart et al. (2007) found high levels of genetic variability
in the mtDNA of Balearic shearwaters and concluded that
sufficient time had not elapsed since the onset of the critical
population decline to leave a genetic signature. In our study,
microsatellite data clearly show a lower genetic variability;
however, since we have no measure of genetic variability
before the recent population decline, we cannot affirm
whether or not any loss of genetic variability has occurred.
Additionally, the low levels of genetic variability in nuclear
DNA may also be linked to Procellariiformes’ patterns of
philopatry and dispersal, since similar genetic variability has
recently been found in 3 other species on the same group
(Bried et al. 2007; Milot et al. 2007; but see Genovart Thibault
JC, Igual JM, Bauzà-Ribot MM, Rabouam C, Bretagnolle V,
unpublished data). High levels of inbreeding at local scale
probably reflect not only the effects of philopatry but also the
relatively few available breeding sites and the low density of
breeders in most colonies. The high levels of inbreeding and
possibly, the low genetic variability found in the Balearic
shearwater may both have negative effects on the viability of
this species and would appear to be a further and an as yet
unformulated conservation threat for this species.

Population Structure in Balearic Shearwaters

Even though the species is assumed to be highly philopatric
(Warham 1990), high connectivity does exist between
colonies of Balearic shearwaters, as has been previously
found in other seabird species (Burg and Croxall 2001;
Moum and Arnason 2001). Additionally, in agreement with

other studies of seabirds (Burg and Croxall 2001; Inchausti
and Weimerskirch 2002), our results support the idea that
most dispersal is to neighboring sites. However, this

Figure 5. Percentage of individual Balearic shearwaters with white, intermediate, and dark coloration patterns (shown by white,

gray, and black, respectively) at different breeding colonies (for details, see Figure 1). Coloration pattern clearly differed depending

on the breeding colony.

Figure 6. Plot of phenotypic characters (head-plus-bill

length, minimum bill depth, tarsus length, and coloration

pattern) from individual shearwaters by first- and second-factor

scores derived from Principal Components Analysis (PCA); as

shearwaters are sexually dimorphic, a separate analysis was

made for males (a) and females (b).
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connectivity contrasts with the high levels of inbreeding at
local scale, which probably suggests that, while philopatry
may exist at local level, emigration acts as a homogenizing
force at a larger geographical scale. Similarly, Friesen et al.
(1996) found genetic substructuring in thick-billed murres
Uria lomvia at local level, which contrasted with its genetic
homogeneity at a macrogeographical level.

From a conservation point of view, the unexpectedly
high levels of gene flow may counteract the effects of
genetic drift in small local populations (Slatkin 1985, 1987),
as well as facilitating range expansion (Kokko and Lopez-
Sepulcre 2006) and helping to resist range contraction
(Channell and Lomolino 2000), and as such may potentially
play a significant role in maintaining species viability.

Comparison of Nuclear versus Mitochondrial Data

Even though we detected population structure with both
markers, the level of structuring detected with micro-
satellites was much lower than that previously detected with
mtDNA (FST 5 0.031 and FST 5 0.36, respectively; see
Genovart et al. 2007), even when corrections for differences
in effective population sizes between markers were made
(Brito 2007) (Fstc 5 0.12). The discrepancy observed
between both markers in levels of population structure may
be linked to several factors. A first possibility would be size
homoplasy of alleles leading to an underestimation of
between-population differentiation. A second hypothesis
would be that due to longer coalescence times, nuclear
markers are a more lagging indicators of changes in
population structure for populations with relatively short
periods of isolation (Zink and Barrowclough 2008). A third
possibility is that differential gene flow may occur in males
and females. In our case, given the relatively low levels of
allelic diversity, microsatellites did not seem to be saturated
and so the first of these 3 possibilities can be rejected, and
so either nuclear genes are not able to detect a recent
fragmentation event, or sex-biased gene flow exists.

Natural Hybridization

Previous mtDNA analysis has suggested that natural
hybridization between Balearic and Yelkouan shearwaters
occurs on Menorca (Genovart et al. 2007). Additionally,
given that, other than on Menorca, mtDNA haplotypes
from the 2 species were reciprocally monophyletic on the
gene trees and were separated by a minimum of 10
mutational steps, it would seem likely that historically little
or no hybridization has occurred between the 2 species
outside Menorca, and that their gene pools have been
independent for a long period (at least in the matrilineal
line). As well, phenotypic results and some differential
behavioral patterns (Ruiz and Martı́ 2004; Curé et al. 2010)
seem to indicate a separation between both taxa for a long
period. Unexpectedly, microsatellite markers revealed little
differentiation between the 2 species and suggest high levels of
gene flow between them, at least between Balearic shearwater
and the 2 nearby colonies of Yelkouan shearwaters. It is

noticeable that on Menorca, individual nuclear DNA,
mtDNA, and phenotype did not match, suggesting that
migration alone cannot explain such phenomenon. We
suggest 2 possible explanations: the first is as discussed
above, that is, the longer coalescence times in nuclear genes
may be disguising a simple diverging process between two
recently diverged species. Yet, a second and more plausible
explanation is that these 2 young shearwater species could
have been involved in processes of divergence and admixing.
At present, the secondary contact between the two recently
diverging clades would result in gene exchange, leading to
increased genetic similarity and thus to an evolutionary web
rather than a diverging tree. Nevertheless, if we are to
understand fully the relationship between these taxa, genetic
and ecological studies of more colonies of Yelkouan
shearwater (especially in the eastern Mediterranean Basin)
are still required. This would allow us to assess whether the
admixture between the 2 species is a general and widespread
process or whether it is specific to a limited zone of contact.

Thus, a new issue arises that is of interest above all to
conservation managers: are these Mediterranean shearwaters
two different species or just one? Similar or even greater
levels of divergence have been found between named
subspecies (e.g., Cory’s shearwaters) (Gómez-Dı́az et al.
2006); yet, the same levels of divergence and admixing have
been found to occur within named bird species (Crochet
et al. 2003; Grant et al. 2004; Helbig et al. 2005). We believe
that further studies should be carried out to definitely
resolve these taxonomic questions, and that more colonies
throughout the breeding range of the Yelkouan shearwater
should be genetically analyzed. Before any such additional
studies are able to provide more pertinent data, we advise
caution and propose that these two taxa, which have been
isolated for a long period, should be maintained as separate
species, thereby guaranteeing a maximum level of protection
for the critically endangered Balearic shearwater.

Conservation Remarks

New data have emerged from this study that are relevant to
the conservation of Balearic shearwaters. On one hand,
a possible decrease in genetic variability and high levels of
inbreeding at a local scale pose a new potential threat for the
species. Although on the other, the high connectivity detected
between colonies could improve the species’ ability to
overcome critical periods, but may also prevent local
adaptation. Additionally, we believe that natural hybridization
between these two young species is a natural process; yet,
despite the fact that some anthropogenic factors, such as
a lack of suitable habitat for breeding, may promote
hybridization between these two species, hybridization should
not be treated as a threat, but as a natural evolutionary
process, and no conservation measures need be implemented
to prevent it. Nevertheless, due to the critically endangered
situation of the Balearic shearwater, immediate conservation
efforts should concentrate on enhancing adult survival and
protecting breeding areas as a means to inverting the dramatic
decline that is occurring in this species.
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Supplementary Material

Supplementary material can be found at http://www.
jhered.oxfordjournals.org/.

Funding

This work was partially supported by Spanish Ministries of
the Environment (024A-B/2002), of Education and Re-
search (BOS2003-01960), and of Science (200430E585 and
CGL2009-08298). M.G. was partially funded by an I3P
postdoctoral fellowship from the Spanish Ministry of
Education and Science.

Acknowledgments
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