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ABSTRACT 

This paper presents a novel sorbent regeneration technique for post-combustion 

calcium looping CO2 capture systems. The advantage of this technique is that it can 

drastically reduce the consumption of limestone in the plant without affecting its 

efficiency and without the need for additional reagents. The method is based on the re-

carbonation of carbonated particles circulating from the carbonator using pure CO2 

obtained from the gas stream generated in the calciner. The aim is to maintain the CO2 

carrying capacity of the sorbent close to optimum values for CaL post-combustion 

systems (around 0.2). This is achieved by placing a small regeneration reactor between 

the carbonator and the calciner. This reactor increases slightly the conversion of CaO to 

carbonate so that it exceeds the so-called maximum CO2 carrying capacity of the 

sorbent. This increase compensates for the loss of CO2 carrying capacity that the solids 

undergo in the next calcination-carbonation cycle. Two series of experiments carried 

out in a thermogravimetric analyzer over 100 cycles of carbonation-recarbonation-

calcination show that the inclusion of this recarbonation step is responsible for an 

increase in the residual CO2 carrying capacity from 0.07 to 0.16. A conceptual design 

of the resulting capture system shows that a limestone make-up flow designed 

specifically for a CO2 capture system can approach zero, when the solid sorbents 

purged from the CaL system are re-used to desulfurize the flue gas in the existing 

power plant. 

INTRODUCTION 



Any serious attempt to combat climate change has to seek a viable solution for the 

huge emissions of CO2 expected from coal combustion in the next few decades. 

Exploitable coal reserves account for 846 Gt.1 The combustion of these reserves would 

entail the emission of more than 2000 Gt of CO2 into the atmosphere. These coal 

reserves will almost certainly to be burned because coal is still a very low cost source of 

energy, and the expensive infrastructure needed to burn it is already available or is 

being built today (i.e. China power sector). No realistic policies or alternative 

competitive energy systems to prevent the owners from exploiting these vast coal 

reserves have yet been proposed. Therefore, decoupling the use of coal from its CO2 

emissions is one of the most urgent options for mitigating climate change. Furthermore, 

the deployment of CO2 capture and storage technologies, CCS, may substantially reduce 

the overall cost of mitigation.2 

The current level of understanding of mature CO2 capture technologies3 is already 

sufficient to enable us to proceed to large scale demonstration, at least in Europe.4 The 

cost of avoiding CO2 in optimized plants with existing capture technologies is expected 

to be around 30-40 €/t CO2 while increments in the levelized cost of electricity will be 

around 0.025 €/kWhe.4 This is fully consistent with earlier assessments of CCS.2 

Furthermore, it is generally acknowledged that these costs can be reduced by adopting a 

learning by doing approach and by developing a small emerging group of second 

generation CO2 capture technologies that will further reduce energy consumption and 

costs.  

The post-combustion calcium looping process, CaL, is one of the most promising new 

CO2 capture processes. It has rapidly developed from small scale pilot testing 

facility5,6,7,8,9,10,11 to a large pilot plant of up to 1.7 MWt as part of the CaOling project12 

and a second pilot plant of 1 MWt is already reporting positive results.13 These post-

combustion processes are based on the carbonation/calcination equilibrium of CaO and 

CO2. Although several combustion-based processes are being developed with different 

types of reactor and calcination reaction systems,14 the most mature CaL process is that 

proposed by Shimizu et al. 15 and depicted in Figure 1. In its generally preferred 

configuration, it incorporates a CaO-based CO2 absorption process that uses a 

circulating fluidized bed (CFB) carbonator. CaCO3 is regenerated by passing an O2/CO2 

mixture through a fluidized bed. Shimizu et al. 15 have already noted the very large 

amount of heat required to conduct this calcination (comparable to the heat input of the 

existing power plant). However the additional energy required for the capture system 
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can be effectively recovered during the actual process of capture since carbonation takes 

place at high temperatures (650-700ºC), which allows energy to be recovered from the 

very high temperature gas and solid streams that form part the process.16,17,18,19,20,21 As a 

result, the efficiency penalties are as low as 6-7 net points taking into account the 

requirements of the air separation unit and CO2 compression. Indeed, post combustion 

Ca-looping, CaL, is the only CO2 capture system that repowers the existing power plant, 

because the sorbent regenerator (calciner) is itself an oxy-fired fluidized bed power 

plant (see Figure 1). 

 

 

 

 

 

 

 

 

Figure 1. Scheme of the proposed CO2 capture process based on a 

carbonation/calcination loop.  

 

One of the key problems associated with all practical CaL systems 15,22 is the rapid 

decay in the CO2 absorption capacity of the sorbent as it cycles between carbonation 

and calcination conditions. This has been the subject of much research in recent 

years.23,24 Abanades et al. 25,26 maintain that this decay can be compensated for at a 

reasonable cost by using a sufficiently large make-up flow of limestone (a very low-cost 

material compared to all other sorbents) which will serve not only to capture CO2 but 

also to purge the system of ashes, CaSO4, and deactivated CaO. Furthermore, it has 

recently been demonstrated through a thermal integration exercise 27 that the optimum 

CO2 carrying capacity for minimizing the heat requirements of the calciner28 is around 

0.2 (Ca molar conversion) for post-combustion applications with limestone as the make-

up flow. However, to attain this average carrying capacity (considering the typical 

deactivation curves of CaO) a large amount of sorbent make up is required (of the order 

of 50-100 t of fresh limestone/hr for a 1000 MWt coal-fired power plant, according to 

the calculation methodology described in25). In such large make-up flow conditions, the 



overall cost of the CaL capture system would be very sensitive to the cost of 

limestone.29 Furthermore applying the CaL system may depend the existence of a strong 

synergy with the cement industry,30 which may not always be the case. It is therefore 

important for the large scale deployment of CaL technologies that they be able to 

operate with a minimum sorbent requirement and a maximum sorbent stability. In 

recent years, scientific literature and patent databases have reported intensive R&D 

work on the reactivation of CaO materials and the development of routes to obtain more 

stable CaO-based CO2 sorbents. A brief overview of the main options and their 

limitations is provided below (more details can be found in recent reviews 23,24): 

-Hydration of CaO. This is a reactivation reaction that is known to be effective, 
31,32,33,34,35 because the formation of Ca(OH)2 and its subsequent calcination tends to 

generate highly active CaO for CO2 capture. However, doubts surround the very poor 

mechanical stability of the sorbent when hydration is applied to natural low cost 

materials. In addition, intense hydration consumes high quantities of steam and/or the 

solids need to be brought down to very low temperatures, which seriously undermines 

the energy efficiency of the CO2 capture system.36  

-Preactivation. This involves the controlled pre-calcination of the material to obtain a 

more stable pore texture. Several authors24 claim this to be a promising technique for 

some limestones. However, most available results have been obtained under conditions 

that are not suitable for post-combustion applications. 

-Self-reactivation effect. Manovic et at 37 have demonstrated that the activity of pre-

treated sorbent can increase with the number of cycles, maintaining a residual activity 

which is higher than it was at the beginning. However, new tests conducted under 

controlled conditions at lab scale38 have revealed that this process may be effective for 

some CaL processes, but cannot work under the low particle reaction times per cycle 

that are typical of post-combustion CaL systems.  

-Sorbent doping. The results of some previous works have indicated that the activity 

of CaO could be increased by doping.24 However many of the dopants considered in the 

literature (K, Na..) may not be compatible with the safe running of power plants. 

-Synthetic sorbents. A variety of supports and binders have been proposed.24 Their 

high cost and lack of long term stability in flue gases where SO2 is present are obstacles 

to the application of these synthetic materials.26 They may be attractive for cleaning 

applications in CaL systems (e.g. sorption enhanced reforming39) but this topic is 

beyond the scope of the present study. A promising compromise between cost and 



performance has been proposed by Manovic et al. 40, in which low-cost binders 

(alumina cements) are used with low-cost CaO precursors. 

The present study proposes a post-combustion CaL process scheme that incorporates 

a new sorbent reactivation method able to operate in continuous mode and attempts to 

maintain the average CO2 carrying capacity of the CaO particles between 0.15-0.2, with 

negligible energy penalties, using only the materials available in the process scheme of 

Figure 1. If successful, this process could represent an important step towards 

reinforcing the viability of CaL for post-combustion technologies. The process could 

also be applied to other CaL concepts.  

 

PROCESS DESCRIPTION 

 

The process proposed in this paper involves a novel method of maintaining the 

activity of CaO particles by introducing an additional re-carbonation step in which 

partially carbonated particles circulating between the carbonator and calciner are forced 

to increase their conversion so that it slightly exceeds the “maximum” CO2 carrying 

capacity of the solids in the carbonator. This is achieved by bringing a small flow of 

highly concentrated CO2 (generated in the calciner) into contact with the highly 

carbonated solids coming from the carbonator. In these conditions, even under the so 

called “slow carbonation regime” it is possible to produce a slight, additional re-

carbonation of the solids in each cycle, thus compensating for the decay  in carrying 

capacity that the solids will experience the next time they pass through the calciner and 

carbonator. In theory, this should be sufficient to cause the recarbonation of a very small 

fraction of CaO that is inactive, thereby ensuring a higher level of residual activity.41 

CARBONATOR

Rich CaO purge

Calcined solids

Flue
Gas

Lean CO2 flue 
gas

Coal Air

CALCINER

RECARBONATOR

POWER PLANT 
WITH 

DESULFURIZATION

Coal+O2/CO2

CaCO3

Carbonated 
solids

Recarbonated
solids

Sulfated 
purge

Concentrated CO2



 

 

The fundamentals of the proposed process are rooted in an early piece of research on 

the reversibility of the carbonation reaction of CO2 with CaO. As far back as 1973, 

Barker42 conducted multicycle carbonation/calcination test experiments in which he 

carbonated CaO for a period of 24 hours in pure CO2.  

He observed no significant decay in the CO2 carrying capacity (approx. 0.82 after 10 

cycles) of the sorbent during these long carbonation times. More recently, Lysikov et 

al.43 and Sun et al.44 have shown that when experiments are carried out over extended 

carbonation times (up to 30 minutes), the residual activity of the CaO can be kept 

substantially higher than one might expect from the experiments performed over short 

carbonation times such as those of Grasa et al.45 A similar finding was reported by 

Dennis et al.46 who increased the CO2 partial pressure, during carbonation in the 

fluidized bed, the result being a substantial increase in the uptake of CO2 by the 

synthetic sorbent even after more than 40 cycles. These results have recently been 

interpreted using a carbonation model 36,38 that takes into account the cumulative 

contribution of the slow diffusion stage of CO2 after each cycle. This can translate into 

sorbents with a higher CO2 carrying capacity provided that the carbonation conditions 

allow a slight increase in the conversion of CaO to carbonate during the slow reaction 

regime. However, it is not possible to apply in standard post-combustion CaL systems 

the carbonation conditions used in these previous works, because the particle residence 

times in the carbonator reactors are usually much lower than 5 minutes10,11 and the CO2 

partial pressures are below 0.15 atm.  

Therefore, we propose47 to carry out the re-carbonation step in a different type of 

reactor (referred to as “recarbonator”) under conditions that favor the fastest possible 

carbonation rates in the slow carbonation regime. This entails carrying out the 

recarbonation with pure CO2 obtained by recycling the CO2 stream generated in the 

calciner, as illustrated in Figure 2. It is important to note that the amount of flow 

required for the recycle of concentrated CO2 will be a modest one because the CO2 will 

only be needed to slightly recarbonate particles which have already been carbonated in 

the carbonator and which are ideally close to their maximum CO2 carrying capacity.  

Figure 2. Simplified scheme of the proposed CaL process proposed in this work, with 
a new reactor for sorbent regeneration (recarbonator) and the use of the resulting CaO 



The incorporation of a new reactor (recarbonator) to treat the bulk of the large solid 

flow circulating between the carbonator and calciner requires a re-evaluation and the 

adaptation of several key components of the CaL system. In principle, for compact 

recarbonation-schemes to be realistically feasible, the reaction times must be kept as 

low as possible. There is some evidence from kinetic studies on carbonation rates 

including the slow reaction regime48,49 that using a pure atmosphere of CO2 in the 

recarbonation step (where average partial pressures are about 20 times higher than in the 

carbonator) should facilitate additional carbonation conversions (ΔXrecarb) by a few net 

percentual points in a matter of minutes. These increments in carbonation conversion, in 

every cycle, should lead36 to a residual activity in the sorbent after hundreds of 

carbonation-calcination cycles that is substantially higher than that achieved when only 

the completion of the fast carbonation regime is allowed in every cycle. This 

improvement in CO2 carrying capacity may be sufficient to maintain an effective CaL 

process without the need for a limestone make-up flow (other than that required to 

compensate for the losses due to attrition and the purging of ashes and CaSO4).  

 

EXPERIMENTAL 

 

In order to confirm whether under the conditions and reaction times that might be 

expected of the system illustrated in Figure 2, there is a substantial gain in CO2 carrying 

capacity by the sorbent, two sets of experiments of long duration were conducted using 

TG equipment. The thermobalance employed has been described in detail elsewhere.45 

A high purity limestone (main components of the calcined limestone: 95.42 %wt CaO, 

2.64 %wt Fe2O3, 0.81 %wt MgO, 0.49 %wt K2O, 0.39 %wt TiO2, 0.17 %wt Al2O3, 0.07 

%wt SiO2, 0.01%wt Na2O) of particle size 63-200 μm were subjected to 100 cycles of 

calcination/carbonation/recarbonation and 100 cycles of carbonation-calcination in 

identical conditions. The reacting gas mixture (CO2/air) was fed in through the bottom 

of a quartz tube reactor placed inside a furnace. The gas flow was regulated by mass 

flow controllers, the sample mass being less than 3 mg and the total gas flow of 120 

mL/min. The temperature and weight of the sample were continuously recorded on a 

computer. The experimental routine consisted in calcining the sample under air at 900 

ºC for 5 min, then carbonating it in a mixture of gases (pCO2 =10 kPa, air as balance) at 

650 ºC for 5 min and finally recarbonating it under pure CO2 at 800 ºC for 3 min.  

 



 

Figure 3a shows the typical evolution of the carbonate content of the sorbent with 

time for 15 and 100 cycles. Two different stages can be observed. The first stage 

corresponds to the fast carbonation (60-70 seconds). This is followed by a transition to a 

slow carbonation stage lasting 300 s. The conversion achieved at end of the fast reaction 

period is the maximum or “useful” CO2 carrying capacity of the sorbent (XN) for post-

combustion CO2 capture in a CFB carbonator. The second stage illustrated in Figure 3a 

corresponds to the recarbonation step that begins after 300s. As can be seen, when the 

reaction temperature and CO2 partial pressure reach the recarbonation conditions (800ºC 

and pure CO2), there is a rapid increase in the carbonate content (ΔXrecarb) to above the 

maximum CO2 carrying capacity, which tends to stabilize after about 60 seconds of 

recarbonation reaction.  
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Figure 3. a) Example of the increase in CO2 carrying capacity experienced by two 

particles cycling through the system (black dots, after 15 carbonation calcination cycles 

and white dots after 100 cycles). b) Evolution of the CO2 carrying capacity of CaO with 



the number of cycles (black dots with recarbonation and white dots without 

recarbonation). 

 

Figure 3b compares the evolution of the maximum CO2 carrying capacity (XN) during 

cycling with and without the recarbonation step. As can be seen, the addition of a 

recarbonation step greatly improves the activity of the sorbent which is almost two 

times higher after 100 cycles. These experimental results were fitted using the equation 

proposed by Grasa et al.45 to determine the residual activity of the sorbent (Xr) under 

both sets of experimental conditions. The value obtained without a recarbonation step is 

0.071, which is in agreement with the value obtained by Grasa et al.45 for a wide range 

of sorbents (Xr=0.075). On the other hand, when the recarbonation step is included, the 

residual activity of the sorbent increases to 0.16. This confirms that the inclusion of a 

short recarbonation step maintains the residual activity of the sorbent at a value more 

than 200% higher than that of the residual activity of the reference test where there is no 

recarbonation step. 

 

DISCUSSION 

 

The experimental results presented above confirm that there are operating windows 

for designing a practical process following the scheme of Figure 2. Accordingly, mass 

and heat balances were performed on a reference case both with recarbonation and 

without recarbonation. It is assumed here that a suitable moving bed reactor (with a 

standpipe connected to the cyclone of the carbonator) and/or a fluidized bed reactor 

(feeding CO2 into the loop seal connected to the cyclone of the carbonator) will allow 

sufficient residence time for the solids to reach the desired recarbonation level. In order 

to minimize the size (and capital investment) of the new re-carbonator reactor, short 

average reaction times (of the order of 1 minute as shown in Figure 3a) for the full 

stream of circulating solids must be used. Alternatively, a small fraction of the solids 

circulating between the carbonator and calciner could be subjected to much longer re-

carbonation times. However, we have ruled out this second possibility because the 

mechanism of carbonation in the slow reaction regime is known to slow down with 

increasing conversions50 and this would only lead to irrelevant gains in carrying 

capacity under realistic reaction times.  



In order to minimize the consumption of CO2 in the recarbonator (and the cost 

associated with this new gas recycle) it is also important to ensure that most of the 

particles arrive at the recarbonator with a carbonate conversion as close as possible to 

their maximum CO2 carrying capacity. Most pilot data and model predictions available 

for CFB carbonators7,8,9,10,11 suggest that it is possible to design carbonator reactors that 

achieve conversion of solids very close to the maximum carrying capacity of the 

material. However, there will need to be enough CO2 for the recarbonator to complete 

the fast carbonation stage of particles not completely converted in the carbonator. 

We have conducted a preliminary conceptual design of the system to illustrate the 

potential benefits of the new reactivation process and highlight the need to minimize the 

reaction times and CO2 consumption in the recarbonator. Two different types of coals 

were considered for use in the power station and in the calciner (see Table 1).  

Any coal can be burned in the existing power plant (which we will assume to be of 

the CFBC type), but we have chosen a good quality coal (i.e. low sulfur and ash 

content) to be used in the calciner, because this is known to reduce the energy demand 

of the CaL system.28 We have assumed a thermal input to the power plant of 1 GWt . 

The plant can be of any type or design but the choice of a CFBC design makes it easier 

to assess the synergy of SO2 capture with the CaL system with recarbonation. Two 

different scenarios (one with and one without recarbonation step) were assessed for their 

ability to capture 80 % of the CO2 produced in the power plant. In both cases, the 

maximum CO2 carrying capacity of the CaO in the bed of the carbonator was assumed 

to be 0.20 and the carbonate content of the solids leaving the calciner to be 0.19.  

 

Table 1. Composition and LHV of the fuels fed into the combustors of the power 

plant and calciner of Figure 2 

 

Power 

plant  

Oxy-fuel 

calciner  

Composition 

(%wt)   

C 58.0 74.0 

H 4.0 4.0 

S 1.0 0.5 

O 8.0 8.0 



H2O 8.0 8.0 

N 0.5 0.5 

Ash 20.0 5.0 

 LHV (MJ/kg) 25.0 30.0 

 

The power plant feeds flue gases (390 kg/s) into a CFB carbonator (see Figure 2), that 

is continuously supplied with a stream of solids from the calciner (500 kg/s in the CFB 

carbonator riser). The stream of solids contains 91.0 %w of free CaO in the case of the 

CaL with no recarbonation step. The desired carrying capacity is achieved in the case of 

the CaL with no recarbonation step by feeding a make-up flow of limestone of 23.2 kg/s 

into the calciner. This flow is calculated from the mass balance that links the average 

carrying capacity of the sorbent in the CaL system with the solids circulation flow.25,51 

If similar mass balances incorporating the improvement in sorbent activity produced by 

the recarbonation step are applied (Figure 3b), after the CO2 carrying capacity has been 

suitably fitted to the Grasa et al.45 equation (as shown previously), the required make-up 

flow turns out to be much lower (5.0 kg of limestone/s). The reduction in make-up flow 

could even approach zero if it were not necessary to purge the ash and CaSO4 in the 

CO2 capture solids loop. For the sake of simplicity, no losses due attrition are 

considered in any of the processes discussed in this work.  Attrition tends to occur 

mainly in the first calcination cycle 52,53,54,55 both in CaL systems and in large scale 

CFBC systems. Therefore, a lower attrition can be expected in processes that use 

reduced flows of fresh limestone.  

In the new scenario which includes a recarbonation step, the energy demand in the 

calciner increases to 885 MWt (from 825 MWt without the recarbonation step). No 

additional energy penalty due to the sorbent reactivation step (other than that required 

by the auxiliary equipment to power the small CO2 recycle) is to be expected because 

the reactivation is carried out at very high temperatures and all the additional energy 

needed to calcine the additional carbonated solids is released during the recarbonation 

reaction, thereby increasing the temperature of the solids entering the calciner. The 

reason for the increase in energy demand is mainly due to the larger amount of solids 

circulating between both reactors (700 kg/s in the carbonator) since the use of a lower 

make-up flow results in an increase in the mass fraction of ash and CaSO4 (which reach 

values of 19 %w and 16%w, respectively) that acts as thermal ballast in the 

carbonation-calcination cycle. However, it should be noted that the energy used in the 



calciner to heat up the stream of solids can be recovered to produce power, the only real 

penalty being the associated increase in O2 consumption in the calciner.  

Assuming a residence time for the solids of 60 s and a bulk density for the solids of 

800 kg/m3 in the recarbonator, the reactor volume needed is close to 60 m3 which is 

very small compared with the size of the carbonator and calciner (with cross sections of 

around 200 m2 and reactor heights of over 30 m. i.e., of a similar scale to those of 

CFBC’s). The amount of CO2 that needs to be fed into the recarbonator can be 

calculated by taking into account the results in the experimental section which show that 

an increase in the conversion of carbonate of 0.02 above the maximum CO2 carrying 

capacity is enough to maintain the activity of the sorbent. From this value, a 

consumption rate of 10.6 kg CO2/s which is less than 3% of the CO2 leaving the calciner 

is estimated. 

 

The material purged from the calcium loop can also be used to capture SO2 from the 

flue gases generated in the CFBC boiler (see Figure 2). In the light of previously 

published reports for other CaL systems,56,57,58 it can be expected that the purged 

material extracted from this modified CaL system will be very active in the capture of 

SO2 under carbonation conditions.59 This is because particles that have been calcined 

and carbonated tens or hundreds of times according to the scheme of Figure 2 will 

display large pores less prone to plugging by the CaSO4 formed during hot flue gas 

desulfurization conditions.  

To assess the impact of using the purge from the CaL as SO2 sorbent, we calculated 

the limestone requirements for capturing the SO2 produced in the reference power plant. 

To ensure similar sulfur inputs (tSulfur/MJ), we have assumed that a mixture of the coals 

in Table 1 is used in the reference power plant. Bearing in mind that the mass ratio for 

this mixture was calculated from the average value of the coals used in Case 1 and 2, 

Table 2 displays the different possible scenarios. The limestone requirement in the 

power plant (reference case) for capturing SO2 is 2.74 kg/GJ (assuming a Ca/S molar 

ratio of 3) which yields a consumption rate of 0.07 kg of limestone per kg of coal fed in. 

In the case of the power plant equipped with the CO2 capture system but without the 

recarbonation step, the consumption of limestone increases to 0.347 kg/kg of total coal 

fed in. In this case, a higher demand is placed on the limestone by the CaL in order to 

maintain the activity of the sorbent at 0.2 when the residual activity is only 0.071. From 

the point of view of the sulfur balance, there is now an excess of limestone in the 



system, as the Ca/S ratio has increased to 14. This high value shows that only a fraction 

of the purge produced in the CaL can be used in the power plant to capture SO2.  

Finally, in the case of CaL with the recarbonation step, the consumption of limestone 

needed in the CaL to sustain the activity of the solids with a CO2 carrying capacity of 

0.20 is only 0.07 kg limestone/kg coal. This value almost matches the amount needed to 

remove the SO2 in the reference case, where the limestone is used only as sorbent in the 

power plant. We have chosen the compositions of the coals for these scenarios in order 

to get a perfect match between the limestone requirements for the CaL and for use as a 

SO2 sorbent. However, the final result is of a much wider value. If coals with a higher 

sulfur content are used in the process shown in Figure 2, a higher flow of limestone 

must be used to maintain the Ca/S=3 and to retain the sulfur that has been fed into the 

system. This will improve the performance of the CaL because the maximum carrying 

capacity of the solids in the CO2 capture process will increase to above 0.20 and the 

solids circulation between the carbonator and calciner will be reduced since a higher 

amount of ashes and CaSO4 can be expected to be purged. 

 

Table 2. Limestone consumption and SO2 sorbent requirements for the different cases 

 

 

Ref. Case: power station 

Case1: power station with CaL without recarbonation 

Case2: power station with CaL with recarbonation 

 

Therefore, a large saving of limestone in the make-up flow can be anticipated from 

the system proposed in Figure 2, which will reduce to virtually zero the additional 

limestone requirements for CO2 capture. This will make post-combustion CaL systems 

even more generally applicable and economically attractive for coal-fired power plants. 

 

CONCLUSIONS 

 Ref. Case Case 1 Case 2 
Heat power plant/Heat total 1 0.55 0.53 
Ratio Coal 1 to total coal fed  0.58 0.59 0.57 
Sulfur fed (kgsulfur/GJ) 0.292 0.295 0.290 
Ca/S 3.0 14.0 3.0 
Total flow of limestone  (kg/GJ) 2.74 12.84 2.68 
kg limestone/kg coal total 0.074 0.347 0.073 



 

This work presents a novel process that may have profound implications for the 

viability of all CaL CO2 capture technologies under development in Europe and 

elsewhere, in which circulating fluidized bed technology for coal based-postcombustion 

CO2 capture is used. The process employs a new sorbent reactivation method that is 

able to operate in continuous mode. This is made possible by the incorporation of an 

additional reactor to recarbonate already carbonated particles of CaO. This allows the 

average CO2 carrying capacity of CaO particles to be maintained between 0.15-0.2, 

which is more than two times higher than the residual carrying capacity of the same 

particles without the recarbonation step.  

In the new conditions, the net consumption of limestone in can be drastically reduced 

and may even approach zero since the residue from the Ca-loop (sintered CaO) may 

serve to capture SO2 in the existing power plant with desulfurization. In this case, the 

CaL process can be specially designed to produce a purge of solids large enough to 

satisfy the power plant’s desulfurization requirements. It has been shown that the make-

up flow of limestone can be as low as 0.07 kg limestone/kg coal. A significant reduction 

in energy consumption can therefore be expected due to the reduced amount of fresh 

limestone required by the system and the direct reduction of coal and oxygen 

consumption. In view of the low reaction times required for the recarbonation step (of 

the order of a few minutes), a feasible compact reactor could be designed and integrated 

into already existing process schemes for calcium looping systems. 
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