Sperm ultrastructure of the deep sea hydrothermal vent octopod *Vulcanoctopus hydrothermalis*

A. ROURA, A. GUERRA, A. F. GONZÁLEZ, S. PASCUAL

Instituto de Investigaciones Marinas. CSIC. Eduardo Cabello 6, 36208 Vigo, Spain
TEL: (+34) 986 231 930. FAX: (+34) 986 292 762
Corresponding author: aroura@iim.csic.es

Running Title: Sperm ultrastructure of *Vulcanoctopus hydrothermalis*

ABSTRACT

Sperm ultrastructure of the deep sea hydrothermal vent octopod *Vulcanoctopus hydrothermalis* has been carried out by electron microscopy. Spermatozoa of this species have the shortest head observed so far in octopodids. The acrosome possesses a helix with six gyres and the nucleus is short and wide. Noteworthy features along the nucleus are the regularly disposed dense bands of cytoplasm, which haven’t been observed before in octopodids. The nuclear fossa is very short and wavy. Mitochondrial sheath has ten elongated mitochondria running parallel to the axoneme-coarse fibers complex (ACF). Sperm morphology of *Vulcanoctopus* is herein discussed considering the new incirrate octopod taxonomy.

KEY WORDS: sperm, ultrastructure, *Vulcanoctopus hydrothermalis*, incirrate octopod, taxonomy.
INTRODUCTION

Vulcanoctopus hydrothermalis González & Guerra 1998 is a recently described deep water species inhabiting hydrothermal vents. There are few studies dealing with this species, which are mainly centred on its description (González et al., 1998, 2002, 2008), behaviour (Rocha et al., 2002; Voight, 2008) and ecology (Voight, 2005). Considering anatomical, biogeographical and ecological reasons it was suggested that the most suitable octopod ancestor of *V. hydrothermalis* would be a *Benthoctopus* Grimpe, 1921 or *Bathypolypus* Grimpe, 1921 species (González et al., 2008). This hypothesis was confirmed by a recent study centred in the evolutionary relationships between *Vulcanoctopus* and *Benthoctopus* (Strugnell et al., 2009a). Genetic data provide evidences that *V. hydrothermalis* should be placed within the genus *Benthoctopus*. However this genus has much controversy because, as first noted by Voss and Pearcy (1990) and confirmed by the revision of Muus (2002), the type species of *Benthoctopus* (*Octopus piscatorium* Verrill, 1879) is in fact a junior synonym of *Bathypolypus bairdii* (Verril 1873). For this reason, *Benthoctopus* is an unavailable name (*nomen nudum*), and in agreement with the rules of the International Code of Zoological Nomenclature, *Vulcanoctopus* should be considered a junior synonym of this genus. Nevertheless, aware of this fact and in connection with the description of five new species of this genus, Voss and Pearcy (1990) plead for the preservation of the name of *Benthoctopus*, which at present includes 20 species worldwide (Sweeney and Roper, 1998). To conserve that generic name, a proposed conservation should be submitted to the International Commission of Zoological Nomenclature. However, until present this has not been done, but this genus was considered valid in the current revision of the state of the octopus taxonomy by Norman and Hochberg (2005).
Depending if sucker seriation was biserial or uniserial, deep-sea incirrate octopods without ink sac were split into the subfamilies Bathypolypodinae and Graneledoninae, respectively (Voss 1988a, b). According to this subdivision and owing to the fact that *Vulcanoctopus* has biserial suckers, it should be placed within the subfamily Bathypolypodinae. Nevertheless, Strugnell *et al.* (2009b) showed that morphological characters used to subdivide the Octopodidae (Voss, 1988a) do not reflect evolutionary history and concluded that the erected subfamilies based on these characters are artificial. Based on molecular analysis, Strugnell *et al.* (2009b) proposed to divide the order Octopoda Leach, 1818 into six families: Octopodidae, Enteroctopodidae, Amphitretidae, Eledonidae, Bathypolypodidae and Graneledonidae. Interestingly, they found that *Enteroctopus, Benthoctopus* and *Vulcanoctopus* fall within the same monophyletic group constituting the Enteroctopodidae.

Sperm morphology has provided important clues defining taxonomic position and phylogenetic relationships between many groups of molluscs including cephalopods (Franzén, 1955; Hou and Maxell, 1992; Healy, 1988, 1989, 1990a, b, 1993). Sperm morphology from the Octopodidea studied to date has been centred in the families Octopodidae and Eledonidae (Galangau and Tuzet, 1968a, b; Longo and Anderson, 1970; Maxwell, 1974; Martin *et al.*, 1970; Healy, 1989; Selmi, 1996; Ribes *et al.*, 2002; Zhu *et al.*, 2005). In order to recognize the different sperm morphologies within the Octopodidea, Roura *et al.* (2009a, b) have described the sperm morphology of specimens from the families Bathypolypodidae and Graneledonidae.

The aim of this work is to describe the mature sperm morphology of *V. hydrothermalis*, and collect data for a complete comparison within the Octopoda. Furthermore, its taxonomic position within the incirrate octopods is discussed.
MATERIAL AND METHODS

The animals were collected during the French cruise HOPE 99 from 1-21 May 1999, at 2631 m depth, in a hydrothermal vent site named Genesis, located at the East Pacific Rise (12°48.7'N, 103°56.4W). The specimens were fixed in formaldehyde (4% buffered in sea water) for 24 hours and then preserved in 70% ethanol. Spermatophores were extracted from two mature males (44.3 and 45.8 mm mantle length with 40 and 24 spermatophores, respectively).

For transmission electron microscopy (TEM), sections of spermatophores were fixed in 3.0% glutaraldehyde in 0.2 M sodium cacodylate buffer, pH 7.2 for 12 h at 4°C, washed in the same buffer for 4 h at 4°C and then post-fixed in buffered 2.0% osmium tetroxide for 4 h at the same temperature. After dehydration in a graded ethanol series, the fragments were embedded in Epon, sectioned with diamond knife, double-stained with uranyl acetate and lead citrate, and observed in a JEOL 100CXII TEM operated at 80 kV.

Spermatozoa measurements were taken using the imaging data processor NIS-Elements D 2.30. In order to describe the helicoidal structure of the acrosome we measured the distance between spires in 9 acrosomes of both specimens. The distance between spires was compared with the number of spires using simple linear regression.

RESULTS

Measurements made to both animals are summarized in Table 1. The acrosome equation that related the separation between gyres (y) with the number of gyres (x) is:

\[y = 1.0361 - 0.0359 \times; r^2=0.9035, p<0.0001, n=45. \]
This equation shows that the separation between gyres decreases in a constant rate towards the anterior tip (Fig. 1). Longitudinal sections of the acrosome show a single helix arranged in 5 gyres around an inner cone, which exhibit dense striations perpendicularly arranged to the long axis of the spermatozoon (Fig. 2a). The basal part of the acrosome has almost the same diameter as the nucleus, decreasing in diameter anteriorly. Between the plasma membrane and the acrosome membrane there is a little space with electron-dense cytoplasm or periacrosomal material (Fig. 2a, b).

The nucleus shows in longitudinal sections regularly disposed dense bands throughout its length (Fig. 2c, arrow heads). As seen in detailed, these bands are composed by electro dense cytoplasm placed between the plasma membrane and the nuclear membrane (no se ve en la plancha Fig. 2e, arrow heads). The neck corresponds to the posterior part of the nucleus, where there exists an indentation called centriolar fossa that accommodates the centriole (Fig. 2d). The nuclear fossa emerges anteriorly from the centriole, while posteriorly emerges the axoneme (Fig. 2c). The nuclear fossa is very short and wavy, constituting slightly more than the tenth part of the nucleus. It is coated by the nuclear membrane (Fig. 2e). The axoneme shows the typical arrangement of nine microtubular doublets surrounding a central doublet (Fig. 2d, arrow head). The anterior part of the axoneme is surrounded by undefined material (Fig. 2d), which become ordered distally into nine well defined coarse fibers (Fig. 2f). The nine coarse fibers together with the axoneme constitute the axoneme-coarse fibers complex (ACF) that is the axis of the flagellum (Fig. 2e).

The flagellum is divided into three parts, middle, principal and end pieces. The anterior part or middle piece (Fig. 2c, e), is composed of enlarged mitochondria running parallel to the ACF. Cross section at this level shows that there are ten mitochondria constituting the mitochondrial sheath (Fig. 2f). Middle piece end is marked by the
annulus, which encircles the ACF (Fig. 2g). Principal piece follows middle piece and shows no mitochondrial sheath. There are not highlighting features at principal and end pieces that differ from other cephalopods.

DISCUSSION

This work describes for the first time the sperm morphology of a hydrothermal vent cephalopod. Among the spermatozoa of the Octopoda studied so far, *V. hydrothermalis* acrosome arrangement resembles those present in the families Graneledonidae (Roura et al., in press) and Octopodidae (Galangau and Tuzet, 1968; Longo and Anderson, 1970; Healy, 1989; Zhu et al., 2005), in contrast with the double helix arrangement showed in Bathypolypodidae (Roura et al., in press), and the totally torsioned acrosome of Eledonidae (Maxwell, 1974; Selmi, 1996; Ribes et al., 2002). However, within the Octopodidae, there exists a notable plasticity related with the acrosome arrangement. While the number of gyres in *Octopus vulgaris* acrosome ranges between three and four (Galangau and Tuzet, 1969; Healy, 1989; Ribes et al., 2002), it increases in *O. tankahkeei* up to nine gyres (Zhu et al., 2005; Li et al., in press) and reaches up to thirteen in *O. bimaculatus* (Longo and Anderson, 1970). The presence of the equidistant striations perpendicularly disposed along the acrosome of *V. hydrothermalis* reinforces the hypothesis of Selmi (1996), who indicated that these striations are a peculiarity of octopod spermatozoa.

One of the most remarkable features of *V. hydrothermalis* mature sperm is the presence of dense periodic accumulations along its nucleus, a character that has not been described before in cephalopod sperm morphology. *Vulcanoctopus* has the smallest nucleus among the Octopoda. Nuclear length gets this species closer to those found in
Octopodidae (Galangau and Tuzet, 1968; Longo and Anderson, 1970; Martin et al.,
1970; Healy, 1989; Zhu et al., 2005). On the contrary, large nucleus presents in
Bathypolypodidae (Roura et al., in press), Graneledonidae (Roura et al., in press) and
Eledonidae (Maxwell, 1974; Selmi, 1996, Ribes et al., 2002) distance *Vulcanoctopus*
sperm from these subfamilies.

Vulcanoctopus nuclear fossa becomes a useful morphological character in order
to place this species in their correct family. Although features of the acrosome and
nucleus seems to place *Vulcanoctopus* among the Octopodidae, nuclear fossa of
Octopus species is wide and large (Galangau and Tuzet, 1968; Longo and Anderson,
1970; Healy, 1989; Zhu et al., 2005), while in *Vulcanoctopus* is thin and short. The
family that shares this peculiar nuclear fossa is Eledonidae, where the nuclear fossa is
composed of some microtubules immersed in a plug of very short dense material (Selmi,
1996). Nevertheless, it is quite unlikely that *Vulcanoctopus* belongs to Eledoninae, due
to the unmistakable differences in the acrosome and nucleus arrangement.

Because *Vulcanoctopus* has biserial sucker seriation it should be assigned to the
subfamily Bathypolypodinae (Voss, 1988a, b). However, as explained before, recent
molecular studies proved that the sucker seriation is a taxonomic invalid character
(Strugnell et al., 2009b). Our study clearly shows that the sperm morphology of
Bathypolypus species differs from that of *Vulcanoctopus*. Therefore, according to the
sperm morphology *Vulcanoctopus* does not belong to the Bathypolypodinae, which
agrees with the results found by Strugnell *et al.* (2009a, b)

Despite it was made using light microscopy, it is important to underline that the
work of Martin et al. (1970) with *Octopus dofleini* (Wulker, 1910) shows spermatozoa
that resemble those found in *Vulcanoctopus*, with small nucleus and an acrosome with
few gyres. After the revisions of Hochberg (1998), the former species is now placed in
the genus *Enteroctopus* Rochebrune and Mabille, 1889. For this reason, *O. dofleini* does not far belong to the family Octopodidae, but to the recently established family *Enteroctopodidae* (Strugnell et al., 2009b). Thus, *V. hydrothermalis* sperm is similar to that of the *Enteroctopodidae*. This reinforces the new arising taxonomy suggested by Strugnell et al. (2009b), and even more, gives worth to the sperm morphology as a taxonomical character, very useful in resolving taxonomic position in species inquirendae and nomina dubida, or where genetic studies cannot be applied (i.e. formalin fixed collection specimens). However this should be considered cautiously, until electron microscopy of other specimens from the *Enteroctopodidae* (such as *Enteroctopus* or *Benthoctopus*) will be carried out.

ACKNOWLEDGEMENTS

We are indebted to all the participants of the cruise HOPE 99. We thank Jesús Méndez and Inés Pazos (CACTI, University of Vigo) for their technical support. The first author was granted by an Introduction to Research and JAE pre-doctoral fellowships (CSIC).

LITERATURE CITED

Figure legends

Fig. 1. – Plot of the distance between gyres (µm) against number of gyres measured from 9 acrosomes.

![Graph showing distance between gyres](image)

Fig. 2. a. Acrosome longitudinal section of *Vulcanoctopus hydrothermalis*, showing the periodic striations along its length. b. Cross section of the acrosome showing the periacrosomal material placed between the plasma membrane and the acrosome membrane. c. Longitudinal section of the spermatozoon showing the acrosome, nucleus and middle piece. Arrow heads: electro-dense bands of cytoplasm along the nucleus. d. Nucleus cross section at the neck level, showing the undefined coarse fibers and the central microtubular doublet (arrow head). e. Longitudinal section through the neck and middle piece, showing the small nuclear fossa and the insertion of the tail. Arrow heads: electro-dense bands of cytoplasm. f. Middle piece cross section. g. Annulus cross section. Abbreviations: Ac, acrosome; AM, acrosome membrane; ACF, axoneme-coarse fibres complex; An, annulus; Ax, axoneme; Ce, centriole; CF, centriolar fossa; Cr,
chromatin; CFi, coarse fibers; MP, middle piece; M, mitochondria; NF, nuclear fossa; NM, nuclear membrane; N, nucleus; PA, periacrosomal material; PM, plasma membrane. Scale bars: a = 1 µm; b = 100 nm; c = 1 µm; d = 200 nm; e = 400 nm; f = 100 nm; g = 100 nm.
<table>
<thead>
<tr>
<th>Measures</th>
<th>V. hydrothermalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head length 1</td>
<td>15.62</td>
</tr>
<tr>
<td>Acrosome (Acr.) length</td>
<td>5.68 ± 0.08 (n=4)</td>
</tr>
<tr>
<td>Acr. Pitch 2</td>
<td>0.88</td>
</tr>
<tr>
<td>Acr. Width</td>
<td>0.91 ± 0.02 (n=8)</td>
</tr>
<tr>
<td>Acr. striation separation</td>
<td>54.66 ± 1.81 nm (n=18)</td>
</tr>
<tr>
<td>Nucleus length</td>
<td>9.94 ± 0.02 (n=5)</td>
</tr>
<tr>
<td>Nucleus width</td>
<td>1.00 ± 0.10 (n=19)</td>
</tr>
<tr>
<td>Nuclear fossa length</td>
<td>1.21 ± 0.04 (n=6)</td>
</tr>
<tr>
<td>Neck length</td>
<td>0.83 ± 0.01 (n=19)</td>
</tr>
<tr>
<td>Neck width</td>
<td>0.85 ± 0.02 (n=7)</td>
</tr>
<tr>
<td>Middle piece length</td>
<td>5.80 ± 0.20 (n=4)</td>
</tr>
<tr>
<td>Middle piece width</td>
<td>0.46 ± 0.02 (n=8)</td>
</tr>
<tr>
<td>Annulus width</td>
<td>0.65 ± 0.02 (n=6)</td>
</tr>
<tr>
<td>Principal piece diameter</td>
<td>0.36 ± 0.01 (n=10)</td>
</tr>
</tbody>
</table>

1 Acrosome length + Nucleus length

2 Number of spires/acrosome length