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Analytical description of spectral hole-burning effects
in active semiconductors
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An analytical description of the effects of spectral hole burning on the optical properties of active semiconduc-
tor materials is developed for fields that are slow compared to intraband relaxation times. Nonlinear gain
compression and four-wave mixing effects are discussed. © 2002 Optical Society of America
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Active semiconductor devices exhibit strong optical
nonlinearities because of their sensitivity to light
fields. The optical power modif ies both the total
carrier density and its distribution over the energy
bands, thereby changing the gain and the refractive
index in the active region. These ultrafast opti-
cal nonlinearities may allow for eff icient all-optical
signal processing in wavelength-division multiplexed
networks; actually, all-optical wavelength conversion
of the signal, data-format translation, and add–drop
functionalities have been demonstrated by use of semi-
conductor optical amplif iers1,2 by means of cross-gain
modulation,3 cross-phase modulation,4 or four-wave
mixing5 (FWM).

The modeling of these processes requires a proper
description of the coupling between the active semi-
conductor material and the optical f ield, and spectral
hole burning (SHB) should be considered because
relatively strong optical fields are commonplace, espe-
cially in pulsed operation. A rigorous approach to the
interaction between a semiconductor material and an
optical f ield would be based on the microscopic semi-
conductor Bloch equations,6 which incorporate the full
dynamics of each electronic state including many-body
effects. Such a model offers a satisfactory descrip-
tion of the material properties, although it is highly
complex, thus requiring intensive numerical computa-
tion, which renders it impractical for device analysis
and modeling. For these reasons, the density-
matrix formalism is often used in calculations of
the saturated gain and refractive-index spectra from
the electronic structure of the semiconductor,7 – 10

but it is often assumed that the field consists of a
saturating pump plus a weak probe, and a perturba-
tive expansion in the probe amplitude is invoked to
describe SHB.7 – 9,11 In this framework, an important
many-body effect (bandgap renormalization) can be
phenomenologically included by means of a suitable
parameterization of the bandgap energy on the total
carrier density. Another important many-body effect
(Coulomb enhancement of the gain) has proved more
elusive, and nowadays no such parameterization is
available.

In this Letter I develop an approximation to the opti-
cal response of the medium that describes its frequency
and its carrier-density dependence while taking
0146-9592/02/211923-03$15.00/0
into account SHB for arbitrary f ield amplitudes.
This approximation is based on the field’s evolving
slowly compared to intraband relaxation, whose
characteristic time is T � 0.1 ps. Hence it is valid
for analyzing dynamics on longer time scales, of the
order of picoseconds; thus optical fields with a spectral
width of as much as 1 THz, still of significance for the
present level of the technology, can be considered.

In the presence of an optical f ield E �
A�t�exp�2iVt� 1 c.c., whose amplitude A�t� evolves
slowly compared to optical frequency V, the intraband
electron and hole distributions are given, in the
rotating-wave approximation, by12
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where pk is the electron–hole coherence. Gk �
gk 1 i�vk 2 V� describes the natural width,
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nant frequency of the electronic transition within
the relaxation time approximation, which allows for
an analytical treatment although it leads to some
distortion of the gain spectrum.6,13 In Eqs. (1)–(3),
gk � mk�h̄ is the coupling strength, mk is the tran-
sition matrix element, and nk and hk are the Fermi
quasi-equilibrium distributions for electrons and
holes, respectively, which are approached at a rate
tk,n�h�. The formal solution for pk reads as
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Assuming that the field varies little over the slowest
intraband relaxation time, the lowest-order [in tk,n�h�]
© 2002 Optical Society of America
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Padé approximantal for pk can be found by iteration
(see, e.g., Ref. 6, p. 90), and it reads as

pk�t� � gkA�t�
�nk 1 hk 2 1� �V 2 vk 2 igk�

�V 2 vk�2 1 gk
2 1 gk

2ekjA�t�j2
, (5)

where ek 	 2gk
2�tk,n 1 tk,h�gk

21. Equation (5) recov-
ers the exact solution of a two-level system interacting
with a monochromatic f ield,11 and it remains valid as
long as the evolution of the f ield is much slower than
the slowest intraband relaxation rate, i.e., for f ields
with a spectral width below 1 THz, because te � 150 fs,
th � 50 fs. The deviation from the quasi-Fermi
distribution appears in pk through the field-
dependent broadening of each optical transition
as given by ekjAj2. Thus for quasi-monochromatic
fields SHB leads to power-induced saturation of the
gain and the refractive index. For fields with several
optical frequencies, FWM occurs because pk displays
frequency components that were originally not present
in A�t� and that arise from the beat notes in jA�t�j2
even if the total carrier density does not exhibit them.

The total material polarization density induced by
the field is P � B�t�exp�2iVt� 1 c.c., where B�t� �
V21

P
k gkpk�t�, V is the volume of the crystal, and the

summation runs over all electronic states. In general,
such a summation cannot be performed analytically
because (i) the transition energies and dipole moment
elements of realistic band structures have a compli-
cated dependence on k and (ii) the Fermi–Dirac dis-
tributions for the electrons and holes within the bands
do not allow for analytical summation. In what fol-
lows, I consider the simplest case of an intrinsic quan-
tum well (QW) in which only one electron and one hole
band, both parabolic with effective masses mc�v�, inter-
act with the optical field; this situation quite closely
corresponds to that of narrow, strongly compressively
strained QWs. Moreover, I assume that mk, tk,n, and
tk,h are constant along the band; hence
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where L�t� � �1 1 ejA�t�j2�1�2, W is the thickness of the
QW, m � �mc

21 1 mv
21�21 is the reduced mass of the

electron–hole pair, b is the sum of the energy intervals
covered by the conduction and valence bands normal-
ized to the transition width, and u 	 �h̄V 2 Et���h̄g�
is the difference between the photon energy and the
(renormalized) bandgap energy scaled to the natural
width of the transitions. Bandgap renormalization
is phenomenologically included as Et � h̄V0 2 sN1�3.
Finally, Fj
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�j � c, v� denotes the Fermi–Dirac integral of order
n for the conduction (valence) band, where ac�v� �
�h̄g���KBT � �m�mc�v��, KB is Boltzmann’s constant, T
is the temperature, xc�v� � �mc�v��m� �F c�v��h̄g�, and
the quasi-Fermi levels Fc�v� are measured from the
corresponding band edges and linked to the carrier
density through N � �mg���pWh̄�Fj

�0�.
In the degenerate limit, Fj

�n� 
 xj
n11��n 1 1�; hence

f �t� �
mm2

pWh̄2

Ω
22 ln

∑
1 2

D
u 1 iL�t�

∏

1 ln
∑
1 2

b
u 1 iL�t�

∏æ
, (9)

where D � �pWh̄���mg�N 	 N�Nt is the scaled car-
rier density. In the absence of SHB, L�t� � 1, and
f �t� coincides with the optical susceptibility of the QW
medium14; in the saturated case, the optical response
is found by direct substitution of Eq. (9) into Eq. (6).

For a f ield with a single optical frequency, one
can approximately determine the gain (but not the
refractive-index change) even in the nondegenerate
limit by considering that the width of each electronic
transition is much less than the thermal energy
(typically, h̄g � 6 meV, whereas at room temperature
KBT � 25 meV). In this case, from the imaginary
part of B�t���e0A�t�� in Eq. (6) it is found that
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Both now and in the degenerate limit it is found that
the gain is compressed according to L � �1 1 ejAj2�1�2;
typically, m � 10228 C, so the gain-compression co-
efficient (expressed as the inverse of the photon
density) is e � 10217 cm3, in agreement with the com-
monly measured values of this parameter.15 The same
functional dependence for nonlinear gain compression
as that which is due to SHB in semiconductor media
was previously found by Agrawal.16 In the present
treatment, however, no separation is made between the
linear and the nonlinear parts of the gain, thus allow-
ing a simple analytical approximation to be deduced
not only for the nonlinear gain coefficient but also
for the frequency dependence of the saturated gain
spectrum.

Figure 1 displays the gain as a function of the
optical frequency of a quasi-monochromatic field for
two different carrier densities in the active region,
assuming a temperature of 350 K. Two photon
densities are considered, ejAj2 � 0 (solid curves) and
ejA2j � 0.1 (dashed curves). It is clearly shown that,
as the carrier density is increased, the gain spectrum
widens and blueshifts because of band filling, which is
partially compensated for by bandgap renormalization.
Moreover, for a constant carrier density the material
gain spectrum f lattens as the optical power level is
increased. The transparency level, determined by the
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Fig. 1. Gain spectrum at T � 350 K for two carrier densi-
ties, N � 9Nt (lower pair of curves) and N � 12Nt (upper
curves) for photon densities ejAj2 � 0 (solid curves) and
ejAj2 � 0.1 (dashed curves). Unsaturated transparency,
N � 5Nt.

Fig. 2. Spectrum of the material response in the degen-
erate limit under pulsed conditions (see text for details).

quasi-Fermi level separation of electrons and holes,
sets the crossing point for the curves that correspond
to various optical powers. For optical frequencies
between this level and the renormalized bandgap
energy, the gain is depleted as a result of stimulated
emission induced by the optical field, whereas for the
frequencies above this level the optical f ield produces
a partial bleaching of the absorption.

Figure 2 shows, in the degenerate limit and for
D � 3, the power spectrum of the material response
to a cw field of amplitude Ecw � 0.1e21�2 whose
frequency corresponds to the maximum of the linear
gain superimposed upon a Gaussian optical pulse
of �75-ps full width at half-maximum, amplitude
Epulse � 0.01e21�2, and detuned 200 GHz to the blue
of the cw beam. Clear FWM sidebands are observed
that arise solely from intraband dynamics, inasmuch
as the carrier density is constant. In a semiconductor
optical amplif ier, for which the carrier density may
have an inhomogeneous distribution and exhibit the
beat notes of the various f ield components, additional
FWM contributions may occur.

In summary, I have presented an analytical approxi-
mation of the effects of spectral hole burning in ac-
tive semiconductor media by strong fields that are
slow compared to intraband dynamics. The sim-
plest case of a quantum well system with only one
electron and one hole band, both parabolic, has been
discussed, and the approximation can readily be
extended to multiple bands or bulk media. The
approximation presented provides a numerically effi-
cient way of describing gain saturation and four-wave
mixing in the optical response of a medium while
maintaining its dependence on carrier density and
wavelength.

I acknowledge many helpful discussions with I. Es-
quivias and Jorge R. Tredicce. I also acknowledge
financial support from Ministerio de Ciencia y Tec-
nología and the European Commission under projects
TIC99-0645 VISTA HP-TRN BFM2000-1108.

References

1. See, e.g., M. N. Zervas, A. E. Willner, and S. Sasaki,
eds., Optical Amplifiers and Their Applications, Vol. 16
of OSA Trends in Optics and Photonics Series (Optical
Society of America, Washington, D.C., 1997).

2. G. Guekos, ed., Photonics Devices for Telecommunica-
tions (Springer-Verlag, Berlin, 1998).

3. J. M. Wiesenfeld, B. Glance, J. S. Perino, and A. H.
Gnauck, IEEE Photon. Technol. Lett. 5, 1300 (1993).

4. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke
Danielsen, and K. E. Stubkjaer, J. Lightwave Technol.
14, 942 (1996).

5. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A.
Mathur, and K. J. Vahala, IEEE J. Sel. Top. Quantum
Electron. 3, 1146 (1997).

6. W. W. Chow and S. W. Koch, Semiconductor-Laser
Fundamentals. Physics of the Gain Materials
(Springer-Verlag, Berlin, 1999).

7. J. Mark and J. Moerk, Appl. Phys. Lett. 61, 2281
(1992).

8. J. Mark and J. Moerk, Proc. SPIE 2399, 146 (1995).
9. A. Uskov, J. Mark, and J. Moerk, IEEE J. Quantum

Electron. 30, 1769 (1994).
10. R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G.

Guekos, IEEE J. Quantum Electron. 36, 1476 (2000).
11. S. Haroche and F. Hartmann, Phys. Rev. A 6, 1280

(1972).
12. B. Zhao and A. Yariv, in Semiconductor Lasers I,

E. Kapon, ed. (Academic, San Diego, Calif., 1999),
Chap. 1, and references therein.

13. P. M. Enders, IEEE J. Quantum Electron. 33, 580
(1997).

14. S. Balle, Phys. Rev. A 57, 1304 (1998).
15. See, e.g., R. Nagarajan and J. E. Bowers, in Semicon-

ductor Lasers I, E. Kapon, ed. (Academic, San Diego,
Calif., 1999), Chap. 3, and references therein.

16. G. P. Agrawal, J. Appl. Phys. 63, 1232 (1988).


