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Abstract 18 

The endocrine regulation of gametogenesis, and particularly the roles of gonadotropins, is still 19 

poorly understood in teleost fish. This study aimed to investigate transcript levels of both 20 

gonadotropin receptors (FSHR and LHR) during an entire reproductive cycle in male and 21 

female sea bass (Dicentrarchus labrax). To have a more comprehensive understanding of 22 

how different key factors interact to control sea bass gonadal function, changes in the 23 

transcript abundance of two important steroidogenic enzymes, P450 11β-hydroxylase 24 

(CYP11B1) and P450 aromatase (CYP19A1), and the steroidogenic acute regulatory protein 25 

(StAR), were also studied. These expression profiles were analysed in relation to changes in 26 

the plasma levels of important reproductive hormones and histological data. Expression of the 27 

FSHR was connected with early stages of gonadal development, but also with the 28 

spermiation/ maturation-ovulation periods. The expression profile of the LHR seen in both 29 

sexes supports the involvement of LH in the regulation of the final stages of gamete 30 

maturation and spermiation/ ovulation. In both sexes StAR expression was strongly correlated 31 

with LHR expression. In females high magnitude increments of StAR expression levels were 32 

observed during the maturation-ovulation stage. In males, gonadotropin receptors and 33 

CYP11B1 mRNA levels were found to be correlated. In females, the expression profiles of 34 

FSHR and CYP19A1 and the changes in plasma estradiol (E2) indicate that the follicular 35 

production of E2 could be under control of FSH through the regulation of aromatase 36 

expression. This study supports the idea that FSH and LH may have different roles in the 37 

control of sea bass gonadal function.  38 

 39 

Keywords: Follicle-stimulating hormone receptor; luteinizing hormone receptor; 40 

gametogenesis; P450 11β-hydroxylase; P450 aromatase; teleost fish. 41 
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Introduction 42 

In teleost fish, as in mammals, gametogenesis is regulated by the interplay of systemic and 43 

intragonadal factors and the importance of each type of regulation varies depending on the 44 

developmental stage of the gonad (Patiño and Sullivan, 2002; Schulz and Miura, 2002). The 45 

pituitary-derived gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone 46 

(LH) are primary mediators of gonadal steroidogenesis and gametogenesis. They bind and 47 

activate specific receptors (FSH receptor (FSHR) and LH receptor (LHR)), present on the 48 

surface of gonadal somatic cells, regulating the expression and activity of key steroidogenic 49 

enzymes (Themmen and Huhtaniemi, 2000). Although deeply studied in mammals, the 50 

precise function of each gonadotropin in teleosts is still largely unknown (Swanson et al., 51 

2003). In the salmonid model, complementary functions of the gonadotropins were suggested 52 

by assessment of their transcript and plasma levels. FSH is considered to be involved in the 53 

initiation and early stages of gametogenesis, such as vitellogenesis and spermatogenesis, to 54 

some extent through the synthesis of estradiol-17β (E2) and 11-ketotestosterone (11-KT), 55 

respectively. LH is linked to final maturation and ovulation/ spermiation, in part by 56 

stimulating the production of maturation inducing hormones (MIHs, the progestins 17α,20β-57 

dihydroxy-4-pregnen-3-one (17,20βP) and 17α,20β,21-trihydroxy-4-pregnen-3-one (20βS)) 58 

(Nagahama, 1994; Swanson et al., 2003).  59 

Synthesis of steroids involves a complex cascade of oxidative enzymes that convert 60 

cholesterol into different functional steroids. The cytochrome P450 11β-hydroxylase, encoded 61 

by the CYP11B1 gene is necessary for the final steps of the synthesis of 11-KT (Jiang et al. 62 

1996) whereas cytochrome P450 aromatase (P450arom, encoded by the CYP19A1 gene), 63 

catalyzes the conversion of testosterone (T) to estradiol (E2) (Simpson et al. 1994). The 64 

cDNAs encoding these cytochromes have been cloned and characterized in several fish 65 

species including the sea bass (Dicentrarchus labrax L.) (Socorro et al., 2007; Dalla Valle et 66 
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al., 2002). Nevertheless, their expression during gametogenesis of this Perciform has not yet 67 

been investigated.  68 

In teleosts, final gamete maturation is initiated by a rapid shift from the synthesis of androgen/ 69 

estrogen to the synthesis of MIHs (Nahahama, 1994). This steroidogenic shift is typically 70 

accompanied by an increase in steroid synthesis. Biosynthesis of steroid hormones has an 71 

acute and a chronic hormonal regulation. Whereas chronic, long-term regulation of 72 

steroidogenic capacity involves increased transcription/ translation of the genes encoding 73 

steroidogenic enzymes, the acute regulation of steroidogenesis depends on cholesterol 74 

transport into the mitochondria (Miller, 1988; Stocco and Clark, 1996). In mammals, it has 75 

been proven that this transport is mediated by the steroidogenic acute regulatory (StAR) 76 

protein (Manna and Stocco, 2005). In addition there is evidence of a positive regulation of 77 

StAR expression by tropic hormones such as FSH and LH in granulosa cells (Balasubramanian 78 

et al., 1997; Sekar et al., 2000) and by LH in Leydig cells (Manna et al., 1999). 79 

As mentioned above, most of the available information regarding physiological aspects of fish 80 

gonadotropins refers to salmonid species whose germ cells develop in a synchronous fashion. 81 

The fish species selected for this study is the European sea bass that presents a group-82 

synchronous type of ovarian development (successive clutches of germ cells that will mature 83 

and be spawned are recruited from a population of vitellogenic oocytes), producing 3-4 84 

consecutive spawns during a 1-2 months spawning period that is repeated once a year during 85 

the winter (Asturiano et al., 2000). It is then difficult the extrapolation of salmonid findings to 86 

sea bass (or other fish with a non-synchronous type of gonadal development). Contrary to 87 

what was described for salmonids (reviewed in Swanson et al., 2003), the expression of the 88 

gonadotropin subunits during the reproductive cycle of male sea bass shows overlapping 89 

profiles, suggesting that both hormones could be involved in the control of all stages of 90 

gonadal development (Mateos et al., 2003). 91 
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Recently, we have described the molecular characterization of sea bass gonadotropin 92 

receptors (Rocha et al., 2007a). In the present study, we aimed to investigate their temporal 93 

expression patterns during an entire reproductive cycle in both male and female sea bass; To 94 

have a more holistic understanding of how different key factors interact to control sea bass 95 

gonadal function, changes in the expression of CYP11B1, CYP19A1 and StAR genes were also 96 

evaluated in relation with sex steroid and LH plasma titers as well as gonadal development. 97 

 98 

Materials and Methods 99 

Animals and sample collection 100 

Male and female sea bass (Dicentrarchus labrax) were obtained from the stock raised at the 101 

Instituto de Acuicultura de Torre la Sal (Castellón, Spain, 40ºN) facilities. They were sampled 102 

monthly during their first sexual maturation period (puberty), which generally occurs during 103 

the second year of life in males and in the third year of life in females. At each sampling 104 

point, 5 fish of each sex were anesthetized, weighed, sized and sacrificed in accordance with 105 

the Spanish legislation concerning the protection of animals used for experimentation or other 106 

scientific purposes. Blood was collected via the caudal vein using heparinized syringes, 107 

centrifuged at 2500 x g for 25 min at 4ºC and the obtained plasma was stored at -20ºC until 108 

analysis. Gonads were dissected, weighed and one portion was flash frozen in liquid nitrogen 109 

and stored at -70ºC. The other portion was fixed by immersion in 4% formaldehyde : 1% 110 

glutaraldehyde (McDowell and Trump 1976), embedded in 2-hydroxyethyl methacrylate 111 

polymer resin (Technovit 7100, Heraeus Kultzer, Germany), sectioned (3µm) and stained 112 

according to Bennett and colleagues (Bennett et al., 1976) for histological analysis. The stages 113 

of testicular development were classified by light microscopy, following previously 114 

established criteria (Begtashi et al., 2004): stage I, the immature stage; stage II, early 115 

recrudescence; stage III, mid recrudescence; stage IV, late recrudescence; stage V, full 116 
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spermiating testes and stage VI, post-spawning. The ovarian stages were as follows: 117 

previtellogenesis (prevtg); early vitellogenesis (evtg); late-vitellogenesis and post-118 

vitellogenesis (lat-postvtg); maturation-ovulation (mat-ovul) and atresia (atre) (Asturiano et 119 

al., 2000). Representative sections showing the different gonadal developmental stages of the 120 

animals used in this work can be found in Rocha et al. (2007b). Gonadosomatic index (GSI) 121 

was determined by the following formula: gonad weight/ body weight x 100. 122 

 123 

Hormone analysis 124 

Plasma E2 was measured by a conventional enzyme immunoassay (EIA), validated for its use 125 

on the sea bass in our laboratory (B Crespo, JM Navas, A Rocha, S Zanuy, M Carrillo, 126 

unpublished). The assay uses a rabbit antiserum against E2 whose specificity is shown in 127 

(Prat et al., 1990). The EIA protocol was similar to that previously developed for testosterone 128 

determination (Rodriguez et al., 2000a). Briefly, plasma was extracted with methanol. The 129 

organic solvent was evaporated and the dry extract was reconstituted in assay buffer (EIA 130 

buffer, Cayman Chemical MI, USA). Each component, E2-acetylcholinesterase tracer, anti-131 

E2 rabbit antiserum and E2 standards (Sigma-Aldrich, Inc) or samples, were added to 96-well 132 

microtiter plates coated with mouse anti-rabbit IgG monoclonal antibodies (Clone RG-16, 133 

Sigma-Aldrich, Inc) and incubated overnight at 37ºC. Then, plates were rinsed and colour 134 

development was performed by addition of Ellman’s reagent and incubation for 2 h at 20ºC in 135 

the dark. Optical density was read at 405 nm using a microplate reader (Bio-Rad microplate 136 

reader model 3550).The sensitivity of the assay was around 0.156 ng/ml (Bi/B0 = 90%).  137 

The plasma levels of 11-KT were determined by an EIA developed for the Siberian sturgeon 138 

(Cuisset et al., 1994) and modified for its use in sea bass (Rodriguez et al., 2005). The assay 139 

sensitivity of 11-KT was 0.0012 ng/ml. Plasma LH levels were measured by a homologous 140 
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competitive ELISA according to (Mateos et al., 2006). The sensitivity of the assay was 0.65 141 

ng/ml. 142 

 143 

Reverse transcription-polymerase chain reaction (RT-PCR) and polymerase chain reaction 144 

Sea bass total RNA was isolated from head kidney using the TRI Reagent (Molecular 145 

Research Center, Inc. Cincinnati, OH) according to the manufacturer’s instructions. For 146 

cDNA synthesis, 4 µg of total RNA were denatured at 65ºC for 5 min in the presence of 100 147 

ng of random hexamers and 1 µl of dNTPs (10 mM each dNTP), and then chilled on ice. RT 148 

was performed at 42ºC for 50 min using Superscript II reverse transcriptase (Invitrogen Corp., 149 

Carlsbad, CA). Protection of mRNA from ribonucleases during the cDNA synthesis was 150 

assured by using 40 units of RNasin (Promega Corp.). The reaction was stopped by heating at 151 

70ºC for 15 min. 152 

In order to obtain a fragment of sea bass StAR cDNA, a PCR was performed using 2 µl of 153 

cDNA and the degenerate primers star1 (5’-154 

CC(T/A)CCTGCTTC(C/T)TGGC(G/T)GG(A/G)-3’) and star2 (5’-155 

GCATCTTGTGTCAGCAGGC(A/G)TG-3) designed to conserved regions of StAR from the 156 

largemouth bass (Micropterus salmoides, GenBank:DQ166820). Thermal cycling was 157 

performed using a touchdown PCR program (Don et al., 1991). The following conditions 158 

were used: an initial denaturation step at 94ºC for 2 min followed by 20 cycles of 94ºC for 30 159 

sec, the highest annealing temperature (70ºC) for 30 sec, and an extension temperature of 160 

72ºC for 30 sec. The annealing temperature was then decreased 0.5ºC per cycle resulting in a 161 

10ºC span. Final extension was a single cycle of 72ºC for 5 min. The PCR product was cloned 162 

into the pGEM-T Easy Vector (Promega Corp.) and sequenced on an automated ABI PRISM 163 

3730 DNA Analyser (Applied Biosystems, Foster City, CA) using the Rhodamine terminator 164 

cycle sequencing kit (Perkin-Elmer Inc., Wellesley, Massachusetts). 165 
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 166 

RNA isolation and reverse transcription for real-time quantitative RT-PCR assays 167 

Sea bass gonadal total RNA was isolated from ∼ 100 mg of frozen tissue using the FastRNA® 168 

Pro Green Kit (Qbiogene Inc., Irvine, CA) and the FastPrep® Instrument (Qbiogene Inc., 169 

Irvine, CA). Purity and concentration of the RNA was verified by spectrophotometry 170 

(GeneQuant, Pharmacia Biotech, Cambridge, England). When starting to extract total RNA 171 

from sea bass ovaries at distinct gonadal stages we observed great differences in its 172 

composition. During previtellogenesis, low molecular weight RNAs were massively 173 

accumulated in the sea bass ovary and declined in amount thereafter (data not shown). To 174 

avoid an inaccurate quantification of RNA samples and potential interferences of these RNAs 175 

with the RT reaction, poly (A)+ enriched RNA, instead of total RNA, was used in the female 176 

seasonal expression study. The Oligotex® mRNA Kit (Qiagen GmbH, Germany) was used to 177 

isolate poly (A)+ mRNA from ∼ 240 µg of ovarian total RNA preparations. The ULTRA 178 

Evolution 384™ (Tecan Group Ltd., Männedorf, Switzerland) fluorescence-based microplate 179 

reader along with the RediPlate™ 96 RiboGreen® RNA Quantitation Kit (Invitrogen - 180 

Molecular Probes, Eugene, OR) were used for poly (A)+ mRNA concentration determination.  181 

RT was performed as described above using 1 µg of total RNA treated with DNase I RNase-182 

free (Ambion, Inc., Austin, TX) or 150 ng of poly (A)+ mRNA. The volume of poly (A)+ 183 

mRNA RTs was then increased to 300 µl. Probes and primers for real-time quantitative RT-184 

PCR assays were designed using the Primer Express software (Applied Biosystems, Inc., 185 

Foster City, CA). All assays were run in triplicate on an iCycler iQ™ (Bio-Rad Laboratories, 186 

Inc.), using 96 well optical plates and default settings. For each 25 µl PCR reaction, 1 µl of 187 

RT reaction was mixed with the corresponding amount of primers and probe (Table 1) in 1 x 188 

ABgene’s Absolute™ QPCR Mix (Advanced Biotechnologies Ltd, Epsom, UK). To correct 189 

for variability in amplification efficiency between different cDNAs, standard curves were 190 
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prepared for the sea bass target genes (FSHR, LHR, StAR, CYP11B1 and CYP19A1) and the 191 

sea bass endogenous reference genes (18S rRNA and elongation factor 1-alpha (Ef1-alpha)). 192 

Ten-fold serial dilutions of known concentrations of the plasmids containing each of the 193 

genes were used. Data were capture and analyzed by the iCycler iQ™ software (version 194 

3.0.6070). Correlation coefficients of the standard curves ranged from 0.99 to 1.00. PCR 195 

efficiencies are shown in Table 1. For each experimental sample, the amount of target and 196 

endogenous reference was determined from the appropriate standard curve.  197 

The expression of the genes of interest was analysed using two separate methods: (a) Raw 198 

arbitrary input amount (non-normalized) and (b) Input amount normalized against a control 199 

gene. The 18S rRNA and Ef1-alpha endogenous genes were tested for their ability to be used 200 

as control genes. They were chosen based on previous studies performed in gonads of other 201 

fish species (e.g., (Kumar et al., 2000; Bobe et al., 2004; Kusakabe et al., 2006) and because 202 

sea bass 28S rRNA and β-actin have already been proved no to be suitable (Halm et al., 2008). 203 

Male data normalization was done by dividing the input amount by the 18S rRNA amount. 204 

Concerning females, the input amount was normalized against adjusted Ef1-alpha values. 205 

This method involves the standardization of expression of the reference gene in each sample 206 

of each month to a randomly chosen “control” group and it has been used in the 207 

characterization of the expression levels of several genes at different stages of ovarian 208 

follicular development in zebrafish (Danio rerio) (Ings and Van Der Kraak, 2006). This is 209 

done by using the following formula according to Billiau et al. (2001): individual value within 210 

a group/(mean value within a group/mean value of control group), where the previtellogenic 211 

stage was chosen as the control group. Data are presented as relative mRNA levels. In males, 212 

the mean of samples in stage VI was set as 1, while in females the mean of samples from 213 

previtellogenesis was the chosen value to be set as 1. 214 
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Further information regarding the adopted strategy for real-time PCR data normalization is 215 

available on Supplementary Methods online 216 

 217 

Data representation and statistical analysis 218 

The data are presented as the mean plus/minus the standard error of the mean (SEM). Gene 219 

expression levels of StAR, LH and 11-KT in males and FSHR in females were analyzed by 220 

one-way ANOVA followed by the Holm-Sidak test. Before the analysis, values were ln-221 

transformed to meet normality and homoscedasticity requirements. Percentage data (GSI) 222 

were arcsine transformed before being used for analysis. Since the remaining data did not 223 

meet the criteria for parametric statistics, the Kruskal-Wallis nonparametric test was used to 224 

compare differences between groups. If differences were found (P<0.05), the Dunn's method 225 

or Tukey test (GSI) were used for multiple comparison tests. The strength of the association 226 

between pairs of parameters (gene expression levels and plasma hormone levels) was 227 

evaluated by calculating the correlation coefficient, r, using the Spearman rank order 228 

correlation nonparametric test. The significance level was adjusted by Bonferroni correction 229 

to reduce type I error. probability level alpha at 0.05. This was calculated by dividing the 230 

alpha level set at 0.05 by the number of comparisons (0.05/6) which means that only p<0.008 231 

were considered significant. All the analyses were conducted using the statistical software 232 

SigmaStat version 3.0 (SYSTAT Software Inc., Richmond, CA). 233 

 234 

Results 235 

Cloning of a partial cDNA of sea bass StAR 236 

A partial 290 bp cDNA for sea bass StAR was amplified to allow the design of specific 237 

primers and a probe for real-time quantitative RT-PCR assays. The obtained sequence 238 
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displayed a 95.7% identity to the largemouth bass StAR. The partial cDNA sequence of sea 239 

bass StAR is available in the GenBank data base under the accession no. EF409994. 240 

 241 

Gonadal development and changes in gonadosomatic index (GSI) 242 

Males sampled during the summer (July-September) were immature (stage I) and their testis 243 

contained mainly A spermatogonia. The first signs of early spermatogenesis (stage II), 244 

characterized by cysts of B spermatogonia and spermatocytes, were seen in animals sampled 245 

in October. In November testes reached stage III, with spermatocytes being the dominant 246 

germ cell type, although few spermatids and B spermatogonia were also visible. In the 247 

following two months, testes were in stage IV. At this stage, spermatocytes and spermatids 248 

were the dominant cell type and spermatozoa were observed. In February and March gonads 249 

progressed into stage V and testis were filled with spermatozoa. At this point, sperm could be 250 

collected by gentle abdominal pressure. Testis from March onwards had no spermatogenic 251 

activity and contained residual spermatozoa (stage VI). Females sampled during summer were 252 

previtellogenic and their ovaries contained oocytes in primary growth phase or in the early 253 

stages of the secondary growth phase. During October and November ovaries were in early 254 

vitellogenesis, presenting oocytes recently recruited into the secondary growth phase 255 

containing numerous yolk granules in a peripheral position and a clear zona radiata. In 256 

December and January, ovaries progressed into late vitellogenesis and post-vitellogenesis, 257 

presenting oocytes at the secondary and tertiary granule stages. At this point, some atresic 258 

oocytes were already present. The maturation-ovulation stage was first observed in females 259 

sampled in January and continued until April although at this point the majority of ovaries 260 

were already in atresia. Ovaries constituted mainly by non-spherical shaped, degenerated 261 

vitellogenic/ post-vitellogenic oocytes which are reabsorbed were seen until June. 262 
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Data collected on the GSI of the fish used in this study are shown in Fig. 1. In both male and 263 

female, the GSI values were low during the summer and early fall (July-October). In males, 264 

the GSI (Fig. 1, A) started to increase in November to reach high levels in December 265 

remaining high during spermatogenesis (II, III, IV) and full spermiation (V) stages. In 266 

females, the GSI (Fig. 1, B) rapidly increased from November on until it peaked in February, 267 

during the maturation-ovulation stage. A progressive decrease of the GSI was then observed 268 

in both sexes from March onwards until low values were reached again. 269 

 270 

Seasonal changes in hormone plasma levels 271 

In order to correlate all the variables used in this study, different hormones were measured in 272 

the plasma of these specific animals, as extrapolation of previous data might be inaccurate. 273 

Plasma 11-KT levels in males started to increase in stage III and peaked in stage IV. These 274 

high levels significantly dropped in full spermiating testis remaining low during post-275 

spawning (Fig. 2, A). Plasma LH levels showed a significant elevation in stage IV that was 276 

maintained until the end of the cycle (Fig. 2, B). 277 

In females, E2 levels gradually increased during early vitellogenesis. They peaked during late 278 

and post-vitellogenesis and then decreased during the maturation/ovulation stage although to 279 

levels not statistically different from the previous stage (Fig. 2, C). During pre- and early 280 

vitellogenesis female plasma LH values remained low. Levels started to increase during late 281 

and post-vitellogenesis and peaked during maturation/ovulation. These levels remained high 282 

during atresia (Fig. 2, D). 283 

 284 

Seasonal changes in 18S rRNA and Ef1-alpha expression levels 285 

The seasonal changes in the expression of the reference genes, 18S rRNA and Ef1-alpha, 286 

during gonadal development in both sea bass male and female are presented in Fig. 3. During 287 
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the sampling period the expression of these genes changed significantly (P <0.01; P≤0.001) in 288 

both sexes. In males, the difference in 18S rRNA expression between the highest (stage III) 289 

and lowest (stage VI) level was lower than threefold (Fig. 3, A). On the other hand, Ef1-alpha 290 

levels were more than fifteen times higher in stage III than in VI (Fig. 3, B). In females, 18S 291 

rRNA levels (measured using total RNA) in late and post-vitellogenesis were approximately 292 

twenty four times higher than the levels in previtellogenesis, and they returned to low levels at 293 

the end of the reproductive cycle (Fig. 3, C). Although with a lower magnitude, Ef1-alpha 294 

expression levels also changed during the female study being almost four times higher in the 295 

first stage of gonadal development than in maturation/ovulation (Fig. 3, D). 296 

 297 

Seasonal changes in FSHR, LHR, StAR, CYP11B1 and CYP19A1 expression levels 298 

Changes in gonadal expression of the five genes of interest during a complete reproductive 299 

cycle were first examined using non-normalized arbitrary input amounts (Fig. 4). In addition, 300 

gene expression was normalized to 18S rRNA (males) and adjusted Ef1-alpha (females). The 301 

expression patterns obtained for all genes were similar to those of non-normalized values 302 

(data not shown), implying that both methods are feasible. To avoid repeating information, 303 

only results from normalized values are described below. 304 

Males  The observed FSHR expression profile across the male reproductive cycle was 305 

bimodal (Fig. 4, A). Levels gradually increased from the immature to early recrudescence 306 

stage followed by a progressive and significant decline during mid and late recrudescence. A 307 

second increase in FSHR mRNA levels was observed in full spermiating males. The 308 

expression patterns of LHR and StAR genes were very similar (Fig. 4, B and C). A slight and 309 

not significant increase was first observed during early recrudescence. Levels decreased 310 

during the mid and late recrudescence stages, peaking in full spermiation. Expression then 311 

decreased to the lowest levels during the post-spawning stage. The expression of CYP11B1 312 
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remained high during the early stages of gonadal development (Fig. 4, D), decreased during 313 

mid recrudescence, and reached significantly low levels at late recrudescence stage. These 314 

low levels were maintained until the end of the reproductive cycle. 315 

Females FSHR expression (Fig.4, E) was very low during previtellogenesis With the 316 

beginning of vitellogenesis, a slight increase of the expression was observed with values 317 

being significantly different form the ones registered in previtellogenesis . During late and 318 

post-vitellogenesis, a boost of expression of approximately twenty five times was observed 319 

with values peaking during the maturation/ovulation stage until atresia, when they 320 

significantly decreased to values similar to the ones in previtellogenesis. LHR expression 321 

(Fig.4, F) remained low and unchanged during pre- and early vitellogenesis rising during late 322 

and post-vitellogenesis and reaching the highest values during the maturation/ovulation stage, 323 

which corresponds approximately to an eightfold expression increment. The expression 324 

sharply decreased during atresia. As in males, the expression pattern of StAR in females (Fig. 325 

4, G) was similar to the LHR one. Expression remained low during pre- and early 326 

vitellogenesis, increased during late and post-vitellogenesis and peaked at 327 

maturation/ovulation. In this case, the expression increment was of one hundred and thirty 328 

four fold. During atresia, levels were low again. The expression of CYP19A1 remained low 329 

before and during early vitellogenesis (Fig. 4, H). Values were the highest in late and post-330 

vitellogenesis after a sevenfold increase, returning to low levels during the remaining of the 331 

cycle (Fig. 4, H). 332 

 333 

Correlation analysis 334 

Correlation analysis of gene expression in males (Table 2, A) identified significant and 335 

positive relationships between changes in FSHR expression and transcript levels of LHR, and 336 
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CYP11B1. Changes in LHR expression were significantly positively correlated with changes 337 

in StAR and CYP11B1 expression. Other correlations were not significant. 338 

In females (Table 2, B), changes in FSHR expression were significantly correlated to LHR, 339 

StAR and CYP19A1 transcript levels. Changes in LHR expression were significantly positively 340 

correlated to those of StAR. Significant positive correlations were found between E2 plasma 341 

levels and the expression of all the analysed genes except for the LHR. Plasma LH levels and 342 

changes in the titers of E2 were also found to increase together. 343 

 344 

Discussion 345 

In this study, we investigated the seasonal expression of the sea bass gonadotropin receptor 346 

genes during the first gonadal maturation in males and females, and searched for relationships 347 

between their expression profiles and those of StAR, CYP11B1, and CYP19A1, and plasma 348 

profiles of essential reproductive hormones. 349 

In male sea bass, both gonadotropin receptors show parallel expression patterns during the 350 

reproductive cycle, with highest expression levels observed during spermiation. In male 351 

yellowtail (Seriola quinqueradiata) were expression profiles of gonadotropin receptors were 352 

studied by Northern blot, FSHR mRNA levels showed an increase during early 353 

spermatogenesis, but opposite to sea bass, transcript levels decreased at spermiation (Rahman 354 

et al., 2003). However, for both species the expression of their FSHRs agrees with the one of 355 

their FSHβ genes, which code for the specific subunit of FSH. In yellowtail, FSHβ expression 356 

decreased in spermiating males, while in sea bass expression of FSHβ increased with the 357 

progression of gonadal growth, reaching a maximum at the initiation of the spermiation 358 

period, and remaining high during all this period (Mateos et al., 2003). Increased expression 359 

of the FSHR during spermiation has also been recently described in the rainbow trout 360 

(Sambroni et al., 2007). 361 
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In fish, as in mammals, FSHR is expressed in Sertoli cells (Miwa et al., 1994; Petersen and 362 

Söder, 2006), although it has been recently demonstrated that Leydig cells also express the 363 

FSHR in Japanese eel (Anguilla japonica) and African catfish (Clarias gariepinus) (Ohta et 364 

al., 2007; Garcia-Lopez et al., 2009). In maturating and adult testis from African catfish and 365 

Nile tilapia (Oreochromis niloticus), Sertoli cell proliferation occurs primarily during 366 

spermatogonial proliferation and ceases in postmeiotic cysts. At the beginning of 367 

spermiogenesis, due to the expansion of cyst volume and the stabilization of Sertoli cell 368 

number per cyst, there is a dilution of Sertoli cells. However, during the spermiogenic process 369 

there is a striking reduction of cyst volume in Nile tilapia testis (Schulz et al., 2005). 370 

Assuming an analogous behaviour for sea bass Sertoli cell proliferation during testicular 371 

development, the progressive increase in FSHR expression observed in stages I and II (Fig. 4, 372 

A) could be related with a proliferation of Sertoli cells, and the decrease of expression in 373 

stages III and IV could be the result of a dilution of somatic cells with respect to germ cells, 374 

rather than a reduction in FSHR transcripts. During spermiation this dilution effect is no 375 

longer observed, resulting in a second increase in the expression levels. Nevertheless, the 376 

decline in FSHR expression during mid recrudescence could also be the result of a transient 377 

transcription downregulation to prevent Sertoli cell overstimulation by FSH (Themmen et al., 378 

1991). Then, the observed enhancement of expression during sea bass spermiation could be 379 

due to an upregulation of FSHR expression, and/or connected with a new proliferation of 380 

Sertoli cells needed for the maintenance of spermatogenesis in several clutches of gametes 381 

present in the testis, since spermiation is associated with the degeneration of at least some of 382 

the Sertoli cells (Billard, 1986; Prisco et al., 2003). 383 

The LHR expression profile in sea bass testis (Fig. 4, B) is consistent with data from 384 

maturating rainbow trout and yellowtail males, showing maximum receptor mRNA levels 385 

during spermiation (Rahman et al., 2003; Kusakabe et al., 2006; Sambroni et al., 2007). 386 
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However, in yellowtail and rainbow trout, according to Kusakabe et al. (2006), receptor 387 

expression steadily increases during testicular maturation, while in sea bass and rainbow trout, 388 

according to Sambroni et al.(2007), LHR mRNA levels were maintained almost constant until 389 

the end of the recrudescence stage. Analysis of LH levels in sea bass plasma (Fig. 2, B) 390 

showed an increase of this hormone during spermatogenesis reaching the highest levels in 391 

spermiation, which is in agreement with the expression profiles of sea bass LHβ (Mateos et 392 

al., 2003) and LHR (Fig. 4, B). These results support the already suggested role of LH in the 393 

regulation of the final stages of fish gamete maturation and spermiation (reviewed in Swanson 394 

et al., 2003). 395 

11-KT is considered to play an important role in stimulating spermatogenesis in several fish 396 

species (Schulz and Miura, 2002) including sea bass (Rodriguez et al., 2000b). The profile of 397 

11-KT obtained in this study (Fig. 2, A) is in accordance with previous results obtained by us 398 

in sea bass (Rodriguez et al., 2000b), with levels increasing during mid recrudescence, and 399 

dropping once spermiation begins. In fish, very little information is available on the specific 400 

roles of FSH and LH in regulating androgen production by the testis. In coho salmon, FSH 401 

and LH were equipotent in stimulating the production of T, 11-KT and the MIH 17,20βP by 402 

testicular tissue in late stages of spermatogenesis, nevertheless the steroidogenic effects of LH 403 

increased as spermatogenesis progressed (Planas and Swanson, 1995). In red seabream, both 404 

FSH and LH stimulated the production of 11-KT in sliced testis of animals in the spawning 405 

season (Kagawa et al., 1998) and in sexually immature cultivated Japanese eel FSH induces 406 

spermatogenesis via stimulation of 11-KT production (Ohta et al., 2007). Recent studies using 407 

in vitro culture of sea bass testis have shown that purified native FSH stimulates 11-KT 408 

secretion in a dose and time dependent manner (Moles et al., 2008). In this study, we did not 409 

find a correlation between 11-KT profile in plasma and sea bass FSHR or CYP11B1 410 

expression; however, the expression profiles of both FSHR and CYP11B1 genes were highly 411 
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and positively correlated (Table 2), suggesting, all together, that FSHR signalling could be 412 

involved in CYP11B1 expression in sea bass. CYP11B1 expression was high during early 413 

gonadal growth, declining in late recrudescence, when 11-KT plasma levels were highest. 414 

This delayed profile of plasma 11-KT with respect to enzyme expression has also been 415 

observed in rainbow trout males (Kusakabe et al. 2006), and could be the result of a mismatch 416 

between expression and activity of the steroidogenic enzyme P450β11. Changes in CYP11B1 417 

transcripts were also found to positively vary together with LHR expression. Thus, further 418 

studies will be needed to understand the action of each gonadotropin in the synthesis of sex 419 

steroids and the specific role of all of them in the spermatogenic process of sea bass.  420 

Interestingly, the quantification of StAR transcripts in sea bass testis (Fig. 4, C) revealed a 421 

profile identical to the one observed for the LHR (Fig. 4, B), what was supported by a 422 

significant positive correlation between both gene mRNA levels (Table 2). These results are 423 

in line with the ones reported in rainbow trout males (Kusakabe et al., 2006). The acute, 424 

steroidogenic effect of LH in mammalian Leydig cells is based on an increased availability of 425 

cholesterol for the mitochondrial P450scc. This is achieved via induction of StAR (Stocco et 426 

al., 2005). Our results indicate that a similar regulation may occur in the sea bass testis. 427 

Like in males, in sea bass females both gonadotropin receptors follow a similar expression 428 

pattern (Fig. 4, E and F). Expression of these genes is strongly positively correlated (Table 2), 429 

although the expression levels of FSHR are remarkably higher than those of LHR (Fig. 4). 430 

Before yolk incorporation, during primary growth (previtellogenesis), both receptors are 431 

expressed at extremely low levels in sea bass ovary. In early vitellogenesis (October), the 432 

expression level of FSHR slightly increased while LHR mRNA levels remained unchanged. 433 

Recent work in channel catfish (Ictalurus punctatus) and zebrafish (Danio rerio) has 434 

suggested that an enhancement in ovarian FSHR expression occurs at the beginning of 435 

vitellogenesis and this upregulation continues through vitellogenesis (Kumar and Trant, 2004; 436 
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Kwok et al., 2005). In coho salmon, FSHR expression remained unchanged during 437 

previtellogenesis and enlargement of expression was only observed with the appearance of 438 

lipid droplets in the oocyte (Campbell et al., 2006). Contrary to what was believed for long 439 

time, recent studies have proved that vitellogenins enter the ovarian follicle at the same time 440 

as cortical alveoli and lipid globules appear (Le Menn et al., 2007). Taken together, these data 441 

suggest that the initial increase of FSHR expression is connected with the start of yolk 442 

proteins uptake, at least in the above mention species. Increases in sea bass ovarian LHR 443 

mRNA levels were only observed when postvitellogenesis began (December). At that stage, 444 

FSHR mRNA levels were already at their maximum. During the maturation-ovulation period, 445 

expression levels of both receptors remained elevated, returning to their basal levels only after 446 

spawning. 447 

Studies on female salmonids, which have a synchronous type of oocyte development, suggest 448 

that secondary oocyte growth is regulated primarily by FSH, whereas LH plays a major role 449 

in regulating final oocyte maturation. Nonetheless, the observed expression pattern of FSHR 450 

in sea bass (Fig. 4, E) involves this receptor (and FSH) also in processes occurring after 451 

secondary oocyte growth. Various studies performed on rainbow trout ovary have shown that 452 

increased FSHR expression is related with high maturational competence (Bobe et al., 2004), 453 

oocyte maturation and ovulation (Sambroni et al., 2007). Regarding sea bass, we consider that 454 

the observed high expression level of FSHR during maturation could be connected with 455 

oocyte growth and is explained by the reproductive strategy of this species. Sea bass ovary 456 

exhibits a group-synchronous type of development, and so, during the maturation-ovulation 457 

stage at least two populations of oocytes can be distinguished at the same time; a fairly 458 

synchronous population of larger oocytes (defined as a clutch) and a more heterogeneous 459 

population of smaller oocytes from which the clutch is recruited (Mayer et al., 1990; 460 

Asturiano et al., 2000). Therefore, the expression of any gene measured at the ovary level 461 
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reflects the average of the existing follicles, including that of growing oocytes that would still 462 

express FSHR. This idea is supported by a previous in situ hybridization study on post-463 

vitellogenic sea bass ovary, which showed a strong expression of FSHR only in the follicular 464 

cells of previtellogenic and vitellogenic oocytes (Rocha et al., 2007a). 465 

The profile of E2 plasma levels observed in this study (Fig. 2, C) is in agreement with 466 

previous works on sea bass (Prat et al., 1990; Mañanós et al., 1997; Asturiano et al., 2000), 467 

with a single annual peak at late vitellogenesis (December) and constant high levels during 468 

the maturation/ovulation period. The maintenance of constant high E2 levels during the entire 469 

maturation/ovulation stage has been attributed to a prolongation of the vitellogenic process, as 470 

vitellogenic oocytes are also present during this stage (Mañanós et al., 1997). 471 

In sea bass ovaries cultured in vitro FSH stimulates the production of E2 (Moles et al., 2008) 472 

and in salmonid fish it was established that FSH influences ovarian P450arom expression and 473 

activity (Montserrat et al., 2004). The positive relationship among sea bass FSHR and 474 

CYP19A1 mRNA levels and E2 plasma profile (Table 2) could indicate that the ovarian 475 

production of E2 in sea bass, as in salmonid fish, would be under the stimulatory effect of 476 

FSH by upregulation of P450arom expression. In mammalian ovaries, FSH, estrogens and 477 

growth factors induce the expression of the LHR in granulosa cells of preovulatory follicles 478 

(Dufau, 1998). It is interesting to note that in the sea bass ovary, the expression levels of the 479 

LHR remained basal until FSHR expression and E2 plasma levels were high (Fig. 2 and 5), 480 

indicating that a similar induction mechanism could occur during late vitellogenesis and post-481 

vitellogenesis in this fish. 482 

In this study, a significant elevation of StAR expression was observed at the end of 483 

vitellogenesis coinciding with an increase in plasma E2 levels. The highest expression values 484 

were observed at the maturation-ovulation stage (Fig. 4, G), when LH plasma levels were 485 

high. In a study performed on individual plasma samples of sea bass, successive elevations of 486 
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plasma E2 levels were observed prior to peaks of the progestins 17,20βP and 20βS (the sea 487 

bass MIHs), which resulted in the maturation/ovulation of different clutches of oocytes 488 

(Asturiano et al., 2002). The shift from estrogen to MIHs synthesis needs both the partial 489 

reworking of the steroidogenic pathway and the rapid delivery of cholesterol substrate, which 490 

requires the StAR protein. Thus, the expression profile of sea bass StAR obtained in this study 491 

is consistent with an important involvement of the coded protein in the synthesis of sea bass 492 

MIHs. 493 

In summary, the present study describes for the first time in a multiple group-synchronous 494 

spawner teleost, the sea bass, the expression profiles of gonadotropin receptors during the first 495 

gonadal recrudescence in males and females. These expression profiles support the 496 

involvement in gonadal growth and final stages of maturation/ovulation of FSHR and LHR 497 

respectively. In addition, the elevated expression of FSHR in spermiation/ovulation could be 498 

due to the group-synchronous nature of sea bass gonadal development, which could require 499 

maintaining FSHR expression in some clutches of developing gametes. All together, the 500 

relation among these profiles, gonadal development, transcript abundance of genes involved 501 

in steroidogenesis and plasma levels of important reproductive hormones intends to draw a 502 

first picture on the role of gonadotropins in sea bass gonadal function, and their relation to sex 503 

steroids. Further in vitro and in vivo studies will be needed to understand how gonadotropins, 504 

sex steroids and other gonadal factors interact to regulate sea bass reproduction.  505 
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Figure Legends 695 

Figure 1 - Changes in the gonadosomatic index (GSI) in male (A) and female (B) sea bass, 696 

during the sampling period. Values represent the mean ± SEM (n = 5 fish/month). The stages 697 

of gonadal development as determined by histology (see Materials and Methods) are 698 

represented by horizontal bars below each graph. Different significance levels are indicated 699 

with different letters above the bars. 700 

 701 

Figure 2 - Changes in plasma levels of 11-KT (A), LH (B and D) and E2 (C) in male and 702 

female sea bass during their first sexual maturation. Data, shown as the mean ± SEM, are 703 

represented by stages of gonadal development as determined by histology (see Materials and 704 

Methods). Males: stage I (n = 19), immature; stage II (n = 6), early recrudescence; stage III (n 705 

= 3), mid recrudescence; stage IV (n= 6), late recrudescence; stage V (n = 10), full 706 

spermiating testes and stage VI (n = 4), post-spawning. Females: prevtg (n = 15), 707 

previtellogenesis; evtg (n = 10), early vitellogenesis; lat-postvtg (n = 7), late-post-708 

vitellogenesis; mat-ovul (n = 14), maturation-ovulation and atre (n= 13), atresia. Different 709 

significance levels are indicated with different letters above the bars. 710 

 711 

Figure 3 - Changes in the amount of 18S rRNA and Ef1-alpha mRNAs in testes (A, B) and 712 

ovaries (C, D) of sea bass sampled during their first sexual maturation. Data, shown as the 713 

mean ± SEM, are represented by stages of gonadal development as determined by histology 714 

(see Materials and Methods). One-way ANOVA was performed. The P value is indicated in 715 

each graphic. 716 

 717 

Figure 4 - Relative changes in expression of FSHR, LHR, StAR, CYP11B1 and CYP19A1 in 718 

male (A, B, C, D) and female (E, F, G, H) sea bass, sampled during their first sexual 719 

maturation. Values, shown as the mean ± SEM, are represented by stages of gonadal 720 

development as determined by histology. Males: stage I (n = 19), immature; stage II (n = 6), 721 

early recrudescence; stage III (n = 3), mid recrudescence; stage IV (n= 6), late recrudescence; 722 

stage V (n = 10), full spermiating testes and stage VI (n = 4), post-spawning. Females: prevtg 723 

(n = 15), previtellogenesis; evtg (n = 10), early vitellogenesis; lat-postvtg (n = 7), late-post-724 

vitellogenesis; mat-ovul (n = 14), maturation-ovulation and atre (n= 13), atresia. Male 725 

expression values are normalized to 18S rRNA and expressed as a proportion of the mean 726 

value in stage VI. Female expression values are normalized to Ef1-alpha, which was adjusted 727 
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to compensate for changes in expression across stages, and expressed as a proportion of the 728 

mean value in the prevtg stage. Statistically significant differences are indicated with different 729 

letters above the bars. 730 
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Figure 1 731 

 732 

 733 
 734 
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Figure 2 735 
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 737 
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Figure 3 738 

 739 

 740 
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Figure 4 741 

 742 

 743 
 744 
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Table 1 Primers and TaqMan™ fluorogenic probesa used in this study

a Forward (fw) and reverse (rv) primers were obtained from Invitrogen Corp. (Carlsbad, CA). 
Fluorogenic probes (pr) were purchased from Operon Biotechnologies GmbH (Cologne, Germany)
b GenBank accession nos. for sea bass genes.
c Amount of primer or probe in the PCR reaction.
d Values represent the average numbers of two, three or five assays.

Primer or 
Probe Sequence (5’3’) nMc

Amplicon 
size; PCR 
efficiencyd

FSHR (AY642113)b

fshr 1074 fw CCGCCCCCAATCTGAAG 50 63 bp; 0.89
fshr 1136 rv GGTTGGCCTGGTGCAGTTT 900
fshr 1092 pr [6FAM]AGCTTCCTCCTCTGGAGCTCTTC[TAMRA] 75

LHR (AY642114)
lhr 1231 fw ACTTCTGTCAGACCCGACCAA 900 67 bp; 0.92
lhr 1297 rv TCCTCACAGGGATTGAAAGCA 900
lhr 1253 pr [6FAM]TTTGGTTTGCACACCTGAAGCA[TAMRA] 125

StAR (EF409994)
star 142 fw GGCTGGATCCCGAAGACAA 900 72 bp; 0.99
star 213 rv CCTGAGGTGGTTGGCAAAGT 900
star 162 pr [6~FAM]CATAAACAAAGTGCTCTCTCAGACGCAGGTG[TAMRA] 75

CYP19A1 (AJ311177)
cyp19 1328 fw TCCTCGCCGCTACTTCCA 300 65 bp; 0.98
cyp19 1392 rv TGGCGATGTGCTTACCAACA 300
cyp19 1348pr [6~FAM]CATTCGGTTCAGGCCCTCGCG[TAMRA] 100

CYP11B1 (AF449173)
cyp11 351 fw CCTGTTGCTCCGTGTTCGT 300 66 bp; 1.02
cyp11 416 rv CTGAAGATGTGATCCCATGCA 900
cyp11 373 pr [6~FAM]CCTCTGTGGACCAAGCACGCCA[TAMRA] 100

18S rRNA
18S fw GCATGCCGGAGTCTCGTT 900 71 bp; 0.92
18S rv TGCATGGCCGTTCTTAGTTG 900
18S pr [6FAM]TTATCGGAATTAACCAGAC[TAMRA] 200

Ef1- (AJ866727)
Ef1- 156 fw GGAGTGAAGCAGCTCATCGTT 50 69 bp; 0.99
Ef1- 224 rv GCGGGCCTGGCTGTAAG 300
Ef1- 179 pr [6FAM]AGTCAACAAGATGGACTCCACTGAGCCC[TAMRA] 200

Table 1
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Table 2 Correlation analysis among changes in relative expression levels of FSHR, 
LHR, StAR, CYP11B1 and CYP19A1 and plasma hormones in individual sea bass males
(n=48) (A) and females(n=59) (B).

a Probability value.
b Correlation coefficient value.
c Values sowed in bold were considered statistically significant after applying Bonferroni 
correction.

A LHR StAR CYP11B1 11-KT LH

FSHR
a cP=0.000

br=0.54
P=0.005

r=0.40
P=0.000

r=0.74
P=0.21

r=-0.19
P=0.32

r=-0.15

LHR
P=0.000

r=0.67
P=0.000

r=0.56
P=0.03

r=-0.31
P=0.68

r=-0.06

StAR
P=0.050

r=0.29
P=0.75

r=0.05
P=0.09

r=0.25

CYP11B1
P=0.17

r=-0.20
P<0.01

r=-0.37

11-KT
P=0.13

r= 0.22

B LHR StAR CYP19A1 E2 LH

FSHR
P=0.000

r=0.80
P=0.000

r=0.82
P=0,000

r=0.43
P=4.4 x 10-3

r=0.37
P=0.52

r=0.09

LHR
P=0.000

r=0.72
P=0.110

r=0.21
P=0.06

r=0.24
P=0.25

r=0.15

StAR
P=0.000

r=0.43
P=3.4 x10-3

r=0.38
P=0.30

r=0.14

CYP19A1
P=2.4 x 10-3

r=0.39
P=0.94

r=-0.009

E2
P=0.000

r=0.43

Table 2


