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Abstract 

 

Dietary restriction (DR) is the only environmental intervention known to extend adult 

lifespan in a wide variety of animal models. However, the genetic and cellular events that 

mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode 

Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) 

regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 

completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate 

of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan 

caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia 

gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ 

neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan 

extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was 

expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-

1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost 

completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-

genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression 

of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, 

but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose 

that DR activates TRX-1 in ASJ neurons during aging, which in turn triggers TRX-1-

dependent mechanisms to extend adult lifespan in the worm.  
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1. Introduction 

 

Dietary restriction (DR) has been shown to extend adult lifespan in a wide range of 

organisms (reviewed in [1]). The anti-aging action of DR has been proposed to operate 

through activation of signaling cascades that subsequently increase stress resistance 

mechanisms to counteract organismal deterioration inflicted by long-term stress (reviewed in 

[2]). However, the signaling molecules that trigger the DR-induced pro-longevity machinery 

at the organismal level are still far from known. 

 

Thioredoxins comprise a conserved family of proteins that mostly depend on their 

oxidoreductase activity to reduce disulfide bonds in many target proteins (reviewed in [3,4]). 

In addition to their role as antioxidants against oxidative stress, as electron donors for 

metabolic enzymes or as redox regulators of signaling molecules and transcription factors, 

thioredoxins have also been shown to prevent cytosolic proteins from aggregating in the cell 

(reviewed in [3,5]). Furthermore, thioredoxins have also been implicated in the regulation of 

aging. The first in vivo studies reporting the effects of mammalian Trx1 during aging showed 

that overexpression of human Trx1 in mice extends lifespan [6]. 

 

However, to date, it has not been studied in vivo whether thioredoxins regulate adult 

lifespan extension induced by DR. To our knowledge, the only studies designed to 

understand the relationship between thioredoxins and DR during aging have been performed 

in vitro using rat kidney [7,8] or combining in vitro and ex vivo methods using rat muscle and 

mouse myoblast cell lines, respectively [9]. Therefore, the in vivo mechanisms by which 

thioredoxins regulate lifespan extension induced by DR still remain unknown. 
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For that purpose, we used Caenorhabditis elegans, an excellent animal model that 

provides valuable in vivo genetic and cell biological tools. The C. elegans gene trx-1 encodes 

a thioredoxin that is expressed in one pair of neurons in the nervous system: the ASJ sensory 

neurons. Previously we and others have shown that trx-1 deletion shortens adult lifespan and 

increases the sensitivity to paraquat-induced oxidative stress [10,11]. In addition, transgenic 

C. elegans overexpressing trx-1 in ASJ neurons of wild-type animals was shown to have 

extended adult lifespan [11]. 

 

Since trx-1 regulates aging and stress resistance in the worm, we investigated whether it 

also regulates adult lifespan extension induced by DR. In our present study, we used genetic 

and cell biological tools to understand in vivo the relationship between the thioredoxin TRX-

1 and adult lifespan extension through DR in C. elegans. 
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2. Materials and methods 

 

2.1. Nematode strains and culture conditions 

 

The standard methods used for culturing C. elegans were described previously ([12]; 

reviewed in [13]). Strains and transgenes used in this work are summarized in Supplementary 

Table S1. All strains were maintained at 20°C. 

 

2.2. Transgene injection constructs and germline transformation 

 

The translational fusion constructs Ptrx-1::trx-1::GFP and Pges-1::trx-1::GFP, and the 

transcriptional fusion constructs Ptrx-1::GFP and Pgpa-9::GFP were previously reported 

[11,14,15]. For rescue experiments, 40 ng/µl of Ptrx-1::trx-1::GFP or Pges-1::trx-1::GFP 

were injected into trx-1(ok1449) eat-2(ad1116) animals. For overexpression experiments, 

100 ng/µl of Ptrx-1::trx-1::GFP were injected into wild-type animals; the extrachromosomal 

arrays generated were then crossed into eat-2(ad1116) animals. For fluorescence intensity 

measurement experiments, 40 ng/µl of Ptrx-1::GFP or Pgpa-9::GFP were injected into wild-

type animals. Each of the aforementioned constructs was coinjected with 30 ng/µl of the 

injection marker Punc-122::DsRed [16]. Germline transformation was performed as 

described [17]. 

 

2.3. Construction of double mutants 

 

The construction of trx-1(ok1449); daf-2(e1370) was previously described [15]. To construct 

the trx-1 eat-2 double mutant, trx-1 homozygous males were crossed to eat-2(ad1116) 
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hermaphrodites, and F1 cross progeny hermaphrodites were grown singly. We then singled 

F2 progeny animals manifesting reduced pharyngeal pumping rates; these animals were 

considered to be homozygous for the eat-2 mutation [18]. Of note, pharyngeal pumping rates 

of wild-type and trx-1(ok1449) animals were very similar. To construct the trx-1; osm-5 

double mutant, trx-1 homozygous males were crossed to osm-5(p813) hermaphrodites, and 

F1 cross progeny males were again crossed to osm-5(p813) hermaphrodites. Since osm-5 

maps on to chromosome X, F1 cross progeny hermaphrodites generated from the second 

cross were expected to be homozygous for the osm-5 mutation. To confirm the presence of 

the osm-5 mutation, we performed a fluorescent dye-filling assay using DiI (1,1′-dioctadecyl-

3,3,3′,3′-tetramethylindocarbocyanine perchlorate), as described [19]. In all cases, the 

presence of the trx-1 deletion was demonstrated by performing PCR on single-worm lysates, 

based on methods previously described ([20]; reviewed in [21]). 

 

2.4. Adult lifespan assays 

 

Animals for lifespan analysis were raised at 20°C and then transferred to 25°C on day 0 of 

adulthood. We defined day 0 of adulthood as the day in which the L4-to-adult molt occurs. 

To avoid overcrowding, 12–20 adults were used per plate. During the reproductive period, 

animals were transferred every 1–2 days to fresh plates and thereafter approximately every 4–

7 days. We scored animals as being dead when they had ceased to respond to gentle 

prodding. Animals that crawled off the plate, exploded (i.e. died by bursting through the 

vulva) or bagged (i.e. died by internal hatching of retained embryos) were censored at the 

time of the event. For each experiment, animals were analyzed in parallel. Two independent 

trials were performed for each strain. For rescue and overexpression experiments, one trial 

per each of two independent transgenic lines was performed. For the dietary deprivation 
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(DD) assay, we based our protocol on [22]: lifespan assay procedures were performed as 

described above, except that animals were transferred on day 3 of adulthood to plates 

containing 100 µg/ml ampicillin, either with a lawn of E. coli OP50 bacteria (ad libitum, AL) 

or without this source of food (DD).  Statistical analyses and survival curves were performed 

using the JMP 7 software (SAS). p values were determined by the Wilcoxon and logrank 

tests. The Wilcoxon test puts more weight on early deaths compared to the logrank, while the 

logrank test is more appropriate for survival distributions whose hazard functions are 

proportional over time (i.e. the two survival curves do not cross). If the survival curves do not 

conform with the logrank test assumption of proportional hazard functions, the Wilcoxon test 

is recommended (reviewed in [23]). We considered that the Wilcoxon test is more 

appropriate to estimate lifespan differences between transgenic and non-transgenic animals 

for the rescue and overexpression experiments, because the transgene Ptrx-1::trx-1::GFP 

seems to affect mean lifespan more than maximum lifespan, which is not in agreement with 

the aforementioned logrank test assumption. We show both Wilcoxon and logrank tests in 

Supplementary Data for comparison. 

 

2.5. Microscopy and fluorescence imaging 

 

For fluorescence intensity measurement experiments, mean relative intensity of a 

transcriptional Ptrx-1::GFP or Pgpa-9::GFP reporter was assessed by quantifying GFP 

intensity in ASJ neurons of 5-day-old wild-type adults subjected to 2 days of DD as 

compared to 5-day-old wild-type adults fed AL. Animals were raised at 20°C, and then 

transferred to 25°C on day 0 of adulthood. DD and AL plates contained 100 µg/ml 

ampicillin. Animals were visualized on a Zeiss Axioplan fluorescence microscope at an 

optical magnification of x500. Worms were put into M9 buffer on a very thin 2% agarose pad 
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containing an anesthetic (NaN3). All animals assayed were exposed to 5 mM NaN3 for a 

maximum of 15 min prior to image acquisition, thereby avoiding the induction of evident 

physiological changes (cf. [15]). A Hamamatsu CCD camera and Openlab software 

(Improvision) were used for image acquisition at the brightest focal plane and a fixed 

exposure time. Pixel intensity in the entire ASJ cell body was determined from captured 

images in the form of maximum grey values by using NIH ImageJ software. Fold differences 

with respect to 5-day-old wild-type adults fed AL were calculated to show the mean relative 

intensity of 5-day-old wild-type adults subjected to 2 days of DD. For each experiment, 

animals were analyzed in parallel. 
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3. Results 

 

3.1. TRX-1 regulates adult lifespan extension induced by a genetic model of dietary 

restriction 

 

To determine whether TRX-1 regulates the extension of adult lifespan mediated by dietary 

restriction (DR), we first conducted epistasis analysis using a mutation in eat-2. eat-

2(ad1116) mutant animals represent a classical genetic model of DR in the nematode [24] 

and exhibit reduced food intake throughout life because of a pharyngeal pumping defect 

[18,25]. As would be expected for a gene essential for DR-mediated lifespan extension, loss 

of trx-1 completely suppressed the long lifespan of eat-2(ad1116) mutant animals (Fig. 1A 

and Supplementary Table S2). The suppression of DR-extended lifespan by loss of trx-1 is 

unlikely to be due to increased food intake, because pharyngeal pumping rates of eat-

2(ad1116) single mutants and trx-1(ok1449) eat-2(ad1116) double mutants were very similar 

(data not shown). To confirm that the suppression of the DR-extended lifespan was caused by 

disruption of trx-1, we used the transgene Ptrx-1::trx-1::GFP (which expresses a trx-1::GFP 

translational fusion from its own promoter in ASJ neurons). The suppression of the extended 

lifespan of eat-2(ad1116) by trx-1(ok1449) was rescued by Ptrx-1::trx-1::GFP (Fig. 1B and 

Supplementary Table S2). In contrast, a transgene driving expression of trx-1::GFP from the 

ges-1 promoter in the intestine (Pges-1::trx-1::GFP) [15,26], did not rescue the trx-

1(ok1449)-mediated suppression of eat-2(ad1116) lifespan extension (Fig. 1B and 

Supplementary Table S2). These data indicate that loss of trx-1 is responsible for the 

suppression of the DR-mediated lifespan extension. Mutations in the insulin-like signaling 

receptor gene daf-2, extend lifespan in an eat-2-independent manner [24]. If loss of trx-1 was 

fully epistatic to any mutation that extends lifespan, we would expect that trx-1(ok1449) 
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completely suppresses the lifespan extension caused by mutation of daf-2 as well. However, 

trx-1(ok1449) only partially suppressed the lifespan extension caused by daf-2(e1370) (Fig. 

1C and Supplementary Table S2). A similar result was obtained with a mutant in the gene 

osm-5 (Supplementary Fig. S1 and Supplementary Table S3), encoding a homolog of the 

sensory cilia protein Tg737 [27], which has been proposed to regulate lifespan partially 

through DAF-2 signaling [28]. Although we cannot exclude that TRX-1 might also regulate 

lifespan partially through DAF-2 signaling, our findings suggest that loss of trx-1 is fully 

epistatic only to mutation in eat-2. Therefore, TRX-1 is required for the response to DR that 

results in extended adult lifespan. 

 

3.2. Overexpression of trx-1 extends adult lifespan under normal feeding conditions, but not 

under dietary restriction 

 

To further examine whether trx-1 regulates DR-mediated adult lifespan extension, we 

overexpressed trx-1 in wild type and eat-2(ad1116) single mutants. If TRX-1 was required 

for the extended lifespan caused by mutation of eat-2, one would predict that overexpression 

of trx-1 would not further prolong the extended lifespan of eat-2(ad1116), while it would 

extend wild-type lifespan. To validate this premise, the same transgene was used to 

overexpress trx-1::GFP in wild type and eat-2(ad1116). While overexpression of Ptrx-1::trx-

1:GFP in wild type resulted in moderate but reproducible lifespan extension, the same 

overexpression transgene failed to further extend the long lifespan of eat-2(ad1116) (Fig. 1D 

and Supplementary Table S2). Our findings confirm that TRX-1 is required for the extended 

adult lifespan caused by DR. 

 

3.3. TRX-1 regulates adult lifespan extension induced by a non-genetic, nutrient-based model 
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of dietary restriction 

 

We asked whether trx-1 is involved in other, non-genetic DR models in C. elegans. 

Several kinds of nutrient-based DR interventions can extend adult lifespan in the worm. 

These consist of either bacterial food dilution or substituting bacteria with specified growth 

media [29]. It has been proposed that eat-2 mutants and nutrient-based DR extend lifespan 

through the same pathway because lifespan extension by mutation of eat-2 is not additive 

with that caused by bacterial deprivation on plates [22,30]. Therefore, we used dietary 

deprivation (DD), since this protocol has been suggested to extend lifespan through the same 

pathway as mutation of eat-2 [22]. Loss of trx-1 almost completely suppressed the lifespan 

extension caused by DD (Fig. 2A and Supplementary Table S2). Thus, TRX-1 is also 

required for the adult lifespan extension induced by a non-genetic, nutrient-based model of 

DR. 

 

3.4. trx-1 expression in ASJ neurons of aging adults is increased in response to dietary 

restriction 

 

Because overexpression of trx-1 extends adult lifespan under normal feeding conditions 

(i.e. ad libitum, AL), but not under DR, we asked whether trx-1 expression in ASJ neurons of 

aging adults is increased under DR. To determine whether DR increases the expression levels 

of trx-1 in ASJ neurons of aging adults, we quantified the expression of a trx-1 promoter-

driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of five-day-old adults grown under 

DD conditions for two days. DD significantly increased Ptrx-1::GFP fluorescence in ASJ 

neurons of aging adults (Fig. 2B and Supplementary Fig. S2). The fluorescence increase was 

specific to the trx-1 promoter, because if the GFP gene was expressed in ASJ neurons from 
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the gpa-9 promoter [14], we observed instead a modest, but not statistically significant, 

decrease in expression under DD (Fig. 2B and Supplementary Fig. S2). These data suggest 

that trx-1 may be transcriptionally upregulated in ASJ neurons of aging adults in response to 

DR. 
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4. Discussion 

 

This study reports the first in vivo evidence that a thioredoxin (TRX-1) is involved in the 

regulation of adult lifespan extension induced by dietary restriction (DR). We have identified 

TRX-1 as a novel regulator of DR-mediated lifespan extension in C. elegans. We found that 

loss of trx-1 completely suppressed the extended lifespan caused by mutation of eat-2, a 

genetic surrogate of DR in the worm [24]. Expression of Ptrx-1::trx-1::GFP in ASJ neurons 

rescued the trx-1(ok1449)-mediated suppression of eat-2(ad1116) lifespan extension. In 

addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type but not in eat-

2(ad1116). Interestingly, loss of trx-1 almost completely suppressed the lifespan extension 

produced by dietary deprivation (DD), a non-genetic model of DR in the worm [29]. 

Moreover, DD upregulated Ptrx-1::GFP expression in ASJ neurons of aging adults. Taken 

together, our results suggest a model whereby DR activates TRX-1 in ASJ neurons during 

aging, which in turn triggers TRX-1-dependent mechanisms directed at extending adult 

lifespan (Fig. 3).  

 

Our study is the first report to show upregulation of a thioredoxin in the nervous system as 

a response to DR during aging (Fig 2B and Supplementary Fig. S2). Previously, mammalian 

thioredoxin has been shown to be modulated in aged kidney and muscle cells in dietary 

restricted rats [7,8,9]. In C. elegans, DR has been shown to activate expression of the 

transcription factor gene skn-1 in ASI sensory neurons [31]. In addition, expression of the 

neuropeptide gene nlp-7 [32] has been found to be upregulated under DR [33]. Thus, together 

with previous observations by others, our findings suggest that the concerted activation of 

neuronal regulators, including TRX-1, is likely an essential early step in the chain of events 

elicited by DR to promote adult lifespan extension. 
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The physiological changes induced by DR during aging do not only affect the nervous 

system, but also affect multiple other tissues in the worm, including the intestine [34, 35]. 

Given that trx-1 is expressed only in ASJ neurons [11], and the fact that lifespan extension 

caused by DR was rescued when trx-1::GFP was expressed from its own promoter in ASJ 

neurons but not when expressed in the intestine (Fig. 1B and Supplementary Table S2), we 

favor a model in which TRX-1 regulates the physiological changes induced by DR during 

aging cell-non-autonomously in the whole organism (Fig. 3). We propose that DR causes 

upregulation of TRX-1 in ASJ neurons during aging, which then triggers a signaling cascade 

at the organismal level to elicit the metabolic changes necessary to extend adult lifespan (Fig. 

3). Interestingly, it has been recently proposed that the neuropeptide NLP-7 similarly 

responds to DR-mediated signals triggered by the transcription factor SKN-1 in ASI neurons, 

which results in lifespan extension in the worm [33]. In addition, we have recently proposed 

that TRX-1 acts in ASJ neurons to adjust neuropeptide expression, including that of the 

insulin-like neuropeptide gene daf-28, during formation of stress-resistant, long-lived dauer 

larvae [15]. Therefore, the TRX-1-derived signals emanating from ASJ neurons involved in 

promoting DR-mediated adult lifespan extension are likely neuroendocrine signals. Current 

efforts in our labs are directed at identifying the potential neuroendocrine signals responding 

to TRX-1, which in turn may mediate adult lifespan extension through DR in C. elegans. 

 

In summary, our findings represent the first study performed in vivo to show that a 

thioredoxin is required for the adaptive response that DR elicits to promote adult lifespan 

extension. We also show for the first time the upregulation of a thioredoxin in neurons in 

response to DR during aging. These novel findings will help elucidate the role of thioredoxin 

in neurons in connection with the pro-longevity events induced by DR during aging in C. 
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elegans, and most likely also in higher organisms. 
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Figure legends 

 

Fig. 1. TRX-1 regulates adult lifespan extension induced by a genetic model of dietary 

restriction (DR). A) Loss of trx-1 completely suppressed the lifespan extension produced by 

eat-2(ad1116), a genetic surrogate of DR. B) The inability of trx-1(ok1449) eat-2(ad1116) 

double mutants to extend lifespan was rescued by expression of Ptrx-1::trx-1::GFP in ASJ 

neurons (p < 0.01 relative to non-transgenic control by Wilcoxon test, black lines). This 

rescue was not achieved in the same genetic background when trx-1::GFP was expressed 

from the ges-1 promoter in the intestine (p = 0.1 relative to non-transgenic control by 

Wilcoxon test, grey lines). C) Loss of trx-1 partially reduced but did not completely eliminate 

the lifespan extension caused by mutation of the insulin-like receptor gene daf-2. D) 

Overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type (p = 0.01 relative to 

non-transgenic control by Wilcoxon test, black lines), but not in eat-2(ad1116) (p = 0.6 

relative to non-transgenic control by Wilcoxon test, grey lines). In panels B and D, the non-

transgenic control represents the non-transgenic siblings that segregated from the same 

transgenic parents. Each panel shows the data derived from one experiment. All statistical 

data can be found in Supplementary Table S2. Note that the x-axis time scale is different 

between panels. 

 

Fig. 2. TRX-1 regulates adult lifespan extension induced by a non-genetic, nutrient-

based model of dietary restriction (DR). A) Dietary deprivation (DD), a non-genetic model 

of DR, only moderately extended the lifespan of trx-1(ok1449) animals (mean lifespan 

change: +9.2% in trx-1(ok1449), grey lines vs. +40.2% in wild type, black lines). AL, ad 

libitum. Statistical data can be found in Supplementary Table S2. B) Two days of DD 

increased the expression of Ptrx-1::GFP in ASJ neurons of aging adults (p < 0.01 relative to 
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wild type, AL, by unpaired two-tailed t-test). However, the same intervention slightly, but not 

significantly, decreased the expression of control Pgpa-9::GFP in ASJ neurons of aging 

adults (p = 0.3 relative to wild type, AL, by unpaired two-tailed t-test). Two independent 

transgenic lines were examined for each of the two transcriptional Ptrx-1::GFP and Pgpa-

9::GFP reporters, and the results were very similar (cf. Supplementary Fig. S2). The data 

derived from one transgenic line are presented. Each bar represents the mean relative 

fluorescence intensity of 48–54 animals ± standard error of the mean. Each panel shows the 

data obtained from one experiment. 

 

Fig. 3. A speculative model for the function of TRX-1 under dietary restriction (DR) 

during aging in C. elegans. In response to DR, TRX-1 is activated in ASJ neurons of adult 

C. elegans. This response then likely triggers a signaling cascade throughout the whole 

animal that results in metabolic changes necessary to extend adult lifespan. 
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