Hadronic B_c decays as a test of B_c cross section

Alexander Rakitin

Lauritsen Laboratory, California Institute of Technology, Pasadena, California 91125

Sergey Koshkarev

Instituto de Física de Cantabria, CSIC-University of Cantabria, Santander, Cantabria E-39005, Spain

(Received 18 November 2009; published 7 January 2010)

This paper focuses on disagreement between theoretical predictions and experimental results of the production properties of B_c meson. Hadronic decays of B_c are used to separate predictions of production cross section and predictions of branching ratio. The branching ratios of B_c decays to $J/\psi + \pi$ and to $J/\psi + 3\pi$ are also presented.

DOI: 10.1103/PhysRevD.81.014005

PACS numbers: 13.25.Hw, 13.20.He, 13.85.Ni

I. INTRODUCTION

Study of B_c meson is important because it stands out of the crowd of other heavy-quark mesons. This is the only meson consisting of two different heavy quarks. Also, the lighter c quark has a decay rate ($\sim 65\%$) [1] larger than heavier b quark, which is uncommon for heavy-quark mesons. The mass and lifetime of B_c meson have been measured by CDF [2,3] and D0 [4,5] in decays $B_c \rightarrow J/\psi \pi$ and $B_c \rightarrow J/\psi \ell$. They are in pretty good agreement with theory [1,6] (see Table I).

Also, the production properties of B_c meson have been measured and compared to that of B meson [7]:

$$R_e = \frac{\sigma(B_c) \cdot Br(B_c \rightarrow J/\psi e^\pm \nu)}{\sigma(B) \cdot Br(B \rightarrow J/\psi K^\pm)} = 0.282 \pm 0.038 \pm 0.074$$

and

$$R_\mu = \frac{\sigma(B_c) \cdot Br(B_c \rightarrow J/\psi \mu^\pm \nu)}{\sigma(B) \cdot Br(B \rightarrow J/\psi K^\pm)} = 0.249 \pm 0.045^{+0.107}_{-0.076}$$

in the kinematic region $p_T(B_{(c)}) > 4.0$ GeV and $|y(B_{(c)})| < 1.0$. Using the theoretical predictions for the branching fraction $Br(B_c \rightarrow J/\psi e^\pm \nu) = 2 \cdot 10^{-2}$ [1,8] and taking into account well-measured branching $Br(B^+ \rightarrow J/\psi K^+) = (1.007 \pm 0.0035) \cdot 10^{-3}$ [9], one can obtain the ratio of the production cross sections:

$$\frac{\sigma(B_c)}{\sigma(B)} = R_e \cdot \frac{Br(B \rightarrow J/\psi K^\pm)}{Br(B_c \rightarrow J/\psi e^\pm \nu)} \approx 1.4 \cdot 10^{-2}.$$

Comparing this result with theoretical predictions of B_c cross section [10–13] and of the ratio of production cross section $\sim 10^{-3}$ we see that B_c semileptonic branching fraction has to be an order of magnitude larger than theoretical prediction, about 20%. This is a significant discrepancy between theory and experiment. Another discrepancy comes from the measurement of the production properties of B_c in CDF data collected in Run I [14]. CDF presented a 95% C.L. on $\sigma(B_c) \cdot Br(B_c \rightarrow J/\psi e^\pm \nu)/\sigma(B_{\psi}) \cdot Br(B^+ \rightarrow J/\psi K^+)$ as a function of B_c lifetime (see Fig. 1).

Using known B_c lifetime (0.46 ± 0.07) ps we clearly see an order of magnitude disagreement between the theoretical prediction of B_c properties with experimental results from Tevatron.

<table>
<thead>
<tr>
<th>Source</th>
<th>B_c mass (MeV/c2)</th>
<th>B_c lifetime (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF [2,3]</td>
<td>6285 ± 5.3 (stat) ± 1.2 (sys)</td>
<td>$0.463^{+0.077}_{-0.036}$ (stat) ± 0.036 (sys)</td>
</tr>
<tr>
<td>D0 [4,5]</td>
<td>6300 ± 14 (stat) ± 5 (sys)</td>
<td>$0.448^{+0.037}_{-0.032}$ (stat) ± 0.032 (sys)</td>
</tr>
<tr>
<td>Theory [1,6]</td>
<td>6278</td>
<td>0.48 ± 0.05</td>
</tr>
</tbody>
</table>

FIG. 1 (color online). The circular points show the different 95% C.L. on the ratio of cross section times branching fraction for $B_c^+ \rightarrow J/\psi \pi^+$ relative to $B_{\psi}^+ \rightarrow J/\psi K^+$ as a function of the B_c^+ lifetime. The dotted curve represents calculation of this ratio based on the assumption that the B_c^+ is produced 1.5×10^{-3} times as often as all other B mesons and that $\Gamma(B_c^+ \rightarrow J/\psi \pi^+) = 4.2 \times 10^9$ s$^{-1}$. |
I. THEORETICAL BASEMENT

In this paper we will use the fact that a hadronic matrix element of heavy-quark current might be written in a simple form if expressed in terms of the velocities of heavy particles [8,15,16]. Also, we will base on definition of nonrecoil form factor. The validity of using the nonrecoil approximation is strongly supported by the fact that the kinematic variable \(\omega = v_1 \cdot v_2\) is restricted to values close to unity (indexes 1 and 2 do mean initial and final hadrons, respectively). Let heavy-quark \(Q_i\) undergo a weak decay to \(Q_f\) with a spectator quark \(Q_s\). At \(s = (p_1 - p_2)^2 = 0\), we have

\[
(v_1 \cdot v_2)_{\text{max}} = 1 + \frac{(m_1 - m_2)^2}{2m_1 m_2} - 1 + \frac{(m_Q - m_Q')^2}{2(m_Q + m_Q')(m_Q + m_Q')},
\]

where the vector and axial-vector currents are \(V^\mu = \bar{Q}_f \gamma^\mu Q_i\) and \(A^\mu = \bar{Q}_f \gamma^\mu \gamma_5 Q_i\) and \(\eta_{12}\) is a form factor playing the role of Isgur-Wise functions for transition between initial and final states of hadrons. Here, \(\eta_{12}\) can be parametrized as

\[
\eta_{12} = \left(\frac{2 \beta_1 \beta_2}{\beta_1^2 + \beta_2^2}\right)^{1/2}.
\]

For the case of \(B_c\) decays to \(J/\psi\), the parameters \(\beta_1\) and \(\beta_2\) are equal to 0.82 and 0.66, respectively.

II. DECAY \(B_c^+\) TO \(J/\psi + \pi^+\)

The amplitude of this decay includes two factors, one of them is a pionic decay amplitude, and the other is the formfactor appearing in semileptonic decay. This gives us a direct relation between pionic and semileptonic decays. In the case \(s = m_{B_c}^2 \approx 0\), the width of pionic decay may be given as [17]

\[
\frac{\Gamma(B_c \rightarrow J/\psi + \pi)}{d\Gamma/ds_{\rightarrow 0}(B_c \rightarrow J/\psi + \ell \nu)} \approx 6\pi^2 f_{\pi}^2 |V_{ud}|^2 \approx 1 \text{ GeV}^2.
\]

Upon contracting Eq. (2) with leptonic current \(\bar{\ell} \gamma^\mu (1 - \gamma_5) \nu\), the width of \(B_c \rightarrow J/\psi + \ell \nu\) is [8]

\[
\frac{d\Gamma}{ds} \approx 3 \cdot \frac{G_F^2 (\lambda^{3/2} + 12s^2 m_{B_c}^2)^{1/2}}{576\pi^3 m_{B_c}^5} \cdot \frac{m_{J/\psi}}{m_{B_c}} \eta_{B_c/J/\psi} |V_{uJ/\psi}|^2,
\]

where \(\lambda = m_{J/\psi}^2/m_{B_c}^2\) is “triangle” Källen function denoted as

\[
\lambda(x, y, z) = (x^2 + y^2 + z^2 - 2xy - 2yz - 2zx)^{1/2}.
\]

Combining Eqs. (3) and (4) and using \(B_c\) lifetime \(\tau = 0.46 \text{ ps}\), we may expect the pionic decay branching ratio to be

\[
Br(B_c^+ \rightarrow J/\psi + \pi^+) \approx 0.2\%.
\]

This result is in good agreement with other results (see [1,8] and references therein).

III. DECAY \(B_c^+\) TO \(J/\psi + \pi^+\pi^-\pi^+\)

A. Axial current

The amplitude of \(B_c^+ \rightarrow J/\psi + \pi^+\pi^-\pi^+\) is

\[
A \sim \langle J/\psi |A^\mu|B_c\rangle < \pi^+\pi^-\pi^+ |J^\mu_{\text{axial}}(0)|0>,
\]

where \(\langle J/\psi |A^\mu|B_c\rangle = 2 \eta_{B_c/J/\psi} |V_{uJ/\psi}|^2\). \(A^\mu = \bar{c} \gamma^\mu \gamma_5 b\) is the axial-vector current and \(\epsilon^\mu_{J/\psi}\) presents the polarization four-vector of \(J/\psi\). Let us remind the reader that the phase space can be represented as

\[
dPS(B_c \rightarrow J/\psi + 3\pi) = \frac{dS}{2\pi} dPS(W^+ \rightarrow 3\pi),
\]

where the three-pion phase space is

\[
\frac{1}{2\pi} \int dPS(3\pi) < 0 |J_{\mu}|3\pi > < 3\pi |J_{\nu}|0 > = q_{\mu} q_{\nu} p_{0}(s) + (q_{\mu} q_{\nu} - g_{\mu\nu} q^2) p_{1}(s).
\]
where \(q \) the four momentum vector of the three-pion state and \(s = q^2 \). It is easy to show that \(\rho_0 = 0 \).

We have the same situation in \(\tau^+ \rightarrow \nu_\tau + \pi^- \pi^+ \pi^- \) decay, therefore we will follow \(a_1 \) meson domination model of Ref. [18] (\(a_1 \) dominance is also discussed in [19,20], angular distributions of \(\tau \rightarrow \nu + 3\pi \) are discussed in [21]). The spectral function \(\rho_1(s) \) can be cast into the form

\[
\rho_1(s) = \frac{1}{6} \frac{1}{(4\pi)^4} \frac{8}{9g^2} |\text{BW}_{a_1}(s)|^2 \frac{g(s)}{s}.
\] (7)

The Breit-Wigner function \(\text{BW}_{a_1} \) is parametrized including energy dependent width \(\Gamma_{a_1}(s) \):

\[
\text{BW}_{a_1} = \frac{m_{a_1}^2}{m_{a_1}^2 - s - i\sqrt{s}\Gamma_{a_1}(s)}.
\]

\[
\Gamma_{a_1}(s) = \frac{m_{a_1}}{\sqrt{s}} \frac{g(s)}{g(m_{a_1})},
\] (8)

where \(m_{a_1} = 1251 \pm 13 \text{ GeV}, \Gamma_{a_1} = 599 \pm 44 \text{ MeV}, \) and the function \(g(s) \) has been calculated in Ref. [18] and is derived from the observation that the axial-vector resonance \(a_1 \) decays predominately into tree pions. In this way, the branching is

\[
Br(B_c^+ \rightarrow J/\psi + \pi^+ \pi^- \pi^+) \approx 0.3\%.
\]

B. Vector current

The other possibility to observe three charged pions in fully reconstructed mode is \(B_c \) decay to \(J/\psi + \omega \pi \), where \(\omega \) decays to \(\pi^+ \pi^- \). However, the simple analysis of similar decay \(\tau^+ \rightarrow \nu_\tau + \omega \pi^- \), \(\omega \rightarrow \pi^+ \pi^- \) decay shows that this mode gives a too small contribution.

V. SUMMARY

Current theoretical and experimental knowledge about \(B_c \) meson suggests that either we do not understand the production cross section or semileptonic branching fraction of \(B_c \) (see Sec. I). In our paper we propose to measure the branching fractions for \(B_c \) decays into final states \(J/\psi + \pi \) and \(J/\psi + 3\pi \) to resolve this issue. Since the decays to \(J/\psi + \pi \) and \(J/\psi + \ell \nu \) are correlated (as discussed in Sec. III) the decay into \(J/\psi + 3\pi \) has a special meaning, allowing for independent test of \(B_c \) production cross section. The predictions of the branching fractions of \(B_c \) decays into these final states are also obtained.

ACKNOWLEDGMENTS

We would like to acknowledge M. Takahashi’s incredible involuntary spiritual support. We would also like to thank A. Ruiz for much useful advice.