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ABSTRACT: When unimolecular particles of molecular weight M are formed by intramolecular 

cross-linking of individual polymer chains, a significant reduction in hydrodynamic radius and, 

hence, apparent molecular weight (Mapp) is found by size exclusion chromatography (SEC) with 

traditional calibration. A concomitant reduction in polydispersity index (PDI) is often observed. 

This work tries to clarify the relationship between the molecular weight decrease and the 

simultaneous PDI narrowing reported by SEC for collapsed polymeric nanoparticles. A power-

law expression is derived by assuming that fractal, soft nano-objects are formed upon 

intramolecular collapse: MM app   where )1/()1( LF   , F being a parameter related 

to the fractal degree of the soft nanoparticle and L  the Mark-Houwink-Sakurada exponent of 

the precursor polymer, respectively. Two limiting cases provide the expected minimum and 

maximum  values:    ≈ 0.56 for perfectly compact nanoparticles and≈ 1 for nano-objects 

equivalent to flexible chains in good solvent, respectively. Results available in the literature for 

intramolecular cross-linked nanoparticles of different chemical composition have been analyzed 

in terms of this simple scaling law. Its direct effect on SEC polydispersity reduction is 

addressed for a precursor displaying a log-normal molecular weight distribution. The apparent 

polydispersity of the nanoparticles is given by   2PDIPDIapp  . Due to the heterogeneous 

nature of the collapsing process and/or the potential presence of marginal, minor amounts of 

intermolecular byproducts, some deviation of experimental appPDI  data from theoretical 

predictions is observed. 
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1. Introduction 

The design of functional soft nanoparticles is of current interest for several emerging 

fields due to the exceptional and sometimes unique properties displayed by such nano-

objects.1 Among others, the irreversible intramolecular collapse of individual polymer 

chains to unimolecular nanoparticles in the sub-20 nm size range has become an 

efficient route for the synthesis of functional soft nano-objects.2 Interestingly, the 

intramolecular collapsing process of synthetic polymers resembles to some extent the 

cooperative folding process found in natural proteins. Potential applications for single-

chain nanoparticles cover from processing additives3 to artificial enzymes4, photostable 

bio-imaging agents5 and drug/siRNA-delivery systems6, among others.  

In general, the evolution of the size reduction at different stages of 

intramolecular cross-linking of individual chains to single-chain nanoparticles has been 

followed mainly by size exclusion chromatography (SEC),1d,2,7-20 dynamic light 

scattering1d,2,7,9,13,15-19,21-23 and viscosimetry.15,17,22 The morphology of the resulting 

nanoparticles due to the chain collapse process has been investigated by field emission 

scanning electron microscopy (FE-SEM),7,8 atomic force microscopy (AFM)1d,9-11,16,18-

20,22 and transmission electron microscopy (TEM)4a,12,13,15,16,21,23 whereas the cross-

linking degree has been determined qualitatively by Fourier transform infra-red 

spectroscopy1d,13,15,17 and quantitatively by nuclear magnetic resonance 

spectroscopy.1d,2,7-23 Thermal properties of the resulting nanoparticles have been 

determined mostly by differential scanning calorimetry7,11,20,23 and thermogravimetric 

analysis.1d Additionally, in some special cases, the intramolecular reaction process has 

been monitored by ultraviolet-visible10,19,21 and photoluminescence1d,18 spectroscopies. 

Nanoparticle absolute molar mass has been traditionally monitored by static light 

scattering following conventional Zimm procedures.2,16, 24  

From an experimental point of view, it is a highly-demanding task to prepare 

single-chain particles by internal crosslinking without any intermolecular crosslinking 

taking place, although several strategies have been implemented to severely minimize 

nanoparticle cross-coupling. Currently, intramolecular cross-linked polymeric 

nanoparticles are mainly synthesized following the so-called continuous addition 

technique1d,2,5c,12-15,17,18,23 since it minimizes inter-chain reactions (i.e. absolute molar 

mass of the resulting nanoparticle very similar to that of the linear precursor) allowing 
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single-chain nanoparticles to be produced in large quantities. This has been confirmed 

experimentally by Hawker and coworkers2 which found that the actual molecular weight 

of polystyrene nanoparticles as determined by static light scattering (LS) was very 

similar to that of the starting linear precursors. Similar agreement between absolute 

molar mass by LS, before and after reaction, has been reported for other collapsed 

unimolecular nano-objects of more complex architecture (e.g. tadpole24 and Janus16 

nanoparticles).  

SEC has become a very powerful technique to distinguish between 

intramolecular and intermolecular events during the synthesis of unimolecular 

nanoparticles.25 Traditionally, SEC has been a technique very valuable to discriminate 

linear macromolecules according to their hydrodynamic radius (RH) and hence to 

quantify the RH size distribution of a given sample.26 As expected, a significant 

reduction in RH (i.e. a significant increase in retention time, tR) is found by SEC with 

traditional calibration upon chain collapse.2,7-20 A concomitant reduction in 

polydispersity is often observed even when the actual molecular weight distribution 

should remain largely unaltered or even broadened if intermolecular cross-linking takes 

place.  

This work tries to clarify the relationship between the “apparent” SEC molecular 

weight decrease and the simultaneous polydispersity narrowing observed upon collapse 

of polydisperse chains to unimolecular nanoparticles. Hence, a power-law expression 

for the apparent molecular weight reduction depending on the starting precursor 

molecular weight and the resulting nanoparticle structure is derived by assuming that 

fractal, soft nano-objects are formed upon intramolecular collapse. Two limiting cases 

are considered for arriving at the maximum and minimum values of the power-law 

exponent: on the one hand, perfectly compact (non-fractal) spheres and, on the other 

hand, nano-objects showing a fractal behavior identical to swollen linear polymer chains 

in a good solvent. Results available in the literature for collapsed nanoparticles of 

different chemistries (styrene-, methacrylate-, caprolactone-, n-butyl acrylate-, ethylene 

glycol/styrene-, carbonate- and benzyl acrylate-based nanoparticles) are then analyzed 

in terms of this simple scaling law for fractal, soft nanoparticles. Finally, its direct effect 

on polydispersity reduction is clearly illustrated by comparing the experimental and 

theoretical apparent SEC polydispersity values for different intramolecular cross-linked 

nanoparticle systems reported in the literature. 
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2. Apparent molecular weight upon unimolecular nanoparticle formation 

We are interested in deriving an expression for the expected “apparent” SEC molecular 

weight (Mapp) of unimolecular nanoparticles synthesized form linear polymeric 

precursors by intramolecular cross-linking reactions. Let us assume that upon 

irreversible collapse of a polymeric precursor of molecular weight M and density   a 

fractal, soft nanoparticle is obtained. The hydrodynamic radius of such a nano-object, 

HR , can be expressed under good solvent conditions as: 27 

  31 /α
FH

FMqR      (1) 

where Fq   is a constant, and F ≥ 0 is a parameter related to the fractal nature of the 

nanoparticle which measures its departure from the ideal “hard-sphere” state. Two 

limiting cases of eq. 1 are worth of mention: i) perfectly compact spheres (CS), for 

which 0 CS
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where L  and K are Mark-Houwink-Sakurada constants. In general, for unimolecular 

fractal nanoparticles one expects: 0 ≤ F  ≤ L ≈ 0.8 (i.e. flexible chains, good solvent). 

During SEC analysis with traditional calibration, the hydrodynamic radius of the 

collapsed nanoparticle will be assimilated to that of an equivalent flexible chain of 

identical hydrodynamic radius, intrinsic viscosity   L
appKM    and molecular weight 

Mapp, according to:  

  3/1 L
appLH MqR 

  
(2) 

Conceptually, the nanoparticle is hence “replaced” by an equivalent (non-

functionalized) linear polymer chain of identical hydrodynamic radius and molecular 

weight Mapp. By combining equations 1 and 2 we obtain: 

cMM app      (3) 
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where c is a constant given by )1/(3)/( L
LF qqc   and the power-law exponent is: 
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     (4). 

According to the above analysis, we have estimated a lower value of    ≈ 0.56 for 

compact, uniform particles ( F = 0, L ≈ 0.8) and an upper value of   ≈ 1 for nano-

objects showing a fractal behavior very similar to swollen flexible chains. In general, 

one therefore expects: 0.56 ≤   ≤ 1. 
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Figure 1. Apparent molecular weight (Mapp) of PS nanoparticles versus molecular 

weight (M) of the corresponding PS precursor. Squares, triangles, circles, inverted 

triangles and crossed squares are experimental data from references 2, 7, 9, 12 and 18, 

respectively. Dotted, continuous and dashed lines correspond to uniform, compact 

spheres (= 0.56), fractal nanoparticles ( = 0.85) and nano-objects similar to swollen 

polymer chains ( = 1), respectively (see text for details).  

 

Figure 1 illustrates experimental Mapp versus M data from the literature for 

intramolecular, irreversibly cross-linked polystyrene (PS)-nanoparticles. Data in this 

figure cover PS-nanoparticles synthesized by different chemical approaches including 
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intramolecular cross-linking of vinyl,7,9 benzocyclobutene2, o-quinodimethane12 and 

benzosulfone18 functional groups. Solid symbols in Fig. 1 correspond to data in which 

the absolute molar mass by LS of the nanoparticles was reported and resulted to be in 

agreement, within experimental error, with the molar mass by SEC of the linear 

precursor.2 These results cover a rather broad range in M corresponding to PS-

nanoparticles synthesized from precursor polymers containing 20 mol% of cross-linking 

units and polydispersity (PDI) values less than 1.25. Data for PS-nanoparticles for 

which absolute molar mass by LS was not reported7,9,12 are distinguished by open 

symbols. Data from ref. 18 referring to relatively high polydisperse PS nanoparticles 

(PDIapp= 2) containing an internal short fluorene rigid-rod core are distinguish by 

crossed squares in Fig. 1. In general, data for PS-nanoparticles for which no reliable 

absolute molar mass is available (open symbols) follow the same trend that the data 

corresponding to single-chain, unimolecular PS-nanoparticles (solid symbols). 

In order to fit the data of Fig. 1 (solid symbols) by eq. 3 we have considered that 

Mapp = M at the molecular weight of a monomer, 0M ≈ 102 Da. This seems to be a 

reasonable assumption because polymer-like behavior cannot be expected at the 

monomer scale. With this constraint, a value of  = 0.85 is obtained from Fig. 1 by 

data-fitting. Anyway, by changing this criterion to Mapp = M at M ≈ 500 Da 

corresponding to a hypothetical precursor polymer with 20 mol% of cross-linking 

functional monomers and hence a single cross-linking monomer per chain (i.e. no self-

cross-linked nanoparticles could be obtained from this precursor polymer) only a minor 

change in the  value is observed ( = 0.83). Consequently, we can retain our prior 

assumption of Mapp = M at M ≈ 102 Da resulting in  = 0.85 with an estimated 

uncertainty of about 2%. This value of the power-law exponent is far from the value of 

perfectly compact, non-fractal nanoparticles ( = 0.56, dotted line in Figure 1) but also 

different from that expected for nano-objects with a fractal behavior similar to that of 

swollen polymer chains ( = 1, dashed line in Figure 1). From eq. 4, a value of the 

fractal parameter  F = 0.47 is obtained by using  = 0.85 and L = 0.734  for PS chains 

in tetrahydrofuran (THF).28 Such a F value is close to that commonly found for linear 

polymer chains in -solvents (  L ≈ 0.5).29 This suggests that intramolecular cross-

linking in good solvent effectively screens the excluded volume interactions of the 
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swollen precursor, leading to nearly gaussian conformations for the resulting 

nanoparticles.29 

It is also interesting to compare experimental results for cyclic PS-chains30 with 

the predictions about “equivalent” PS-nanoparticles having a single intramolecular 

cross-linking point. By assuming 20 mol% of cross-linking functional monomers, PS-

nanoparticles with a single cross-linking point should be potentially obtained from 

oligomeric PS chains having 10 repeat units ( M ≈ 103 Da). Based on eq. 3 (  = 0.85) 

we obtain appM 720 Da for hypothetical PS-nanoparticles with a single cross-linking 

point arising from PS precursor chains of M = 103 Da. On the other hand, the ratio of 

intrinsic viscosities of cyclic and linear PS chains was reported to be 0.71 in good 

solvent30 which translates to Mapp  0.711/ 0.734 M 630 Da for cyclic PS chains 

synthesized from linear PS chains of M ≈ 103 Da. The main difference between both 

systems arises as a consequence of the random placement of the two cross-linking units 

in the case of PS nanoparticles when compared to the bonding between chain-ends in 

the case of cyclic PS chains. Giving the approximations involved, there is a good 

agreement between predictions for collapsed PS nanoparticles having a single 

intramolecular cross-linking point and experimental data for cyclic PS chains.  

Figure 2 shows experimental Mapp versus M data for intramolecular cross-linked 

poly(methyl methacrylate) (PMMA)-nanoparticles. We have included data for PMMA-

nanoparticles obtained from different irreversible cross-linking routes covering from 

free-radical cross-linking of vinyl units,7,8 thermal cross-linking of benzocyclobutene 

groups2 and alkyne-azide “click” chemistry.13 Unfortunately, data about absolute molar 

mass by LS for most of these PMMA-nanoparticles are not available in the literature. 

Results for nanoparticles synthesized by means of supramolecular (reversible) 

interactions17 and for nanoparticles showing strong hydrogen bonding interactions such 

as those prepared by intramolecular cross-linking of isocyanate functionalized 

copolymers with diamines20 have not been included in Fig. 2 because eq. 3 has been 

derived based on the assumption of irreversible intramolecular cross-linking formation 

and absence of inter-particle directional interactions. The effect of supramolecular 

cross-links and strong specific interactions on nanoparticle apparent molecular weight 

and polydispersity is certainly outside of the scope of the present paper as it will require 

a different theoretical approach involving dynamic equilibria. 
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Figure 2. Apparent molecular weight (Mapp) of PMMA nanoparticles versus molecular 

weight (M) of the corresponding PMMA precursor. Squares, triangles, circles and 

inverted triangles are experimental data from references 2, 7, 8 and 13, respectively. 

Dotted, continuous and dashed lines correspond to uniform, compact spheres (= 0.56), 

fractal nanoparticles ( = 0.88) and nano-objects similar to swollen polymer chains ( = 

1), respectively (see text for details). 

 

A data-fitting procedure similar to that performed in Fig. 1 gives  = 0.88 which 

is very close to the value obtained for PS-nanoparticles, although a larger data scatter is 

visible in Fig. 2. For PMMA-nanoparticles, the corresponding fractal parameter is 

estimated to be F = 0.52 by using L =0.731 for PMMA in THF.31 Interestingly, the 

value of the fractal parameter for PMMA-nanoparticles is also found to be similar to 

that of linear chains under -solvent conditions.29 Since accurate data corresponding to 

the apparent SEC molecular weight of cyclic PMMA chains have been reported very 

recently,32 it seems appropriate to compare the results for cyclic PMMA-chains with the 

predictions for hypothetical PMMA-nanoparticles with a single cross-linking point. On 

the one hand, from eq. 3 ( = 0.88) a value of appM = 761 Da is estimated for PMMA-

nanoparticles with a single cross-linking point arising potentially from linear PMMA 

chains of M = 103 Da. On the other hand, Glassner et al.32 have reported a ratio of the 

apparent molecular weight of cyclic PMMA chains to the molecular weight of the linear 
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PMMA precursor chains of MM app / = 0.8, providing appM = 800 Da for cyclic PMMA 

chains obtained from linear PMMA chains of M ≈ 103 Da. Once again, a good 

agreement is observed between the predictions for collapsed nanoparticles having a 

single intramolecular cross-linking point and experimental data for cyclic chains, in 

spite of the presumably different topological structures involved. 

Table 1 summarizes experimental Mapp versus M data for other irreversibly 

collapsed nanoparticles of different chemical nature reported in the literature, including 

poly(-caprolactone) (PCL)-,7 poly(n-butyl acrylate) (PBA)-,2 poly(ethylene 

glycol/styrene) (PEGS)-,2 poly(carbonate) (PC)-,11 and poly(benzyl acrylate) (PBzA)-

based nanoparticles12. We have included for comparison Mapp data calculated from eq. 3 

by assuming,  to a first approximation, that  F   ≈ 0.5, L ≈ 0.7 and Mapp = M at a 

molecular weight of 0M ≈ 102 Da for all the above systems. Given the assumptions 

involved, the agreement between experimental and calculated data is reasonably good, 

especially for polymer nanoparticles synthesized from linear precursor polymers with 

high content of cross-linking units (>15 mol%). 

Table 1. Comparison of experimental and calculated apparent SEC 

molecular weight, Mapp, for several intramolecular cross-linked 

nanoparticles reported in the literature.  

 

System 

 

Cross-linking 

(mol%)a 

 

M (kDa) 

Exp.b 

 

Mapp (kDa) 

Exp.c 

 

Mapp (kDa) 

Calc.d

PCL7 15 20.5 15.7 10.8 

PBA2 20 73.0 27.8 32.9 

PEGS2 20 89.5 36.5 39.4 

PC11 38 64.9 37.5 29.7 

PBzA12 5 68.0 42.0 30.9 
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aContent of cross-linking units in the linear precursor polymer. bWeight-average molecular 

weight of the linear precursor as determined by SEC with traditional calibration. cWeight-

average molecular weight of the resulting intramolecular cross-linked nanoparticles as 

determined by SEC with traditional calibration. dCalculated from equation 3 by assuming 

F ≈ 0.5, L ≈ 0.7 and Mapp = M at a molecular weight of 0M ≈ 102 Da.  

 

3. Polydispersity narrowing upon unimolecular nanoparticle formation 

As a direct consequence of the validity of equation 3 for quantifying the apparent 

molecular weight decrease upon intramolecular chain collapse, a reduction in the 

apparent polydispersity index (PDI) is expected, as we will show below. For the sake of 

simplicity, let us assume that the molecular weight distribution (MWD) function of the 

linear polymeric precursor follows a log-normal function such as: 33 

W M  1

M1 2
exp 

ln M  1 2
21

2











  (5) 

where 1 and 1 are the parameters that control the MWD according to:  





  2

11 2

1
exp nM

  (6) 





  2

11 2

3
exp wM

  (7)
 

PDI 
M w
M n

 exp 1
2 
   (8)

 

 Upon intramolecular collapse of the linear precursor, a shift in the MWD is 

expected from W(M) to W(Mapp) according to the above
 

cMM app   
scaling law (eq. 

3). Hence, eq. 5 becomes: 

W Mapp  1

Mapp 2 2
exp 

ln Mapp  2 2
2 2

2













  (9) 

where 12    and 12 ln   c .  

Consequently: 
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  2PDIPDIapp   
(10) 

Since  <1, the apparent SEC polydispersity is expected to decrease upon unimolecular 

nanoparticle formation. Note that according to eq. 10 the apparent polydispersity index 

of the nanoparticles depends only on the scaling-law exponent  and not on the pre-

factor c.  

Figure 3 provides a comparison of theory and experimental data from the 

literature for intramolecular cross-linked PS and PMMA nanoparticles based on eq. 10 

and the respective values of the   parameter determined previously (see Figs. 1 and 2). 

At this point it is worth commenting two contributions to polydispersity which are not 

explicitly accounted for in the former scheme. These originate from the inherent 

heterogeneous nature of the intramolecular cross-linking process and the potential 

presence of residual, minor amounts of intermolecular byproducts in some systems.  

Hence, intramolecular cross-linking is a statistical process taking place inside 

each polymer chain in which formation of a given bond has a strong influence on the 

reactivity of its neighbors. Due to conformational fluctuations during chain collapse at 

constant temperature, certain differences in reactivity along the chain are expected even 

for chains having exactly the same length. Furthermore, the cross-linking process 

introduces severe topological constraints in orientation and distance between cross-

linking groups along the chain that reduce subsequent intramolecular reactivity. This 

inhibition of the cross-linking process is more apparent at the late stages of the 

intramolecular chain collapse where often due to rigidity effects there is a fraction of 

cross-linking groups that are never able to find a partner.34 Consequently, topological 

“freezing” is expected to contribute to a relative increase in PDI when compared to 

theoretical predictions. The reason for this increase is that different nanoparticles will 

show different fractions of unreacted cross-linkers. Having noted this, it must be 

stressed that even for the ideal case in which all cross-linking groups have reacted and 

formed a permanent bond, the resulting nanoparticles will exhibit different topologies as 

a consequence of the stochastic character of the cross-linking process. Unlike for the 

precursor polymer this feature will lead, for a fixed molecular weight, to an intrinsic 

polydispersity in the size (and hence in the apparent mass) of the unimolecular 

nanoparticles. Preliminar results from molecular dynamics simulations, to be presented 

elsewhere, seem to confirm this feature. 
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Figure 3. Apparent polydispersity index (PDIapp) of intramolecular cross-linked 

nanoparticles versus polydispersity index (PDI) of the corresponding polymeric 

precursors for: A) PS nanoparticles and B) PMMA nanoparticles. Identical symbols to 

those used in Figs. 1 and 2 are employed. Predictions from 
2PDIPDIapp   at different 

values of  are also drawn as dashed, continuous and dotted lines (see text for details). 
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Moreover, PDI is a parameter very sensitive to the presence of high molecular 

weight tails arising from minor quantities of byproducts generated by intermolecular 

secondary reactions.2 In particular the strong scattering of the experimental data 

observed in Fig. 3B could be also tentatively attributed to the presence of residual, 

minor amounts of intermolecular byproducts, especially for nanoparticles synthesized 

by techniques differing from the so-called continuous addition technique.  

Table 2 provides a comparison of PDIapp versus PDI data for other irreversibly 

collapsed nanoparticles of different chemical nature (PCL-,7 PBA-,2 PEGS-,2 PC-,11 and 

PBzA-based nanoparticles12) as well as theoretical predictions from eq. 10 by using, to a 

first approximation,  = 0.88 (i.e., by using F  = 0.5). In general, eq. 10 is able to 

reproduce the experimental trend rather well in spite of the several approximations 

involved, though systematic deviations are found, with the experimental values of 

PDIapp being somewhat higher than the theoretical values. Thus, the aforementioned 

effects related to heterogeneity and/or intermolecular reactions might partially 

compensate the reduction of PDI predicted by eq. 10. Accurate experimental data-sets 

corresponding to well-defined precursor polymers and unimolecular nanoparticles of 

other chemical structures, varying cross-linking degree, SEC molecular weight and 

polydispersity will be certainly very valuable to establish the validity range of both eq. 3 

and eq. 10. 

Table 2. Comparison of experimental and calculated apparent SEC 

polydispersity, PDIapp, for several intramolecular cross-linked nanoparticles 

reported in the literature.  

 

System 

 

Cross-linking 

(mol%)a 

 

PDI  

Exp.b 

 

PDIapp 
 

Exp.c 

 

PDIapp 
 

Calc.d

PCL7 15 1.35 1.35 1.26 

PBA2 20 1.09 1.10 1.07 

PEGS2 20 1.11 1.09 1.08 
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PC11 38 1.20 1.19 1.15 

PBzA12 5 1.28 1.26 1.21 

 

aContent of cross-linking units in the linear precursor polymer. bWeight-average molecular 

weight to number-average molecular weight ratio of the linear precursor as determined by 

SEC with traditional calibration. cWeight-average molecular weight to number-average 

molecular weight ratio of the resulting intramolecular cross-linked nanoparticles as 

determined by SEC with traditional calibration. dCalculated from equation 10 by assuming 

 ≈ 0.88. 

 

4. Concluding remarks 

By considering the change accompanying the irreversible, intramolecular collapse of 

individual polymer chains to fractal, soft nano-objects and its effect on hydrodynamic 

behavior a unifying picture emerges allowing to quantify the reduction observed by 

SEC with traditional calibration in both (apparent) molecular weight and polydispersity.  

First, most of the available experimental data in the literature for intramolecular 

cross-linked nanoparticles covering different polymer chemistries follow a MM app   

scaling-law where )1/()1( LF   , F being a parameter related to the fractal and 

soft nature of the nanoparticle and L  the Mark-Houwink-Sakurada exponent of the 

precursor polymer, respectively. Experimental values of  are typically around 0.85 – 

0.88, as illustrated in Figures 1 and 2 for PS and PMMA nanoparticles, suggesting 

values of the fractal parameter F   around 0.47 – 0.52 and hence pointing to a 

hydrodynamic behavior of the nanoparticles “equivalent” to that of linear polymer 

chains in -solvents. This behavior can be attributed to the partially collapsed nature of 

the soft nanoparticles since for totally compact, spherical particles a value of F ≈ 0 

should be expected. Preliminary results from molecular dynamics simulations of the 

single-chain cross-linking process, that will be the subject of a separate paper, provide  

values in very good agreement with experimental data (e.g.  = 0.87 for collapsed 

nanoparticles arising from precursor chains with a 20% of functional, cross-linking 

monomers).  
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Second, the above MM app  power-law has a significant impact on the 

apparent polydispersity of the unimolecular nanoparticles. Hence, for a precursor 

displaying a log-normal MWD function we find   2PDIPDIapp    where PDI   and 

appPDI  are the polydispersity index of the precursor and the unimolecular nanoparticles, 

respectively. Experimental data are consistent with this scaling-law although due to the 

inherent heterogeneous nature of the intramolecular cross-linking process and/or the 

potential presence of marginal cross-coupling products significant data scatter is 

observed for some systems.  

Finally, we hope this work will contribute to stimulate an in-deep 

characterization by means of experiment and computer simulations of the complex 

intramolecular cross-linking process and, at the end, of the physics beyond unimolecular 

polymeric nanoparticles.  
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