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Abstract
In this work, the application of Multivariate Curve Resolution to the analysis of yeast genome-wide screens obtained by means of DNA microarray technology is shown. In order to perform the analysis of this type of data, two algorithms based on Alternating Least Squares (MCR-ALS) and on its maximum likelihood weighted projection (MCR-WALS) variant are compared. The utilization of the modified weighted alternating least (WALS) squares algorithm is motivated by the rather poor quality, uncertainties and experimental noise associated to DNA microarray data. Moreover, a large number of missing values are usually present in these data sets and the weighted WALS approach allowed circumventing this problem. Two different experimental datasets were used for this comparison. In the first dataset, gene expression values in budding yeast were monitored in-response to glucose limitation. In the second dataset, the changes in the gene expression caused by the daunorubicin drug were monitored as a function of time. Results obtained by application of Multivariate Curve Resolution in the two cases allowed a good recovery of the evolving gene expression profiles and the identification of metabolic pathways and individual genes involved in these gene expression changes. 
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1. Introduction
In recent years the DNA microarray technology has become widely used by scientists of many different scientific fields 
 ADDIN EN.CITE 
[1, 2]
. This technique has allowed monitoring the gene expression values of a large number of genes in an organism 
 ADDIN EN.CITE 
[3-5]
. DNA microarray technology has been widely used to characterize genetic diversity, predict biological functions of genes, define biochemical pathways, diagnose diseases, characterize drug responses, identify new drug targets and assess toxicological properties of chemicals. At the beginning most of these experiments were carried out to measure gene expression at a particular condition, for example, to measure the gene expression of a certain tissue. However, nowadays there is a growing interest for the study about how gene expression values evolve with time or another variable 
 ADDIN EN.CITE 
[6, 7]
. This allows studying then, how the gene expression of certain genes is affected by a specific compound over time and to determine its mechanisms of action. 

In order to perform these gene expression studies, the use of simple model organisms is usually appropriate. Afterwards, results can be   extrapolated to more complex organisms [8]. One of these model organisms is the baker’s yeast (Saccharomyces cerevisae) which is one of the simplest eukaryotic organisms. This organism has proven useful as a model for studying the processes and pathways relevant to more complex eukaryotes. Further advantages of the use of yeast are the simple and cheap ways for its massive production and, also, the fact that its genome has been fully sequenced with most of its genes correctly annotated 
 ADDIN EN.CITE 
[9]
. Thus, genome-wide functional analyses, including the analysis of transcriptional responses to a range of stimuli and comprehensive maps of protein–protein interactions, further increase the ease of studying of yeast cell and systems biology. 

DNA microarray experiments produce massive data sets with a very large number of values which require megavariate data analysis tools like those currently developed in Chemometrics 
 ADDIN EN.CITE 
[10-13]
. Thus, in the chemometrics literature several methods such as Principal Component Analysis (PCA), Self Organizing Maps (SOM) or different clustering methods (including either hierarchical or non-hierarchical) have been already proposed for genomic data analysis 
 ADDIN EN.CITE 
[3, 14-17]
. However, these methods are not optimal when the aim of the work is to resolve the time profiles of gene expression values.  New technologies allow monitoring temporal evolution of the gene expression of a particular gene and the determination of those genes which are over- or under-expressed at a particular time. And at the same time, new chemometrical methods are proposed for the study of the time evolution of gene expression values in the simplest possible way. In the present work, the Multivariate Curve Resolution method is proposed to carry out this type of analysis 
 ADDIN EN.CITE 
[18-20]
.

Multivariate Curve Resolution has already been frequently used as a chemometrical method to obtain qualitative and quantitative information from spectroscopic analysis of unknown complex mixtures of chemicals 
 ADDIN EN.CITE 
[21-23]
. The only requirement for using this method is that the considered data set fulfils the so-called bilinear model (an example of this is the multivariate extension of generalized Beers law in multiwavelength molecular absorption spectroscopy). Thus, MCR methods have been applied successfully to different application fields such as the monitoring of biological or industrial processes, the hyper spectral image analysis or the investigation of environmental monitoring data tables between others 
 ADDIN EN.CITE 
[24, 25]
. In most of these applications, the MCR algorithm used is based on an Alternating Least Squares (ALS) optimization subject to constraints (like non-negativity, unimodality, mass balance, or local rank/selectivity constraints among others) to improve  the chemical meaning and interpretation of the model parameters. However, traditional ALS algorithms are only optimal when the error in the measurements are independently and identically distributed (i.i.d.) normal.  This ideal situation is not always fulfilled and a more rigorous approach has been recently developed for these cases where these assumptions are largely not fulfilled by the data and large errors are present with not constant and correlated variances. In these cases a modification of the original ALS algorithm known as Weighted Alternating Least Squares (WALS) has been proposed 
 ADDIN EN.CITE 
[20, 26]
. Examples of cases in which the assumption of i.i.d. errors are not fulfilled and the use of the WALS algorithm can be advantageous are the analysis of environmental data tables [26] or, like in this paper,  the analysis of data from DNA microarrays [20]. Thus, one of the main goals of this work is to check the performance of these two methods to analyze DNA microarray data. The comparison of the results obtained by the two methods (MCR-ALS and MCR-WALS) is performed using different data pre-processing approaches and considering missing values. 

In this paper the application of MCR-ALS and MCR-WALS methods is applied to the analysis of two time series DNA microarray experiments. The first data set analyzed the metabolic remodeling of a yeast culture during the transition from fermentative to respiratory metabolism, a process known as diauxic shift [27]. The second data set describes the specific changes occurring in the yeast transcriptome upon addition of the antitumor drug daunorubicin [28]. These two data sets were selected as they exemplify two very different patterns of changes in gene expression. The diauxic shift represents a massive change on the yeast transcriptome, affecting expression of virtually all metabolic- and cell proliferation-related genes.  In contrast, daunorubicin affects only a limited number of transcriptional regulatory units, or regulons. Our purpose in this paper was to extract as much information as possible from these datasets using the two MCR methods, and to compare the expression patterns revealed by them to the ones previously proposed using other more conventional methodologies for microarray analysis like Clustering and Self Organizing Maps. 

2. Data Analysis Methods

2.1. Data arrangement and data pretreatment
A DNA microarray experiment consists in the simultaneous acquisition of the gene expression values for thousands of genes in a sample [2]. This gene expression value measures the hybridization of fluorescent labeled samples and the genes attached to a solid surface. Usually, in addition to the problem sample, a labeled control sample is also measured. Depending on the higher interaction of the attached genes with the sample or the control sample different fluorescence intensity is measured. Finally, the measured gene expression value for a certain gene and a certain sample is expressed as a ratio of the fluorescence signals obtained for the gene when considering the problem sample and the control sample. If we arrange all the gene expression measurements in a data table, we will obtain a matrix M of size i rows corresponding to the total number of genes and j columns corresponding to the total number of samples analyzed during the experiment.  Each mij value of the M matrix will be the gene expression value for a certain gene in a certain sample, i.e. the ratio between the fluorescence obtained for the studied problem sample and the control sample. The traditional arrangement of this type of data ratios is to have the measurement of the problem sample in the numerator and the measurement of the control sample in the denominator (despite the fact that in some cases the ratio between the problem and reference samples can be inverted as, for instance, in the work of Lockwood [29]) .However, in the general case, ratio values higher than one mean that measurements on the problem sample are more intense than on the control sample, meaning that genes on the problem sample are more expressed than in the control sample. Ratio values lower than one mean the opposite, i.e. those genes in the problem sample are less expressed than in the control sample. However, whereas values larger than one are unbounded, values below one are bounded to zero and they have a much lower range of variation, only from one to zero. This is the reason why traditional data treatments of ratio measurements are log transformed. In our case however and for the reasons expressed below, ratio data were not log transformed and instead a different approach has been attempted.

Scheme 1 near here

In this work, three types of data matrices were analyzed (see Scheme 1a). First two data matrices were obtained depending on whether direct or inverted fluorescence measurement ratios were considered, which will be indicated as M for direct fluorescence data ratios, and 1/M for inverted fluorescence ratios. M matrix is obtained as explained above in a typical DNA microarray experiment, giving in each of its entries, mij, the fluorescent ratio for sample i and gene j. Inverted matrix (1/M) is obtained by calculating the inverse of each of these values. 1/mij. This transformation has been done in order to differentiate more clearly the genes over- and under- scored in the resolved gene profiles from original matrix (M). Then, despite of considering the over- and under- scored genes from the analysis of the matrix M, we will focus on the over- scored genes obtained from the analysis of the direct (M) and inverted (1/M) matrices. Thus, we assume  that the genes that have small values (close to  0) in the gene resolved profiles from the analysis of direct matrix, M,  will give large values in the gene resolved profiles from the analysis of the inverted matrix, 1/M, and vice versa. 
A third type of data matrix was considered in this study. It is the column-wise augmented matrix that can be built up by the fusion of the direct and inverted matrices (see Scheme 1a) that in MATLAB notation is written as [M;1/M]. For brevity in the explanation of the MCR methods below, only matrix M will be considered, but the same equations can be easily adapted to the inverted (1/M) and the augmented [M;1/M] matrices.
As stated before, in order to preserve the original data and error structures, no logarithmic pre-treatments were used prior to data analysis. On one side, this allowed the use of a better estimation of data uncertainties and of the corresponding weighted strategies to handle them (see below) and on the other side this allowed the use of non-negativity constraints in MCR alternating least squares algorithms (see also below). This is in contrast to what is usually done in microarray data analysis, where the measured data ratios are logarithm transformed. In our case, the application of this transformation would  have had  two undesired effects as discussed by Wentzell et al. [20]. First, the structure of the measurement error would  be different if ratio or log-ratio values are considered [30]. Second, it would prevent the application of non-negativity constraints in the gene expression during the optimization procedure.
Finally, an estimation of the uncertainties matrix (S) needed for the Weighted Alternating Least Squares optimization is needed. This uncertainties matrix was built in two steps. First, the error estimates were obtained by dividing the original matrix by four, considering that the error was a 25% of the measurement. In the second step, all the missing values present in the experimental data matrix were arbitrary replaced by a very large value (i.e. 100).  
2.2. Multivariate Curve Resolution (MCR) for microarray data analysis

The basic assumption of MCR methods is the fulfillment of the bilinear model that can be adapted to gene expression data following the Equation:
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Equation 1

In this equation M is the experimental matrix of gene expression data which has a size of m genes by n time measurements (analyzed samples). The individual data values in the M matrix are either the direct measurement rations (mij) or their inverses (1/mij), as explained above.  The bilinear model assumed by MCR methods decomposes this data matrix into two different factor matrices (G and TT) (see Scheme 1b). Matrix G describes the gene expression profiles of the resolved factors or components. The dimensions of this matrix are the number of genes, m, times the number of components, Nc. The optimal number of components, Nc, defines the MCR model and it is selected to explain the main sources of data variance. Thus the main changes observed in matrix M are assumed to be mostly originated by these Nc components and the variance not explained by them is considered to be noise in residuals matrix R of dimensions (m, n). Matrix TT describes the temporal profiles describing the evolution of the resolved components, and has dimensions number of components, Nc, times the number of time measurements, n.  

2.3. MCR-ALS and MCR-WALS 

In this work two different Multivariate Curve Resolution algorithms were used, the ordinary Alternating Least Squares (ALS) 
 ADDIN EN.CITE 
[21-23]
 and the Weighted Alternating Least Squares (WALS) algorithms 
 ADDIN EN.CITE 
[20, 31]
. The difference between them is in the possibility to include error estimates. Most of the other steps in the two resolution procedures are equal, but they use a different objective function and a different data projection method. 
Whereas in MCR-ALS the objective function to minimize is:
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Equation 2

In MCR-WALS the corresponding minimization function is:
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Equation 3

In these two equations, Q2 is the objective function of the residuals to minimize, defined as the sum of the squares of the residuals, which are defined as the difference between the experimental values of the data matrix mi,j and the corresponding values calculated by the model 
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. si,j are the estimations of the experimental uncertainties for the individual measurements. The minimization of both objective functions respect the parameters of the model, the factor matrices G and TT, is performed in both cases using an Alternating Least Squares algorithm, but in the second case considering these data uncertainties, sij, through a more rigorous Weighted Least Squares approach. 

For microarray data, the assumption of low independent and identically distributed (i.i.d.) experimental errors is certainly not fulfilled in general, differently to what happens for spectroscopic data, where these i.i.d. assumptions can be considered to be a reasonably good approximation in most of the circumstances without significant changes of the parameter values in the final model. In gene expression data however, experimental errors are large and proportional to the intensity of the observed signal, and they should not be neglected. 

Scheme 2 near here

In Scheme 2, a flow chart describing the different steps needed of the MCR-WALS procedure is given.

The first step of the bilinear model decomposition is the estimation of the number of components (Nc). Due to the noisy structure of gene expression data, this estimation is not as straightforward as in more traditional spectroscopic data analysis procedures. In these cases, the simple  visualization of the sizes of  principal components [32]) or of singular values  [33]) usually provides good initial estimations of this number of components since they can be easily distinguished from those coming from experimental noise. However, this is clearly not the case for gene expression microarray data, where this distinction is much more difficult. Hence, the full data analysis is repeated using models with a different number of components, and the selection of the best model is finally performed as a compromise between a reasonable data fitting and the possible biological interpretability of the different features of the resolved profiles.  A clear indication about possible overfitting (i.e. using a model with a too high number of components) is when the resolved profiles show random features, indicating that they are probably only related to noise. 

The second step of the MCR-WALS procedure is the determination of an initial estimation of G or T matrices. For this purpose, the purest variables and samples were estimated  using the SIMPLISMA algorithm [34]. The comparison of the final MCR-WALS results obtained by using either an initial estimation of G or of TT allowed also evaluating the reliability of the obtained solutions and to check for the independence of the results from the initial estimates.

The third fundamental step is the final estimation of the parameters of the model, i.e. the calculation of the G and TT factor matrices of the bilinear model described by Equation 1. In the ordinary Alternating Least Squares algorithm, Equation 1 is solved iteratively using the previously calculated  estimates of G or TT matrices, by least squares projection, until a convergence criterion is fulfilled. The experimental data are first projected into the subspace spanned by the principal components, 
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Equation 4

where VNc  is the loadings matrix for the Nc principal components. The ALS optimization is defined in two iterative steps as: 
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Equation 5

which has the unconstrained least squares solution for G (when TT is assumed to be known) :
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Equation 6

and 
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Equation 7

Which has an unconstrained least squares solution for TT (when G is assumed to be known) :
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Equation 8

Equations 6 and 8 give the unconstrained solutions to the least squares problem. However, the actual solutions of Equations 5 and 7 are appropriately constrained depending on the prior knowledge of the system.  In MCR applications, the sought solutions should have physical meaning, for instance through the application of non-negativity constraints using non-negative least squares solutions [35]. Moreover, other constraints are usually used in the analysis of chemical systems like closure (mass balance), unimodality or selectivity constraints. See references 
 ADDIN EN.CITE 
[22, 23, 35]
 for more details about their implementation. In this work, non-negativity constraints were applied to both G and TT profiles forcing their values to be positive or zero. Also, a normalization constraint has been used for TT profiles to eliminate the intensity ambiguity of the bilinear model. As a result, all temporal profiles TT are normalized to equal length.

In WALS,  at each iteration the factor matrices are estimated as previously for ALS, 
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Equation 9

and
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Equation 10

but now 
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are the current estimates of the weighted least squares projected matrices onto the row and column subspaces of the current estimates of 
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Equation 11
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Equation 12

where Wi is the weighting diagonal matrix having in its diagonal the reciprocal of the errors or uncertainties (1/sij) of the measured values in row i and the rest of values zero (for independent non-correlated uncertainties) and
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Equation 13
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Equation 14


where Wj is the weighting diagonal matrix having in its diagonal the reciprocal of the errors or uncertainties (1/sij) of the measured values in column j and the rest of values zero (for independent non-correlated uncertainties)

Microarray data sets usually show measurement errors between 20% and 30% [36]. In this work, uncertainty estimations were considered to be equal to the 25% of the measurement values. The selection of this value in the calculation of the uncertainty values of the diagonal weighted Wi and Wj matrices in Equations 11 and 13 for the estimation of the model parameters (G and TT profiles) is not critical because the absolute magnitude of the proportional error weighting will not affect them. What matters more in the solution of these equations is the relative sizes of these errors which will relatively down weight those measurements with larger uncertainties and overweight the more precise ones. The Weighted Alternating Least Squares, WALS, method proposed in this work was also appropriate to deal with the presence of missing values in gene expression data.  Missing values in the experimental matrix were substituted by the arbitrary value of 1 and they were then associated to a large uncertainty (e,g. the value of  100) in their corresponding error value in the weighting diagonal matrix. In this way, missing values resulted to have a negligible effect in the final results of the optimization.  

To monitor the quality of the ALS and WALS optimizations the amount of experimental explained variance (R2) calculated according to the following equation was used:
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Equation 15

In which mij designs an element of the M data matrix and rij its residual (R), i.e. ri,j=mi,j.-
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where 
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is the corresponding calculated element using the parameters of the model.
2.4. Simultaneous analysis of direct and inverted matrices
MCR-ALS and MCR-WALS can be applied to the the simultaneous analysis of direct (M) and inverted (1/M) matrices using augmented matrix Maug = [M;1/M] (see Scheme 1b) to improve the quality and interpretability of the results. In our case, instead of running one optimization procedure for matrix M and one optimization procedure for matrix 1/M, we have fused both data matrices and analyzed simultaneously in Maug as shown in Scheme 1b. The optimization procedure for the augmented data matrix is equal to the procedure described above for the analysis of a single data matrix.

This has allowed us to obtain from the augmented data matrix, a single set of time evolution profiles (TT) and a set of augmented genetic profiles (Gaug = [GM;G1/M]) in which we can differentiate two different contributions. The first set of genetic profiles (GM) associated to the direct (M) matrix and the other (G1/M) associated to the inverted (1/M) matrix. The results obtained using this approach are in agreement with those obtained by the single analysis of M and 1/M but with the advantage of obtaining only one set of time evolution profiles.
2.5. Biological interpretation of the MCR resolved profiles (time and gene expression profiles) 

Finally, the biological meaning of the MCR resolved components in G and TT factor matrices can be deduced from the investigation of the information contained in the MCR resolved profiles. Analysis of the information contained in the time evolution profiles in TT is done directly by visual inspection and displays the temporal evolution of the resolved components. On the other hand, the analysis of the information contained in the gene profiles in G allows for the proposal of candidate genes explaining the biological function of the resolved component. This candidate genes selection is performed by separating the resolved augmented Gaug matrix into the GM and G1/M matrices and then looking for those genes appearing as possible outliers in their boxplot representation. 
 ADDIN EN.CITE 
[37, 38]
, This will allow distinguishing those genes with their expression enhanced by the treatment and also those repressed by it.  In our case, the candidate genes will be chosen among those having contributions larger than the value defined by the boxplot upper quartile, either in GM or in G1/M . In these boxplots, the whisker length was set to 1 in order to provide a list of approximately 300 genes (outliers in these boxplots).  Then, the selected genes were studied in detail to find out what are the relations between the resolved components and the possible known biological functions. Classification of these genes according to known Gene Ontology (GO) in biological process categories was performed using the SDG page [39, 40].
2.6. Software

All the calculations were performed using MATLAB® software [41]. MCR-ALS and MCR-WALS routines are freely available at the webpage [42]. 

3. Data sets

In this work, two different data sets were studied. 

The first data set was obtained by Brauer et al. [27] and it is publicly available at the Stanford University DNA microarray repository [43]. This data set is known as the “diauxic shift data” and monitors the gene expression levels in yeast during the diauxic shift in a glucose-limited culture. In this experiment, the yeast utilizes fermentative metabolism when glucose is abundant. As glucose is depleted, the metabolism shifts abruptly to oxidative metabolism. RNA samples were collected approximately every 15 minutes and measured using DNA microarrays.  The analyzed data set consisted in 12 measurements carried out at different times between 7.25 hours and 10.00 hours at intervals of  0.25 hours. At each measuring time, the gene expression value of 2284 genes was analyzed. The whole data set under analysis  was ordered in a data matrix of 2284 rows and 12 columns [27]. 

The second data set was from the study of the effects of the antitumoral drug daunorubicin treatment of the Saccharomyces cerevisiae yeast, and its publicly available at Gene Expression Omnibus repository [44] (see reference [28] for experimental conditions). The data set consisted originally in 18 measurements taken at three time points: 0 hours (before the addition of daunorubicin), 1 hour after the addition of daunorubicin and, finally, 4 hours after the addition of the drug (Table 1). At each one of these three time points, six measurements were performed corresponding to the two replicates of the three different biological samples considered. The total number of genes analyzed at each measurement was 4718, with some missing values (see below). As a result, the whole data set under analysis was a matrix of 4718 rows and 18 columns.

Table 1 near here
4. Results & Discussion
4.1. MCR analysis and interpretation of Diauxic Shift microarray time series data set 

First, the results using MCR-ALS and MCR-WALS methods were compared in the analysis of the Diauxic Shift microarray time data seriesset generated by Brauer et al [27]. In this previous study, seven clusters were identified but only four of them were related to biological functions.  In the present work the same dataset is used to check the reliability of the proposed MCR-ALS and MCR-WALS algorithms to study microarray time data series. 

The data analysis procedure started with the determination of the number of components (see Scheme 2). As explained before, in the case of analyzing microarray data, this determination is not easy. Since the presence of noise in the data set was rather high, purest variables [36] initial estimations of G profiles were obtained considering noise level equal to 25%. MCR-ALS and MCR-WALS analysis were repeated for a different number of components ranging from 3 to 7. The comparison of the explained variances for the different number of components is given in Table 2. In Figure 1, temporal evolution of gene profiles resolved by MCR-WALS is shown (similar results were obtained also by MCR-ALS). After considering all these results, the preferred number of components was four (Figure 1b). When only three components were considered (Figure 1a) the shape of the sample profiles between 8 and 9 hours were unreliable and with little biological interpretability (see below). On the other side, when more than four components were considered, the biological understanding of the system did not improve because the added components were only describing splits of the previous ones (Figure 1c-e). 

Figure 1near here


Table 2 near here

In the case of the ordinary MCR-ALS analysis, two different approaches were considered in order to deal with missing values. In the first approach, missing values were substituted by 1. In the second approach, genes that presented more than two missing values for the 12 samples were eliminated and, the remaining missing values were then replaced by 1. The resulting data set was considerably smaller (1670 x 12) than the original one (2284 x 12). MCR-ALS and MCR-WALS analysis were performed using non-negativity constraints to both G and TT matrices and a normalization constraint on TT matrix to avoid intensity ambiguities during the ALS optimization. The convergence criterion was based on the change below 0.1% of the root mean square of the residuals for the ALS algorithm (Equation 2). The optimization algorithm converged in 25 iterations for the first approach and in 19 iterations for the second approach. The explained experimental data variances were respectively 96.4% and 96.8% for the two different approaches. 

In the case of the MCR-WALS procedure, in addition to the data set under study (M,  1/M or Maug) and of the initial estimations (G), the uncertainties matrix (S) was also needed. WALS optimization was performed using also non-negativity and normalization constraints. The convergence criterion was based on a change below 0.1% on the weighted residuals (Equation 3) between two consecutive iterations. The optimization algorithm converged after 30 iterations and the explained experimental data variance was 91%.

Figure 2 near here

The comparison between the results obtained MCR-WALS and MCR-ALS is also given in Table 2. Experimental explained variances for different number of components (3 to 7) are shown for both methods. When the number of components is between 3 and 5 the explained variances by MCR-WALS were sensible lower (around 5%) than those obtained using both MCR-ALS approaches. This is because the application of ordinary ALS algorithm has a tendency to overfit the data more than the weighted WALS algorithm (as previously discussed in reference [26]). When the number of considered components is higher, the explained variances obtained either by MCR-WALS or MCR-ALS were then rather similar. Therefore, in these cases, both methods have the same tendency to overfit similarly the experimental data.  In Figure 2 the resolved time profiles obtained by MCR-ALS and MCR-WALS methods are compared for the resolution of 4 components. Some significant differences are observed for profiles obtained by the MCR-WALS method compared to those obtained by the MCR-ALS method using missing values substituted by one. However, in the case of the second MCR-ALS approach (the data was reduced with most of the missing values eliminated) the profiles obtained by MCR-ALS and MCR-WALS resembled much more. Only the third MCR-WALS component (with a maximum at nine hours) showed a different behavior, with a fast decrease and a subsequent small increase of its relative contribution.  This difference between the results obtained by using the two MCR-ALS approaches could be supposed to be caused by the effect of missing values arbitrarily fixed to 1 and without any further weighting in the ALS optimization. MCR-WALS decreases the tendency of least squares approaches to overfit data and improves the resolution power in the presence of missing values, without needing their removal from the data set.

The easiest interpretation of the system was achieved when the augmented data matrix Maug built using the direct matrix (M) and the inverted matrix (1/M) was analyzed. The number of finally selected components was also 4 (like in the analysis of the single matrices) and the procedure was also the same: determination of the initial estimation, determination of the error estimates matrix substitution of the missing values, and resolution procedure using either MCR-ALS or MCR-WALS. In this case, the explained experimental variance was only slightly lower (R2 = 89.2%). 

Figure 3 near here

The biological interpretation of the obtained results was carried out by analyzing the gene scores and the time profiles for the different resolved components. Resolved gene and time profiles are shown in Figures 3 (time profiles, TT,  in Figures 3-c,f,i,l; boxplots of gene profiles in the direct analysis, matrix GM, in Figures 3-a,d,g,j; and boxplots of gene profiles in the inverted matrix, G1/M, in Figures 3-b,e,h,k). From these plots, the most characteristic genes can be identified. Time profiles in T matrix describe the evolution of each resolved component and when they contribute most over time. Gene profiles in matrices G allow detecting what genes contribute more and what is the biological function related to them. The most characteristic genes selected from boxplots for each resolved component are given in Table 3.

Table 3 near here

The first component (C1) contributes significantly at the beginning of the process, between 7 and 8 hours after starting the glucose limitation experiment. This component corresponds to the period at which the concentration of glucose in the medium is still elevated. The three other remaining components (C2 to C4) cover consecutive and relative narrow time frames of the time course experiment, of approximately 30 min each, although some contributions do overlap too (Figure 3). Each one of these components seems to reflect different stages of the adaptation of the yeast cell up to depletion of glucose levels and to the stabilization of the process (stationary phase). Functional analysis of genes with the highest contributions in the direct matrix (GM scores) and in the inverse matrix (G1/M scores) of each resolved component showed the transition from a fermentative to a respiratory metabolism and the final entry into a stationary phase (Table 3). Ribosome biogenesis, RNA metabolism and translation-related genes rank as the top scorers in C1 component but they appear as low-scorers in C3 and C4 components (GOIDs 42254, 6412, and 30490, Table 3). The more likely interpretation for these results is a massive and progressive decrease on protein synthesis and, therefore, on cell growth as energy resources are less available. In contrast, genes related to respiratory metabolism and cell redox homeostasis (including oxidative stress, GOIDs 6091, 45454, 15980, and 6979) showed higher scores in C3 and C4 components, reflecting the increased importance of the respiratory metabolism in conditions of deprivation from energy sources. 

Figure 4 near here

The evolution of individual genes during time is shown in the score plots in Figure 4. Ribosomal protein genes (RPGs) showed a coordinate decrease on their scores (and, therefore, on the relative abundance of their respective mRNAs) from C1 to C4 (Figure 4, top panels) components. This pattern is almost complementary to that of genes involved in respiration, as the enzymes from the tricarboxylic acid cycle or the component of the mitochondrial respiratory chain (Figure 4). In these cases, the coordination of the different individual genes is far less tight than in the case of RPGs, probably reflecting the different roles of many of these genes in the cell metabolism, aside from respiration.  Finally, the glycolytic enzymes, which share (at least partially) both the fermentative and the respiratory pathways showed different readjustments during the process, with low score values in C1 and C4 components and peaking in C2 and C3 components (Figure 4, bottom panels). In this case, at least two patterns of expression can be observed, one peaking in C2 and a second one peaking in C3 (Figure 4). As many glycolytic genes participate both in respiratory and fermentative pathways, as well as in sugar anabolism, this variety of regulatory patterns may well reflect their roles in those different, and sometimes alternative, metabolic processes. 

Previous cluster analysis of the same data  detected essentially two well-defined steps in the whole transition from fermentative metabolism to stationary phase, with a transition phase occurring between 9h and 9h30min after starting the experiment [27]. This transition was very similar to the temporal evolution described by TT loadings resolved by MCR-AWLS when only three components were considered (Figure 1), in which component C1 predominates between 7:15 and 8:45 hours, whereas C2 component covers only the time interval between 9:15 and 9:45 hours. C3 only appears at the last time measurements, whereas C1 and C2 showed similar weight during the transition period between 8:30 and 9:00 hours (Figure 1a). This temporal evolution is fully compatible with what was previously described using qRT-PCR data  for the same samples [27]. However, we consider that the use of the additional fourth component can describe much better the temporal evolution of the gene expression during the experiment, as it reduces the temporal overlapping between the extracted components and provides a more easily interpretable model of evolution according to the functional roles of the genes showing what scores were significantly different (both higher and lower) from the bulk of the transcriptome. 

4.2. MCR analysis and interpretation of Daunorubicin microarray time series data set 

In a preliminary PCA study of the Daunorubicin data set, the results showed that replicates of sample B at 1 hour had an anomalous behavior and for this reason they were discarded before MCR analysis.  The data matrix had then a size of 4718 genes by 16 samples. In Table 1, the identification of the different samples included for the analysis is given. However, in this case also, the more relevant results were obtained when the augmented data matrix (Maug) built up using the direct (M) and inverted (1/M) matrices were simultaneously analyzed. As explained before, this data arrangement allowed a better interpretation of enhanced and repressed genes. The size of this augmented data matrix was of 9436 genes and 16 samples. As in previous case, initial estimates of matrix G were calculated using a pure variable detection method [34] and  the uncertainties matrix of size 9436 x 16 was obtained in the same way as before, i.e. 25% of the signal. WALS optimization was performed also in the same way as before for the analysis of the “Diauxic Shift” data set. The optimization algorithm converged (after 42 iterations) with an explained data variance equal to 83.6%.
Figure 5 near here

In this case three components were resolved with their temporal evolution and gene expression profiles (Figure 5). When only two components were considered, only the differences between samples at time 0 and those at all the other times (1 hour and 4 hours) could be clearly distinguished (see Table 1 for the identification of the different samples of the data set). The model using two components only can distinguish between treated and non-treated samples, missing additional temporal information. The model with only two components would mean that the interaction between daunorubicin and the different genes only happens at the beginning of the process. Conversely, when four or five components were considered, some of the already resolved components were simply spitted into two or three new components without providing any further information (see the graphs in Figure 5)). The three resolved components separated well non-treated samples (0h samples 1 to 6), from treated samples for 1 h (samples 7 to 10) and from treated samples for 4 h (samples 11 to 16,). Thus, resolution using three components was finally preferred and it gave profiles explaining better the treatment and temporal information, with similar results to those obtained from a previous SOM analysis [28].  

Figure 6 near here

Resolved profiles are shown in Figures 6-c,f,i (TT time profiles) and Figures 6-a,b,d,e,g,h (boxplots of gene profiles, Gaug). Table 4 shows GO term finder results for significant genes in the analysis of the direct matrix (GM) and inverted matrix (G1/M) scores for each of the resolved components. The most streaking information of these results is provided by component 3 (C3), as genes related to translation (GOID 6412) appeared highly scored in GM, whereas genes related to energy generation (GOID 6091) appeared highly scored in G1/M. Close inspection of the results revealed that this pattern is mainly driven by the very high scores of ribosomal protein genes and glycolytic genes (Figure 7). This pattern of gene expression is very unusual in yeast, since fermentation and protein synthesis normally run in parallel, and it is attributed to a specific alteration of the glycolytic regulatory system by daunorubicin [28]. Other features detected by WALS were also observed in previous clustering/SOM analysis, as the increased Ty gene transcription (Transposition, GOID 32197) in daunorubicin-treated samples relative to the non-treated ones. However, the results of WALS suggested a somewhat different pattern for the regulation of Ty-related genes compared to that for translation-related ones: Ty-related genes appeared in WALS as highly scored in C1 of G1/M, whereas translation-related genes appeared highly scored in C3 of GM (Table 4). In addition, a subset of the latter genes (Ribosome biogenesis, GOID 42254) appeared also scored in C1 of G1/M (Table 4).  As C1 corresponds to the start of the experiment, at which control and treatment samples were experimentally identical, we consider that this distribution corresponds to a mathematical initial adjustment of data. In any case, WALS showed a clear pattern of evolution of clearly differentiated expressions for transposition-, translation and glycolysis-related genes, with similar categories to those obtained in the previous clustering/SOM analysis. In addition, it provides a confirmatory  proof that these changes started already at the first hour of treatment, a conclusion that was tentatively proposed, but not completely demonstrated in the previous work [28].  

Figure 7 near here

Table 4 near here

5. Conclusions

In this paper, Multivariate Curve resolution is shown to be a useful tool for the analysis of time course DNA microarray experiments. The use of this method allowed extracting relevant information from two different DNA microarray datasets. In order to do this, the augmented data matrix including the original DNA microarray fluorescent measurement ratios and their inverted ratios was analyzed. This allowed an improved biological interpretation giving the same importance to those genes which were more (enhanced) and less (repressed) expressed in the problem sample than in the control sample. A better and easier interpretation of gene and time evolution profiles was achieved by application of Multivariate Curve resolution methods compared to traditional cluster analysis methods. In addition, the Multivariate Curve Resolution weighted approach, MCR-WALS, is shown to have some advantages compared to the classical MCR-ALS method. Thus MCR-WALS is less prone to data overfitting than MCR-ALS and it propagates less noise to the finally resolved profiles. Moreover, the MCR-WALS algorithm could deal appropriately with the ubiquitous presence of missing data without loss of significant information. Further developments of the MCR-WALS method are planned to promote it as a standard tool for the –omics field
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7. Figure Captions

Scheme 1. a) Description of the direct (M), inverted (1/M) and augmented ([M;1/M] matrices and b) MCR-WALS simultaneous analysis of the augmented data matrix, [M;1/M].

Scheme 2. MCR-WALS flow chart for the analysis of time course microarray data.

Figure 1. Comparison of the resolved temporal evolution of the gene expression for the diauxic shift data set by MCR-AWLS using (a) 3 components, (b) 4 components, (c) 5 components, (d) 6 components and (e) 7 components

Figure 2. Comparison of the results obtained by MCR-WALS and MCR-ALS for the “diauxic shift” data set using four components. Solid lines: MCR-WALS, dashed lines: MCR-ALS with all missing values substituted and dotted lines: MCR-ALS with most of the missing values eliminated and the rest substituted.

Figure 3. MCR-WALS results obtained for each component. Boxplots corresponding to the resolved gene profiles for the analysis of the original matrix (a,d,g,j) and inverted matrix (b,e,h,k). Temporal evolution of the resolved gene expression profiles (c,f,i,l). Solid lines: profiles obtained from the analysis of the direct matrix, M. Dashed lines: profiles obtained from the analysis of the inverted matrix, 1/M.

Figure 4. Score plots for (from top to bottom) ribosomal protein genes, respiratory chain genes, tricarboxylic acid cycle genes, and glycolytic genes for the different components as resolved by MCR-WALS using the diauxic shift microarray data, in both the direct (left), M, and the inverted (right), 1/M, matrices. Each line corresponds to one single gene. Genes used for this calculation were the following: Ribosomal-protein genes: RPL4A, RPL4B, RPL5, RPL6A, RPL6B, RPL7A, RPL7B, RPL8A, RPL8B, RPL9A, RPL9B, RPL1A, RPL1B, RPL2A, RPL3, RPL11A, RPL11B, RPL12A, RPL12B, RPL13A, RPL13B, RPL14B, RPL15B, RPL16A, RPL16B, RPL17A, RPL17B, RPL18A, RPL18B, RPL19A, RPL19B, RPL20A, RPL20B, RPL21A, RPL21B, RPL22A, RPL22B, RPL23A, RPL23B, RPL24A, RPL24B, RPL25, RPL26A, RPL26B, RPL27A, RPL27B, RPL28, RPL30, RPL31A, RPL31B, RPL32, RPL33A, RPL33B, RPL34B, RPL35A, RPL35B, RPL36A, RPL37A, RPL37B, RPL38, RPL39, RPL40A, RPL40B, RPL41A, RPL42A, RPL42B, RPL43A, RPL43B, RPS0A, RPS0B, RPS1A, RPS1B, RPS2, RPS3, RPS4A, RPS4B, RPS6A, RPS6B, RPS7A, RPS7B, RPS8A, RPS8B, RPS9A, RPS9B, RPS10A, RPS10B, RPS11A, RPS11B, RPS12, RPS13, RPS14A, RPS14B, RPS15, RPS16A, RPS16B, RPS17A, RPS17B, RPS18A, RPS18B, RPS19A, RPS19B, RPS20, RPS21A, RPS22A, RPS22B, RPS23A, RPS23B, RPS24A, RPS24B, RPS25A, RPS25B, RPS26A, RPS26B, RPS27A, RPS27B, RPS28A, RPS28B, RPS29A, RPS29B, RPS30A, RPS30B, RPS31. Respiratory chain genes: NDE1, NDI1, SDH2, SDH3, SDH4, COR1, CYT1, RIP1, QCR10, QCR2, QCR6, QCR7, QCR9, COX12, COX13, COX6, COX8, ATP1, ATP14, ATP16, ATP17, ATP2, ATP3, ATP5. Tricarboxylic acid cycle genes: ACO1, CIT1 , FUM1 , IDH1 , KGD2 , LSC1 , MDH1 , SDH2 , SDH3 , SDH4 , YHM2.  Glycolytic genes: ADH1, ADH2, ADH3, ADH5, CDC1, CDC19, ENO1, ENO2, FBA1, GLK1, GPM1, GPM2, GPM3, HXK1, HXK2, LAT1, PDA1, PDB1, PDC1, PDC5, PDX1, PFK1, PFK2, PGI1, PGK1, PGM1, PGM2, STO1, TDH1, TDH2, TDH3, TPI1, TYE7.

Figure 5. Comparison of the resolved temporal evolution profiles for the daunorubicin data set by MCR-AWLS using (a) 2 components, (b) 3 components, (c) 4 components  and (d) 5 components.

Figure 6. MCR-WALS results obtained for each component. Boxplots corresponding to the resolved gene profiles for the analysis of the original matrix, M, (a,d,g) and inverted matrix, 1/M, (b,e,h). Resolved temporal evolution profiles (c,f,i). Solid lines: profiles obtained from the analysis of the direct matrix, M, Dashed lines: profiles obtained from the analysis of the inverted matrix. 1/M.
Figure 7. Score plots for ribosomal protein genes (top) and gycolytic genes (bottom) for the different components as calculated by MCR-WALS using the daunorubicin-treated microarray data, in both the direct, M, (left) and the inverted , 1/M, (right) matrix. Each line corresponds to one single gene. Ribosomal-protein genes and glycolytic genes used for this calculation are listed in Figure 4.

Table 1. Identification of the samples in the daunorubicin data set.

Table 2. Explained Variances (Equation 15) for different number of components using MCR-WALS and MCR-ALS

Table 3. GO term finder results for high-scored genes in the direct, M, and the inverted, 1/M, matrices from the diauxic shift microarray.
Table 4. GO term finder results for high-scored genes in the direct. M, and the inverted, 1/M, matrices from the daunorubicin-treatment microarray.
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Table 1. 
	Replicate Nr.
	Time (hour)
	Sample
	Replicate

	1
	0
	A
	1

	2
	0
	B
	1

	3
	0
	C
	1

	4
	0
	A
	2

	5
	0
	B
	2

	6
	0
	C
	2

	7
	1
	A
	1

	-
	1
	B
	1

	8
	1
	C
	1

	9
	1
	A
	2

	-
	1
	B
	2

	10
	1
	C
	2

	11
	4
	A
	1

	12
	4
	B
	1

	13
	4
	C
	1

	14
	4
	A
	2

	15
	4
	B
	2

	16
	4
	C
	2


* At time 1 hour, replicates from Sample B were discarded due an anomalous behaviour
Table 2.  

	Number of components
	% Explained Variance (MCR-WALS)
	% Explained Variance (MCR-ALS1)
	% Explained Variance (MCR-ALS2)

	3
	85.4
	94.8
	95.4

	4
	91.3
	96.4
	96.8

	5
	93.6
	97.9
	98.0

	6
	99.9
	98.4
	98.5

	7
	99.9
	99.0
	99.0


1. ALS optimization in which the missing values in the experimental data matrix have been fixed substituted by 1

2. ALS optimization in which only genes with a maximum of two missing values in the 12 samples are considered (the value of the missing values have been substituted by 1)

Table 3.  

	
	Direct matrix
	Inverted matrix

	
	GOID
	GO term
	Cluster frequency
	p-value
	GOID
	GO term
	Cluster frequency
	p-value

	Component 1
	42254
	Ribosome biogenesis
	33/135
	3.39·10-11
	46394
	Carboxylic acid biosynthetic process
	22/140
	1.36·10-11

	
	6412
	Translation
	39/135
	4.15·10-8
	
	
	
	

	Component 2
	19752
	Carboxylic acid metabolic process
	37/147
	6.51·10-15
	
	No significant ontology term
	
	

	
	6007
	Glucose catabolic process
	9/147
	3.03·10-5
	
	
	
	

	Component 3
	6091
	Generation of precursor metabolites and energy
	19/153
	5.54·10-6
	42254
	Ribosome biogenesis
	51/185
	1.50·10-20

	
	45454
	Cell redox homeostais
	5/153
	0.00074
	30490
	Maturation of SSU-tRNA
	20/185
	1.11·10-10

	
	
	
	
	
	8652
	Cellular amino acid biosynthetic process
	17/185
	1.04·10-6

	Component 4
	15980
	Energy derivation by oxidation of organic
	23/193
	2.16·10-9
	42254
	Ribosome biogenesis
	82/208
	1.44·10-48

	
	6979
	Response to oxidative stress
	12/193
	0.00068
	30490
	Maturation of SSU-tRNA
	32/208
	1.13·10-23


Table 4.  

	
	Direct matrix
	Inverted matrix

	
	GOID
	GO term
	Cluster frequency
	p-value
	GOID
	GO term
	Cluster frequency
	p-value

	Component 1
	
	No significant ontology term
	
	
	32197
	Transposition, RNA-mediated
	62/338
	1.97·10-44

	
	
	
	
	
	42254
	Ribosome biogenesis
	41/338
	0.00055

	Component 2
	
	No significant ontology term
	
	
	51252
	Regulation of RNA metabolic process
	60/525
	5.91·10-5

	Component 3
	6412
	Translation
	64/234
	1.22·10-12
	6091
	Generation of precursor metabolites and energy
	38/427
	9.05·10-9

	
	
	
	
	
	9084
	Glutamine family amino acid biosynthetic process
	11/427
	0.00013
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.  
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