
Inelastic Transport in Vibrating Disordered Carbon Nanotubes: Scattering Times and
Temperature-Dependent Decoherence Effects

Hiroyuki Ishii,1,2 Stephan Roche,3,4 Nobuhiko Kobayashi,2 and Kenji Hirose5

1Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

3CIN2 (CSIC-ICN) Barcelona, Campus UAB, E-08193 Bellaterra, Spain
4CEA, INAC, SP2M, L_Sim, 17 avenue des Martyrs, 38054 Grenoble, France

5Nano Electronics Research Laboratories, NEC, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
(Received 4 December 2009; published 19 March 2010)

By using an order N quantum transport methodology, and treating on the same footing static and

dynamical disorders, we report on the theoretical exploration of quantum interferences tuned by electron-

phonon mediated decoherence mechanisms in disordered carbon nanotubes (with length up to 10 �m).

This allows the extraction of inelastic scattering times together with temperature-dependent coherence

lengths, which favorably compare with available experimental data at a quantitative level, and clarify the

role of localization phenomena up to room temperature.
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Introduction.—In recent years, the understanding of
quantum transport properties of materials strongly modi-
fied by (electron-phonon mediated) time-dependent struc-
tural changes (such as DNA, organic crystals, etc.) has
become a great theoretical challenge, genuinely demand-
ing innovative computational approaches. Recent break-
throughs include the work of Troisi and co-workers [1],
who performed nanoseconds-long molecular dynamics of a
columnar mesophase of a discotic liquid crystal, from
which realistic parameters of the Hamiltonian could be
evaluated, allowing the exploration of electron dynamics
in partially ordered organic semiconductors. Based on a
similar strategy, Gutiérrez et al. [2] theoretically suggested
that DNA conformational fluctuations are essential in de-
termining long-range charge transport, shedding new light
on long-standing controversies. In the same family of
carbon based materials, carbon nanotubes (CNTs) [3] and
graphene [4] are currently the subject of main scientific and
technological concerns, but the role of temperature-
dependent effects remains poorly understood. In a high
bias regime, the true nature of inelastic transport through
CNTs remains fiercely debated [5]. The situation is better
understood at low bias, for which clean CNTs exhibit
ballistic conduction up to the micron scale [6–8]. Weak
localization (WL) [9,10] or strong localization regimes
[11] have also been reported in more disordered nanotubes,
underlying the role of disorder-induced quantum interfer-
ence effects up to room temperature. Finally, the tempera-
ture dependence of mean free paths (MFPs) was recently
investigated experimentally in ultralong CNTs [12]. The
importance of electron-phonon scattering processes was
outlined, and an anomalous increase of resistance at low
temperatures in very long CNTs was not understood.

In this Letter, by combining tight-binding molecular
dynamics with an order N real space method to compute

the Kubo-Greenwood conductance, the temperature depen-
dence of transport length scales in disordered CNTs is
explored. Using the conventional phenomenology of WL
theory, the coherence length limited by electron-phonon
dephasing mechanisms is evaluated and compared with the
inelastic scattering lengths derived from the lattice vibra-
tion properties. The crossover from a coherent to a fully
incoherent transport regime is pinpointed by comparing
such transport length scales, and is shown to be tuned by
both static and dynamical disorders.
Decoherence mechanisms in mesoscopic systems take

place as soon as dephasing processes start to reduce the
quantum coherence of propagating wave packets.
Depending on the temperature range and material under
study, decoherence mechanisms can be driven either by
electron-electron (e-e) or electron-phonon (e-ph) cou-
plings [13,14]. Within the WL theory, the quantum correc-
tion to conductance is related to the coherence length L�,

which denotes the scale beyond which the contribution of
quantum interferences vanish. Here, the possible e-e deco-
herence mechanisms (predominant at very low tempera-
tures) are disregarded.
Hamiltonian model.—The WL regime is induced by

introducing a static source of elastic scattering, based on
the commonly employed Anderson-type disorder potential
[6]. The model consists in modifying the on site energies "i
of � orbitals of a simple (nearest-neighbors) tight-binding
Hamiltonian of a (5,5) metallic armchair CNT [3]. The
interval width ½�W�0=2;þW�0=2� (�0 ¼ 2:5 eV) in
which "i are randomly selected determines the disorder
strength and the corresponding elastic MFP [7]. By setting
W ¼ 0:2 in our model we can reproduce the typical elastic
MFP of 400 nm also found in Ref. [7] close to the charge
neutrality point. Beyond this range, strong quantum inter-
ferences lead to localization phenomena.

PRL 104, 116801 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 MARCH 2010

0031-9007=10=104(11)=116801(4) 116801-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.116801


The impact of lattice distortion generated by increasing
the nanotube temperature is encoded in the off-diagonal
coupling matrix elements of the Hamiltonian. The atomic
displacements are generated using a tight-binding molecu-
lar dynamics scheme, which thus provides time- and
temperature-dependent renormalized �-� off-diagonal
coupling elements �ijðtÞ, encompassing e-ph interaction

within both harmonic and anharmonic regimes [15]. We
employ the empirical form for energies of �ijðtÞ ¼
�0
ijjR0

i �R0
j j2=jRiðtÞ �RjðtÞj2 [16] with �0

ij ¼ 2:5 eV,

where RiðtÞ represents the atomic position at time t and
R0

i is at equilibrium. The phonon-vibration effects are
taken into account from the molecular dynamics (MD)
simulation [7] using the Brenner-Tersoff potential for
C-C bonds [17,18]. At fixed temperature T, the velocities
of carbon atoms are normalized at each time step by the

conditions of
PNc

i¼1 Mc
_R2
i =2 ¼ 3NckBT=2, where Mc and

Nc are mass and number of carbon atom, and kB is the
Boltzmann constant.

Weak localization phenomenology.—The phase-
coherence length L� is derived using the WL theory as

follows. In the presence of static disorder, beyond the scale
defined by the elastic MFP, quantum interferences produce
a quantum correction to conductance which scales as
�GWL ¼ �ð2e2=hÞL�=L [13]. Here L is the system length

and L� is derived from the temperature-dependent de-

phasing mechanisms taking place in the material [14,19].
The resistance at zero temperature is thus entirely moni-
tored by static impurity scattering and localization
effects. Since the resistance is defined as the inverse
of conductance R¼1=ðGimpþ�GWLÞ’1=Gimp�ð1=
GimpÞ2�GWL�Rimpþ�RWL, the quantum correction

�RWL is given by �RWL=R
2
imp ¼ ð2e2=hÞðL�=LÞ.

Assuming the validity of the Matthiessen rule, the total
resistance is given by RðTÞ ¼ Rimp þ RphðTÞ þ �RWLðTÞ,
from which the coherence length can thereby be deduced:

L�ðTÞ ¼ h

2e2

�
�ðTÞ � �imp � �phðTÞ

�2
imp

�
; (1)

where �ð� R=LÞ is the 1D resistivity in the diffusive
regime.

To obtain L� from Eq. (1), we need �ðTÞ, �imp, and

�phðTÞ. �ðTÞ and �PhðTÞ are obtained from �ðTÞ ¼
ðh=2e2Þ½vF=2DmaxðW;TÞ� and �phðTÞ ¼ ðh=2e2Þ �
½vF=2DmaxðW ¼ 0; TÞ�. Here, Dmax is the diffusion coef-
ficient discussed later. Since �ðT ! 0Þ includes the WL
effects, we extract �imp from the high-temperature limit as

limT!þ1½f�imp þ �phðTÞ þ ��WLðTÞg � �phðTÞ�, assum-

ing that the localization effect vanishes in the high-
temperature limit, i.e., ��WLðT ! þ1Þ ¼ 0.

Transport methodology.—To evaluate L� using Eq. (1),

we employ the quantumwave packet approach [7], suitable
to simulate quantum transport in huge and complex sys-

tems. The resistivity �ðTÞ is obtained from the Kubo

formula, such as �ðTÞ ¼ ð1=2e2ÞTr½L=�ðE� ĤÞ��
ð1=DmaxÞ. Here Tr½�ðE� ĤÞ=L� corresponds to the den-
sity of states per unit length at Fermi energy E, andDmax is
the quantum diffusion coefficient given as the maximum
value of the time-dependent diffusion coefficient, defined
as DðtÞ � Rþt

�t dthv̂xðtÞv̂xð0ÞiE, which also reads

DðtÞ ¼ 1

t

P
nh�nj�ðE� ĤÞðÛyðtÞx̂ ÛðtÞ � x̂Þj2�ni

P
mh�mj�ðE� ĤÞj�mi

;

where v̂x and x̂ are the velocity and position operator along
the tube axis in the Schrödinger representation, respec-
tively. To evaluate DðtÞ, the dynamics of electronic wave
packets j�ni is followed through the time-evolution op-

erator ÛðtÞ ¼ �N�1
n¼0 exp½iĤðn�tÞ�t=@�, with ĤðtÞ and

�t ¼ t=N. Employing the Chebyshev polynomial expan-

sion method for ÛðtÞ, an order N calculation allows us to
perform quantum transport calculations in systems with
�106 of carbon atoms [7]. Two initial electron wave
packets are used, as well as eight distributions for the
Anderson impurities, and eight initial Maxwell velocity
distributions in the MD simulation, thereby averaging
totally by 2� 8� 8 different initial conditions. The cal-
culations are performed forDðtÞ up to t � 10 pswith�t �
0:1� h=ð1 eVÞ ¼ 0:41 fs for 10 �m-long (5,5) CNTs
with open boundary conditions, while the MD simulations
are done for a 250 nm (5,5) CNTs with periodic boundary
conditions, sufficiently large to achieve convergence of
transport calculations [7].
Mean free paths.—Figure 1 shows the resistances of

(5,5) CNTs at T ¼ 0 and 60 K as a function of CNT length
L (W ¼ 0:2). First, the observed decay of the diffusion
coefficient DðtÞ at zero temperature (inset), driven by
localization effects, is seen to be strongly reduced at T ¼
60 K. The length dependent resistance is further seen to

0 0.2 0.4 0.6 0.8 1.0
5

10

15

20

Length [µm]

R
es

is
ta

nc
e 

[k
Ω

] T = 0K

T = 60K0 1.0 2.0 3.0
0

100

200
T = 60K

T = 0K

D
(E

F,
t)

 [
nm

2 /
fs

]

t [ps]

(2G
0
)-1

FIG. 1 (color online). Main frame: Length dependence of the
total resistance for a (5,5) CNTs at 0 K (black line) and 60 K
[gray (red) line] with W ¼ 0:2. Horizontal dashed line denotes
ð2G0Þ�1, with G0 ¼ 2e2=h the resistance quantum. The other
dashed line is a guide to the eyes for pinpointing the crossover
between ballistic and diffusive regimes. Inset: Time dependence
of the diffusion coefficient for the same parameters.
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exhibit a crossover from a ballisticlike (almost length
independent) to a diffusive behavior, in which the increase
of resistance almost scales linearly with length. The cross-
ing points of the two asymptotic lines for ballistic and
diffusive regimes allow for an estimation of the MFP ‘,
which is found as ‘ � 0:4 �m at T ¼ 60 K for W ¼ 0:2.

Now by tuning the static disorder parameter W, one is
able to reproduce the experimental observations of the T
dependence of ‘. Since the velocity correlation vanishes
with hvðtÞvð0Þi ¼ hv2

Fi expð�t=�Þ, we obtain Dmax as
Dmax ¼ hv2

Fi�, and correspondingly MFP is obtained
from ‘ ¼ Dmax=vF. Here, vF is the Fermi velocity, which
is evaluated as 0:82 nm=fs from the simulation and per-
fectly agrees with the analytical estimate.

In Fig. 2, the logarithm plot of temperature-dependent ‘
is shown for W ¼ 0, 0.1, and 0.2. One clearly notices that
MFPs are determined by the static disorder in low tem-
perature regime (T < 50 K), while they tend to merge in
the high-temperature regime, when phonon scattering con-
tributions to the transport properties prevail. For W ¼ 0,
the MFP ‘ie � T�1 is fully dominated by phonon-driven
scatterings [20]. More interestingly, the obtained tempera-
ture dependence of ‘ from our numerical results is in full
agreement with experimental data [12]. We also find that
the MFP increases linearly with CNT diameter (not shown
here) as predicted analytically [6]. From here on, we fix the
parameter W ¼ 0:2 and discuss the behavior of L�.

Coherence length.—Since we employ the classical ap-
proach for the phonon vibrations using MD simulation,
non-energy-conserving scattering processes are neglected,
and only dephasing mechanisms driven by dynamical dis-
order are retained. This computational methodology can be
rationalized following the picture of quantum decoherence
as described by Stern et al. [19]. Dynamical disorder will
generate many energy-conserving processes that yield a

dephasing of the propagating wave packets and corre-
sponding loss of quantum coherence. This loss accumu-
lates in time as the wave packet diffuses through the
disordered system, and once the uncertainty on the quan-
tum phase is in the order of 2�, the full suppression of
coherence allows us to extract L� (see also [14]).

We evaluate the temperature dependence of resistivities
from 3 to 550 K, which are averaged within
[� 0:25 eV;þ0:25 eV] energies. We find that [�ðTÞ �
�PhðTÞ] saturates to 9:38� 10�3 k�=nm over 400 K,
and the elastic MFP ‘e ¼ 688 nm since �imp ¼ ðh=2e2Þ�
ð1=2‘eÞ. We can evaluate L�ðTÞ from the obtained �ðTÞ,
�phðTÞ, and �imp using Eq. (1). Figure 3 gives the inverse

phase-coherence length L�1
� as a function of T. We see that

the temperature dependence of L� is markedly changed at

250 K. The data from 20 to 100 K are fitted very well by
L� / T�0:558, while L� / T�1 fits the data from 250 to

350 K. This observation is well understood from the tem-
perature dependence of relaxation times �. The inelastic
relaxation time due to phonon scatterings is given by
�ieðTÞ � DmaxðW ¼ 0; TÞ=v2

F and shows T�1 dependence.
On the other hand, the elastic relaxation time �eð� ‘e=vFÞ
due to impurity scatterings is temperature independent;
thus, we see that �ieðTÞ and �e cross each other at 250 K
(Fig. 3, inset). This indicates that, when T is less than
250 K, elastic scattering with impurities dominates and
e-ph mediated scattering occurs after the system reaches
the diffusive transport regime. In this regime, using the
diffusion coefficient De

max � vF‘e, the inelastic scattering
length is determined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De

max�ie
p

, and therefore L� has the

T�0:5 dependence since �ie is proportional to T
�1. It should

be noted that L�ðT ! 0Þ has no meaning in the present

calculation, since we treat the phonons semiclassically and
since e-e scattering (which is important in such low tem-
perature regime) is neglected.
In the high-temperature regime (T � 250 K), on the

other hand, electron propagation is fully dominated by
e-ph scatterings. The inelastic scattering length is given
by vF�ie, which is proportional to the inverse temperature
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FIG. 2. Temperature dependence of the MFPs for a (5,5) CNT
with both dynamical disorder and several strengths of the static
disorder potentialW. For W ¼ 0, MFP is entirely determined by
the e-ph coupling and is proportional to T�1. For W � 0, MFP
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T�1. It is important to note that the coherence length is not
determined from L� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

De
max�ie

p
close to room tempera-

ture. These observations on the power-law behaviors of
T-dependent inelastic scattering length agree qualitatively
well with our simulation results of L�ðTÞ in Fig. 3. The

coherence length does not equal the inelastic scattering
length because the quantum decoherence takes place be-
fore non-energy-conserving processes dominate conduc-
tion [19]. Here we note theW dependence on L�ðTÞ. Since
the elastic scattering time increases as �e / W�2, when the
disorderW decreases from 0.2 to 0.1, the intersection of the
temperature dependence of �ieðTÞ and �e is decreased from
250 to 50 K. In such temperature range, L� shows T�1 or

T�0:5 behavior depending on the static disorders of
samples.

Stojetz and co-workers [10] reported on the energy
dependence of both the elastic MFP ‘e and the coherence
length L�, particularly sensitive to onsets of new subbands.

However, their experimental data also suggest that L� �
‘e close charge neutrality point, in apparent contradiction
with the use ofWL theory. Comparing L� with ‘e in Fig. 4,

it is seen that for charge injection at low energies, WL
theory is inapplicable whenever T � 40 K, which agrees
with the inconsistency obtained in Ref. [10] at T ¼ 60 K.
This underlines the strong decoherence effects driven by
vibrations in CNTs, which also suggests some reconsid-
eration of strong localization phenomena debated in the
literature [11,12].

Conclusion.—Using a combined MD and order N quan-
tum transport methodology, the e-ph coupling effects on
phase-coherence problems have been analyzed from low-
to high-temperature regimes (but small bias voltage). Our
simulations show that L� can reach 1 �m at low tempera-

tures (in metallic tubes), decays with temperature, and
vanishes at 400 K. At low temperatures, L� shows a

T�0:5 behavior satisfying the conventional WL theory,
whereas L� decays linearly with temperature when inelas-

tic scattering predominates over elastic processes. The
crossover temperature (½50; 250� K) depends on the
strength of the static disorder. Finally, one notes that our
results neglect the contribution of high-energy phonons,
which more severely impact inelastic MFPs, but are only
activated in the high bias regime [21].
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