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SUMMARY: Planktonic successions are short ones. truncated by inputs of external energy. Thus, long-term data can
involve different stages with different interaction rules. Any model used to describe planktonic dynamics must take this
variation in growth and interaction rates into account. In this paper we study a simple two-dimensional discrete map of
predator-prey interaction and explore how the variation of parameters can affect the dimensionality of the system.
Implications for the characterization of real planktonic time series in the light of dynamical systems theory are also
discussed.
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RESUMEN: COMPORTAMIENTO CAOTICO EN SUCESIONES PLANCTONICAS SIMULADAS, 11 APLICACIONES DISCRETAS. —
Las sucesiones planctonicas son cortas y se ven a menudo interrumpidas por entradas de energia externa. De este
modo. series temporales largas pueden superponer diferentes estadios de la sucesion con diferentes reglas de interac-
cion. Cualquier modelo utilizado para describir la dindmica del plancton debe considerar esta variacion en las tasas de
crecimiento ¢ interaccion. En este articulo se estudia una aplicacion sencilla del tipo presa-depredador y se explora
como la variacion de los pardametros puede afectar a la dimensionalidad del sistema. Asimismo. se discuten las implica-
ciones para la caracterizacion de serics temporales planctonicas reales bajo la luz de la teorfa de los sistemas dindmicos.

Palabras clave: Caos determinista, modelos ccologicos, series temporales, sucesion planctonica. dimension fractal.

INTRODUCTION

Nonlincar phenomena and chaos have received
increasing attention in the last few years (STEWART,
1989). The study of discrete maps of population dy-
namics was one of the pioneering fields in which de-
terministic chaos theory was developed (MAy, 1976;
FEIGENBAUM, 1979). It was shown that even the sim-
plest models could give an unexpected richness of dy-

)(u t = f“‘ll(‘(\’ll)

i.e., the X-value in the next time step is a function of
its present value. F, is often a nonlinear map. 1 being
the so-called bifurcation parameter, that is, a para-
meter that drive the system through different kinds of
dynamics (stationary. periodic and chaotic) when its
numerical value is increased.
Thus, the utilization of discrete (difference) mans
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Fici. 1. — Strange attractor of model (1). In spite of being temporal series (Fig. 3¢) noise-like. chaos has an underlying order as can be seen

3.45. A large enough number of iterations were discarded in order to prevent transient behaviour. Right: a

magnification of a detail of the attractor.

objection is especially evident when we model eco-
logical systems linked with a high degree of enviro-
mental variability. In such a situation, the parameter
values are expected to change with time. A plank-
tonic ecosystem is the best example. Its physical con-
strains determine a high turnover to compensate for
short. truncated successions that are governed by in-
puts of external energy. These “reset” successions in-
volve a change in the interaction rules. Thus, varia-
tion of the parameters can lead the system to
different dynamical behaviour, including a chaotic
domain. in different segments of the ecological histo-
ry (MARGALEF, 1986).

The study of planktonic time series in the light of
dynamical systems theory has shown opposite results.
In first place, the study by SuGiHARA and MAY
(1990) of a weekly record of marine planktonic dia-
toms gathered at San Diego. by means of nonlinear
forccasting. shows that the time series is chaotic with
an embedding dimension about 3 (low-dimensional
chaos). On the other hand, GODFRAY and BLYTHE
(1990) apply the correlation dimension technique
(see following sections) to a plankton record data
from the North Sea. As it is shown, the correlation
sum fails to converge as the embedding dimension in-
creases. This lack of convergence is characteristic of
noise and indicates that there is no low-dimensional
attractor underlying the dynamics. However, as
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GODFRAY and BLYTHE point out, the data quality of
the plankton record may not be good enough to allow
the application of this technique. In fact, GODFRAY
and BLyTHE outline the difficulties in applying the
dynamical systems techniques (developed for appli-
cations in physic) to biological data. Among these
problems. there are the lack of long-term data, the
presence of noise and transient behaviour.

Systems dynamics can be studied in the phase
space. i.e., that cuclidean space in which cach axis is
one of the variables involved in the motion. Consi-
der, for example. a prey-predator system. We have
two variables, that is, the number of preys and the
number of predators. We can plot the number of
preys against the number of predators in a given time
step. This is a point in the phase space (in this case a
plane). This point perfectly characterizes the system
state at a given moment. At the next time we have
another point. The sequence of points so constructed
is called the trajectory. This and all the other possible
trajectories (starting from different initial conditions)
evolve towards a subset of phase space called the at-
tractor. They are attracted by this topological subset
and will remain on it. This attractor can be a fixed
point (steady state), a limit cycle (periodic motion) or
a fractal, strange attractor (chaotic motion, sec Fig.
1). The characterization of the dynamics is only pos-
sible when the trajectory lies on the attractor. The
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FiG. 2. — Bifurcation diagram for the Lotka-Volterra map (1). The asymptotic dynamics (values of X after an initial transient is discarded)
arc plotted against the bifurcation parameter p. Right: magnification of a detail of the periodic window showing the self-similar (fractal)
properties of the map.

transient behaviour must be excluded. If ecological
systems are ussually evolving or displaying transients,
the application of current physical tools on temporal
series should be made with caution (BLYTHE and
STOKES, 1988).

Planktonic time series can involve different reset
successions, i.e., different environmental conditions.
Thus, we may be considering transients. This can be
the reason for the lack of convergence of correlation
dimension as the embedding dimension increases.
The aim of the present paper is to study how the
change of the parameter values in nonlinear discrete
maps can affect the numerical estimation of the sys-
tem’s dimension, and how this can be related with the
problem of studying long-term planktonic data in-
volving different stages of succession.

TWO-DIMENSIONAL NONLINEAR MAPS

To begin with, consider the following two-dimen-
sional map, which is applied to model a predator-
prey interaction:

XN Fr |uX71(1 - X/l - Yn) (]a)
Y/l o ﬁXnYn (lb)

X,, Y, being respectively the prey and predator popu-
lations at a given iteration n. Here u and {3 are the
growth rates. This system has two steady states:
P, = {00} and P, = {1/, 1 — ( + w)/Pu}. We can
study the stability properties of the non-trivial fixed
point by defining the community matrix:

OF(I) bF(H
ox oy
P =
bF(Z) OF(Z)
Ox Oy

For model (1) we have,

Wl -2x-y) —ux
Py P

In our study we will take u = 3 for simplicity. For P,,
I' will be:

0 -1
I'(Py) =
u—-2 1

i

which has an associated eigenvalue equation

-A =1
det (['(P,)) = det =0
u—2 1-A7
The attractor will be stable provided that |A,| < 1 for
both eigenvalues. This leads to the following stability
domain:

S(P) = {ulue(2.3).

By increasing the value of u we obtain a bifurcation
scenario with chaos beyond u = 3.43 (Fig. 2).

Now we will consider a version of model (1) that
takes into account some kind of variability of the
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FiG. 3. — Prey temporal series obtained from model (2). In both (a) and (b) u(s) € (3.3.5),

but in (a) the variation is periodic while in (b) is random. (¢) shows the motion of the nonlin-
ear map (1) with p fixed and equal to 3.45.
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FiG. 4. — Fourier spectra obtained from the prey temporal series

given by map (1). (a) p = 3.1 corresponding to a periodic motion.
(b) = 3.45 corresponding to a chaotic attractor whose temporal
series is shown in Fig. 3c.

growth ratae (w). It is as follows:

X

i

(s 1 = “‘(H)Xn(l - )(/1 - Yn) (23)
}/n g = M(H)XNYII (Zb)

We will study two different ways of varying the pa-
rameter value, that is:

(a) Variation of u in a simple periodic function,
ie.,

uw(n) = u, + 0.25sin (%)

(b) Random variation of u, i.e.,

wn) =, + 0

where 0 is a zero-centered gaussian variable of width
0.25. In both (a) and (b) we will take u, = 3.25.
Thus, u(n) € (3,3.5). For comparison, we consider
the simple case of u fixed and equal to 3.45. Fig. 3
shows the temporal series obtained for the three situa-
tions for 1000 iterations. As can be observed, there is
highly unstable behaviour with some degree of perio-
dicity in case (a). But by looking at the temporal
series we can obtain no much information about the
underlying dynamics. In fact, both deterministic
chaos and noise show a similar pattern in spite of the
completly different causes. A noisy temporal series
has random inputs and a very large number of varia-
bles are necessary in order to understand (if pos-
sible) the observed dynamics. The source of comple-
xity is external. On the other hand, chaos is an appa-
rently random behaviour shown by deterministic and
simple systems. Often only a small number of degrees
of freedom are necesary to characterize the motion.
The complexity is, in such a situation, intrinsic to the
system, due to the nonlinearity of interactions. In
spite of the apparent randomness shown in Fig. 3c,
there is an underlying order as can be seen in Fig. 1,
where the attractor for model (1) has been plotted.
So, we can use different tools from physical sciences
in order to characterize and distinguish such complex
temporal phenomena.

CHARACTERIZATION OF TEMPORAL
SERIES

In this section we will define some of the tools that
are used in the study of dynamical systems. In the
following section we will make use of them to define
the properties of our data. These measurements are:

Fourier spectra

The squared Fourier spectra is defined by the
well- known transformation:

n—1 2

1 —2JU (DK
P) = [2 ey

This analysis tells us the frequencies involved in the
complex motion and their relative importance. Ima-
gine a periodic motion, that is, a limit cycle attractor in
phase space. In this case, the spectral analysis would
show a thin peak corresponding to the frequency of
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the motion, i.e., to the number of cycles per unit time.
If we have more complex periodic behaviour involving
different frequencies, the spectral analysis would show
different peaks associated with such periodicities (see
Fig. 4a). The more important a given frequency in dri-
ving the dynamics, the higher its peak.

On the other hand, noise involves an infinite
number of different frequencies in a characteristic
power law: the higher frequencies correspond to the
smaller amplitudes. In the spectral analysis we can
see a broad band. Although entirely deterministic,
strange attractors can give rise to noisy spectra (see
Fig. 4b). Consequently, spectral analysis by itself is
unable to distinguish between chaos and noise.

Lyapunov exponents

Deterministic chaos is characterized by sensitive
dependence on initial conditions. Originally very
close trajectories separate exponentially. This unsta-
ble dynamical behaviour is, in fact, related with the
topological stretching-and-folding processes that take
place inside the strange attractor (SCHAFFER, 1984).
Thus, although the motion is deterministic, long-term
forecasting is not possible beyond a given temporal
horizon. This is because the difference between a ve-
ry good (but finite) knowledge about initial condi-
tions and an infinite one.

Lyapunov exponents are a measure of this diver-
gence of nearby trajectories. In this sense, there is
one Lyapunov exponent for each dimension of the
phase space. Thus, a dynamical system is called
chaotic if there is at least one positive Lyapunov ex-
ponent. So. we need just to compute the largest one

(%,,) defined as follows:
1 -

=—1{ 2 Ln(O( 1))
rt =1

r being the number of points sampled and

| X(t+1)-X (t+7)]

_
e X0 - X0

Here X(7) and X'(r) are two very close values of our
variable (two different initial conditions) and || || de-
notes, as usual, euclidean distance. We apply here
the Wolf algorithm (WOLF et al., 1985) in order to
estimate A,,.

Correlation dimension

In our two dimensional map we know exactly how
many variables are involved. But this is not usually
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the case in field studies. We could have only one tem-
poral serie, for example the record of a phytoplank-
ton species. Neither the attractor shape nor the mini-
mum number of variables that must be introduced
into the description of the system would be known.
Fortunately, this problem can be solved. Whitney’s
embedding theorem (TAKENs, 1981) states that we
can obtain a topological equivalent image of the at-
tractor by working with X(¢) (our measured temporal
series) and the set of variables obtained from it, by
shifting its values by a fixed lag t. So, we can recon-
struct the attractor for different embedding dimen-
sions defined by the new set of lagged variables:

(X(0).X( + 1) . X+ (1 — D))

Strange attractors have self-similar properties. i.e..
they are fractal subsets. Their fractal dimension, ac-
cording to GRASSBERGER and PROCACCIA (1983) can
be estimated by the correlation dimension (d):

d = limZMCW) (3)
=0 Ln(r)

where C(r) is the correlation sum:

C(r) = lim

1 o _
! “m% Hir - X, - X ) (4)

X, — X]lis the euclidean distance between a given
pair of points on the attractor. H(z) is the well-known
Heaviside function, i.e., H(z) =1 for z > 0 and
H(z) = 0 otherwisc.

Roughly speaking, expression (4) can be written
in the following way:

C(r) = Jim

m N-(h{ Number of pairs (i, j)

such that || X, - X =€ e}

Thus, the dimensionality d of the attractor, ac-
cording to expression (3) is given by the slope of the
Ln(C(r)) vs Ln(r) in a certain range of values of r.
We can construct the correlation sum and estimation
the dimensionality (d) of the attractor by considering
successively higher values of the dimensionality n of
phase space. If d reaches a saturation limit beyond
some relatively small n, i.e., d becomes asymptotic at
a certain value of n, this saturation value (d,) will be
an estimation of the attractor dimension. On the
other hand, the value of n beyond which saturation is
observed will provide the number of variables (de-
grees of freedom) involved in the dynamics. Since de-
terministic chaos has a low dimensionality while ran-
dom noise has no saturation limit, this technique
provides us with a tool to distinguish them.



la
100000
. 10000
- E
N b
O ]
1000 5
1007
R T T T T T L 0 O R T T T
0.01 0.1 1
r
100000 3
10000
~~ :
£ 1000
©
1005
103
] L T 7 S 8 T T T LI D W |
0.001 0.01 0.1 1
4]
]¢C
100000 3
10000 3
E
"o 1000
A 3
O ]
1004
103
1 T T T
0.001 0.01 0.1 1
r
FiG. 5. — Correlation sum vs 1 in a log-log plot. The slope of the

curves give us the correlation dimension d for the embedding di-

mension n. For (a). corresponding to u fixed and cqual to 3.45, d

reaches a saturation limit as can be observed from the same slope

of curves forn = 2.3.4.5 and 6. On the other hand. for (¢), that is,

the random variation of w, there is a lack of convergence while (b)

—corresponding to the periodic variation of n— shows an interme-
diate situation.

RESULTS AND DISCUSSION

We have computed the Largest Lyapunov expo-
nent from the three time series shown in Fig. 3. For
the simple Lotka-Volterra map with u = 3.45, ), =
0.15. This result (a positive Lyapunov exponent) in-
dicates that the motion is chaotic. For the time serics
generated with a periodic variation of u, we have esti-
mated %, = 0.08. Given our level of accuracy. we can
not distinguish this result from a value of zero indicat-
ing a periodic motion. Thus, the periodicity in the
change of growth rate drags the qualitative behaviour
of the dynamics towards a periodic regime. On the
other hand, for the last situation, i.e.. that of a ran-
dom variation of w, we have %, = (0.27. In this case.
however, the convergence of the Lyapunov exponent
is not as good as for the two mentioned above cases.
The presence of noise makes its computation more
difficult. One solution is to increase the data size. but
this is in general impossible for biological time series.
Thus, in order to decide whether the corresponding
motion is an example of low-dimensional, determi-
nistic chaos, we need to take into account extra in-
formation. that corresponding to the dimensionality
of the underlying dynamics.

In Fig. 5 Ln(C(r)) vs Ln(r) has been plotted for a
given range of embedding dimensions. The slope of
this representation gives us the estimated correlation
dimension. For u = 3.45, i.e., a simple 2D chaotic
map. d reaches a saturation limit for n = 2. as can be
seen in Fig. Sa. All the curves are parallell, that is,
they all have the same slope. In this case, an addition-
al increase of n beyond n = 2 does not change the
value of d. because of the low dimensionality of our
system. This is an example of low-dimensional chaos.
d, = 1.55 and we only need 2 degrees of freedom in
order to characterize this motion. On the other hand,
when w changes with time we have a different situa-
tion. In Fig. 5c (random variation). the slope of the
plot has a higher value at increasing embedding di-
mension. In other words, the correlation dimension
fails to converge, which is characteristic of noise. In
Fig. 5b (u changes in a periodic way) we can see an
intermediate situation. However, the result depends
on the frequency of the periodicity in the change of
parameter. Thus, when the growth rate moves
around a given value (especially in a random way).
the system becomes of higher dimensionality becausc
we are considering transient behaviour.

We believe that the last result is very important
for understanding planktonic successions. If we are
stydying a temporal series involving different stages
of ecological history. i.c., with different interaction
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and growth rates. we can detect an extra dimensio-
nality in spite of the low-dimensionality of the under-
Iving system. This may be the case for the plankton
record data from the North Sea, studied by GODFRAY
and BLYTHE (1990).

On the other hand, we are aware that the results
given in the present paper are based in a simple dis-
crete map, without any kind of spatial degrees of
frecdom, although space must be taken into account
i order to understand the stability properties of
chaotic dynamics (SOLE and VALLS. 1992). As plank-
tonic successions involve a complex pattern over
space (the well-known patchiness), we hope to report
the generalization of these results by using a spatial
counterpart of model (2) very soon.
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