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abstract: Many species exhibit widespread spatial synchrony in population  fluctuations. This pattern is of great ecological interest and can be a source of concern when the species is rare or endangered. Both dispersal and spatial correlations in the environment have been implicated as possible causes of this pattern, but these two factors have rarely been studied in combination. We develop a spatially structured population model, simple enough to obtain analytic so- lutions for the population correlation, that incorporates both dis- persal and environmental correlation. We ask whether these two synchronizing factors contribute additively to the total spatial pop- ulation covariance. We find that there is always an interaction be- tween these two factors and that this interaction is small only when one or both of the environmental correlation and the dispersal rate are small. The interaction is opposite in sign to the environmental correlation; so, in the normal case of positive environmental cor- relation across sites, the population  synchrony will be lower than predicted by simply adding the effects of dispersal and environmental correlation. We also find that population synchrony declines as the strength of population  regulation increases. These results indicate that dispersal and environmental correlation need to be considered in combination as explanations for observed patterns of population synchrony.
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Regional synchrony in the dynamics of local populations is common in animal populations ranging from parasites (Bolker and Grenfell 1996) to insects (Pollard 1991; Hanski and Woiwod 1993; Myers and Rothman 1995; Williams and Liebhold 1995; Sutcliffe et al. 1996, 1997), fish (Myers et al. 1995, 1997), birds (Ranta et al. 1995; Koenig 1998), and mammals (Moran  1953; Mackin-Rogalska and Na- baglo 1990; Steen et al. 1990; Royama 1992; Sinclair et al.

1993; Heikkila et al. 1994; Grenfell et al. 1998; Bjørnstad et al. 1999). The classical explanation for this phenomenon is that regionally correlated climatic forces engender pop- ulation  synchronization  (Hagen  1952; Mackenzie 1952; Moran 1953), a hypothesis that has been reinvestigated in several recent theoretical studies (Royama 1992; Ranta et al. 1995; Haydon  and  Steen 1997). Studies of spatially explicit population models reveal that local synchroniza- tion can also arise due to dispersal (Holmes et al. 1994; Molofsky 1994; Bascompte and  Sole´  1998) and  due to spatially extended  trophic  interactions  (Ims  and  Steen

1990; de Roos et al. 1991; Neubert et al. 1995). Understanding the causes of wide-scale synchrony has

recently become a central problem in population ecology because the global persistence of metapopulations de- creases as regional correlation increases (Harrison  and Quinn 1989; Gilpin and Hanski 1991; Hansson et al. 1992; Burgman et al. 1993; Grenfell et al. 1995). Many aspects of the design of nature reserves and the effective conser- vation of endangered species thus hinge on the level of regional synchronization in species dynamics. The resil- ience of populations to manipulation  (Myers and Roth- man  1995), to  biological control  (Cavalieri and  Kocak

1995), and to pest eradication (Bolker and Grenfell 1996) can also be related to the degree of correlation in dynamics. Investigations of synchrony as a function of environ- mental correlation and dispersal have produced equivocal results. For instance, Ranta et al. (1995) concluded that either dispersal or correlated noise may induce synchrony, whereas Haydon and Steen (1997) concluded that migra- tion acting alone can maintain synchrony only under re- strictive conditions. Gyllenberg et al. (1993) showed that dispersal may lead to spatial asynchrony (through spatially
induced chaos) or synchrony (through  phase-locking of cyclic populations), depending upon the mode of dispersal (see also Ruxton 1996; Kaneko 1998). One possible reason for the disparities among these results is that dispersal and environmental forcing might interact with local dynamics in a nonadditive manner to induce regional synchrony. If this interaction is strong, it will not be possible to study the effects of dispersal and environmental correlation sep- arately. This, in turn, will have consequences for the design and analysis of ecological studies.

The nature of this interaction is the primary focus of this article. In particular, we use a simple population model to ask whether the population covariance can be decom- posed, exactly or approximately, into additive contribu- tions from dispersal and a correlated environment. If not, we ask how large the remaining interaction term is. We


N1(t + 1) = (1 — D)[bN1(t) + (1 — b)N ∗ +  1(t)]
+ D[bN2(t) + (1 — b)N ∗ +  2(t)]
N2(t + 1) = (1 — D)[bN2(t) + (1 — b)N ∗ +  2(t)] 
(3)
+ D[bN2(t) + (1 — b)N ∗ +  2(t)].
The dynamics of the total population  density, M(t) = N1(t) + N2(t), are described by

M(t + 1) = bM(t) + 2(1 — b)N ∗ + [ 1(t) +  2(t)], 
(4)
which is also a first-order autoregressive process.

The Covariance

analyze a model in which the local dynamics, dispersal,

and environmental  stochasticity all enter linearly; if the

We   calculate  the   covariance  between


N1(t + 1)

and
decomposition works anywhere, it should work in this model. We obtain a full analytical decomposition for the simplest possible system that can entertain these effects: a coupled stochastic two-patch model.

The Model

We assume that the local population density is fluctuating

N2(t + 1) by recalling that the covariance of two sums is
the sum of the covariances of all of the cross terms:

cov(a + b, c + d) = cov(a, c) + cov(a, d)
+ cov(b, c) + cov(b, d).
We  assume   that   the   noise   is  density  independent: cov[Ni(t),  i(t)] = 0. We define the noise variance, var( i), to be j 2  and the noise covariance, cov(  ,    ), to be r.
1
2
around a stable equilibrium, described by


As long as FbF ! 1, the model is second-order stationary.
This means that cov[N1(t), N2(t)]  is independent  of time;

N(t + 1) — N ∗ = b[N(t) — N ∗] +  (t). 
(1)

in   particular


cov[N1(t + 1), N2(t + 1)] = cov[N1(t), N2(t)].
The current  population  density is N(t),  N(t + 1)


is the

Thus, we find cov[N1(t + 1), N2(t + 1)] by calculating the
covariance of both sides of (3):

population density at next time step, N ∗ is the equilibrium density, b (between —1 and 1) is the rate of return to the equilibrium, and  (t) is a white noise process. This can be thought  of as the linearization of a nonlinear model around  the equilibrium. The parameter b represents the outcome  of population  regulation, with b = 0 meaning that the population returns to the equilibrium immediately following a perturbation (“strong regulation”) and with b close to ±1 representing a very slow return to the equi- librium (“weak regulation”). Negative values of b corre- spond to overcompensation.
Equation (1) is a first-order autoregressive process; it can be rearranged to read
N(t + 1) = bN(t) + (1 — b)N ∗ +  (t). 
(2)

cov[N1(t + 1), N2(t + 1)] =
2D (1 — D)j 2 + [D 2 + (1 — D)2]r
+ b 2D (1 — D){var[N (t)] + var[N (t)]}
(5)
+ [D 2 + (1 — D)2]b 2cov[N (t), N (t)].
We need to  calculate the variance terms var[N1(t)] + var[N2(t)]  in equation (5). Since N1  + N2  = M is the total population size,

var(N1) + var(N2 ) = var(M ) — 2cov(N1, N2 ).
Now we need the variance of M; being a first order au- toregressive process, its variance is simply

We now consider a two-patch model, with the local populations linked by density-independent dispersal. A constant fraction of individuals (D) moves to the other patch in each generation. The coupled system is, thus,


and so


2j 2 + 2r
var(M ) =
2    ,
(6)
1 — b
var(N1) + var(N2 ) =

2j 2 + 2r
1 — b 2


— 2cov(N1, N2 ). 
(7)

not involve the environmental covariance. We find this by setting r = 0 in equation (8), yielding

Substituting (7) into (5), applying the identity

cov[N1(t + 1), N2(t + 1)] = cov[N1(t), N2(t)]
{ cov(N1, N2 ), and crunching through tedious algebra yield

cov(N1, N2 ) =
(8)
2j 2D(1 — D) + r[1 — b 2 — 2(1 — 2b 2)D(1 — D)]

2j 2D (1 — D)
covd = (1 — b 2)[1 — b 2(1 — 2D)2   .
(10)
] 
The “environment-induced covariance” is a little more subtle. At first glance, one might think (as did we) that this is simply r, the covariance in the environmental noise. However, we are really interested in the effects of the en- vironmental patterns on the covariance of the population density, which may be modified by the local dynamics. We choose to define the environment-induced  covariance as

(1 — b 2)[1 — b 2(1 — 2D)2] 

.
the population covariance in the absence of dispersal; sub-
stituting D = 0 into equation (8) yields

The covariance increases linearly with r (the environ- mental covariance) and j 2   (the environmental variance) and diverges to infinity as FbF approaches 1. The effect of the dispersal rate (D) is rather more complex, involving



cove =


r
1 — b 2


.
(11)
quadratics in both the numerator  and denominator, but the covariance always increases with D (fig. 1).

The pattern  in b occurs because the variance of the population  densities is going to infinity as b approaches
1 (FbF = 1 is a random walk). It is, thus, more informa- tive to look at the correlation,

corr(N1, N2 ) = cov(N1, N2 )Z/var(N1)var(N2 ). Since

j 2 + r
var(N1) = var(N2 ) = 1 — b 2 — cov(N1, N2 )

Thus the environmental  covariance is amplified by the
local dynamics, with the environment-induced covariance going to infinity as FbF approaches 1 (as in the total co- variance). This is the Moran effect for a first-order auto- correlated process.

Casual inspection reveals that the dispersal-induced co- variance and the environment-induced covariance do not account for all of the terms in (8). Thus, even in this simplest of systems (linear dynamics, constant dispersal rate, two patches) the spatial covariance in population density cannot be exactly decomposed into the effects of dispersal and the effects of the environmental correlation. We call the remaining term the “interaction covariance”:

(see eq. [7]), more mind-numbing  algebra yields



cov = —

2rD (1 — D)


.
(12)
corr (N1, N2 ) =
(9)
2D (1 — D) + r[1 — b 2 — 2(1 — 2b 2)D (1 — D)]
2rD (1 — D) + [1 — b 2 — 2(1 — 2b 2)D (1 — D)] ,

i
(1 — b 2)[1 — b 2(1 — 2D)2] 
Upon  inspection, this may be written as —rcovd , where r = r/j 2  is the spatial correlation in the noise. Thus, the interaction covariance is small only when either r or cov

where r = r/j 2  is the correlation in the noise. As expected, the population  correlation increases with r and D ; sur- prisingly, it also increases with FbF (fig. 2). The latter means that the synchrony decreases as the populations become more strongly regulated.

Decomposing the Covariance

Given an explicit representation of the spatial covariance (eq. [8]), we can proceed to evaluate the relative contri- butions of dispersal and environmental correlation to the overall population  synchrony. We define the “dispersal- induced covariance” as the part of the covariance that does


d
is small; the interaction  is a small fraction of the total
covariance only when r or D is small (fig. 3). Despite the importance  of the interaction term and the grimness of the intermediate calculations, the overall covariance de- composition is simple:

cov(N1, N2 ) = cove + (1 — r)covd .
(13) The total correlation (eq. [9]) can be decomposed in a
similar fashion. We cannot obtain the partial correlations by dividing the partial covariances by the total variance, for that would cause the dispersal correlation, for example, to depend on r (because the total variance depends on r).  Instead  we  substitute  the  boundary  conditions r = 0 
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Figure 1: Population  covariance as a function  of the dispersal rate (D), for various values of the return  rate to equilibrium (b) and various relationships between the noise variance (j2 ) and covariance (r).  Solid line : r = j2/2 ; dashed line : r = j2/4;  dotted line : r = j2/10. A, b = 0.01; B, b = 0.25; C, b = 0.5.

and

D = 0


into  equation  (9).  The resulting “dispersal-


relation are subadditive. The interaction correlation can

induced correlation” is




2D (1 — D)

be as large as the dispersal-induced correlation and up to half the environmental correlation.

A second important  result is that local density depen-
corrd  = (1 — b 2)[1 — 2D (1 — D)]

(14)

dence (b close to 0) invariably serves to decrease the level of synchrony in a metapopulation of linearized dynamic

(fig. 4). The “environment-induced correlation” is simply

r/j 2  = r, the correlation in the environmental noise. The remaining term, the “interaction correlation,” is a complex and uninformative expression but reduces to
corri  = —r corrd corr (N1, N2 ) 
(15)
= —corre corrd corr (N1, N2 ). 
(16) Thus, the total correlation is


maps. The stronger the local regulation, the more inde- pendently will the subpopulations act. Density dependence in population growth is previously known to enhance the persistence of populations by lowering extinction proba- bilities (e.g., Burgman et al. 1993; Hanski et al. 1996). We add to this by showing that density dependence may im- prove the persistence of a metapopulation by ameliorating the regionally synchronizing effect of correlation in the environment.  Likewise, weakened regulation in environ- mentally correlated populations coupled by dispersal may

contribute to synchronized extinctions (see Sutcliffe et al.
corr (N , N ) =

corre + corrd   .
(17)


1997 for an example of such dynamics in butterflies).
1 
2 
1 + corr corr
Discussion

We have analyzed a simple model of simple populations coupled by dispersal and correlated environmental sto- chasticity. Despite the linearity of the model, the contri- butions of dispersal and the correlated environment to population synchrony are not additive: the interaction be- tween the two effects can be quite large. The interaction covariance is proportional  to the environmental correla- tion and the dispersal-induced population covariance; the interaction correlation is proportional to the environ- mental correlation, the dispersal-induced correlation, and the total correlation. The interaction term is always op- posite in sign to the environmental correlation, so that in the normal situation where the environmental correlation is positive, the effects of dispersal and environmental cor-


Through their contributions  to spatial synchrony, dis- persal and environmental correlation among patches can influence the  global persistence of  spatially distributed populations (e.g., Gilpin and Hanski 1991; Burgman et al.

1993). In our model, the effects of dispersal-induced cor- relation and environment-induced  correlation are nearly additive only when dispersal rate, environmental  corre- lation, or both, are small (eq. [17]). Consequently, if our results prove general, ecologists would be able to  treat dispersal and environmental correlation as independent forces in models of population dynamics and in analyses of real data sets only under  a rather limited set of con- ditions. Dispersal rates may be directly estimated in many species (e.g., Turchin 1998), and the environmental cor- relation estimated if there is a priori knowledge of which environmental factors are important.  Alternatively, these parameters may be estimated from spatially explicit time series (Dennis et al. 1998; Lele et al. 1998), but the min-
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Figure 2: Population correlation, as a function of dispersal rate (D), stability parameter (b), and correlation in the environmental noise (r)
imum data requirements for such estimation are un- known—it may require so much data that the population correlation could be estimated directly.

In other cases, where both dispersal and environmental correlation among patches were more substantial, we found (sometimes considerable) subadditivity of these fac-


tors’ effects on the total correlation across patches. This will complicate attempts to estimate the contribution  of dispersal to regional population dynamics in spatially syn- chronized subpopulations.
Our results also identify some issues of practical im- portance  to  conservation  biology. For  example, when
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Figure 3: “Iso-interaction” surface. At parameter combinations lying on the surface, the interaction covariance (covi) is 5% of the total covariance. For parameter combinations below the surface, the relative magintude of the interaction is !5%.
patches in a metapopulation exhibit a low degree of en- vironment-induced   correlation,   habitat   features  that serve to increase dispersal among those patches (e.g., corridors; Simberloff et al. 1992) may substantially in- crease the degree of dynamic synchrony across popula- tions. In contrast, if populations are partially correlated across patches due to environmental factors (e.g., the patches are in close proximity to one another), then in- creased dispersal may add to this correlation, but to a (perhaps greatly) lessened degree, because of the impor- tant  contribution  of the  interaction  correlation  to  the total correlation.
Within the framework of the totally linear population model, there  are two assumptions  hidden  in equation (3). The first is the timing of the population census. In the analysis described here, we have “censused” the pop- ulation immediately after dispersal; it would be just as legitimate to census after the population  growth phase or after the effect of the noise. As one might expect, the details of the covariance functions differ with these dif- fering censuses, in large part because the total variance differs. However, in all three cases, equation (13) holds true: covi = —rcovd.  The correlations are similar in the three cases, and equation (17) always holds. We expect that this congruence would also hold in nonlinear mod- els, as the timing of the census does not affect the dynamics.
The second hidden assumption has to do with the order of the components of the model (Ruxton 1996). Since there are three processes (growth, noise, and dispersal), there are two distinct orderings of the processes, ignoring


the differences in census time. The linear properties of the model cause these two orderings to be mathematically identical, however, so the results do not differ from those presented above. This would not extend to nonlinear models.

Our results may not extend to highly nonlinear dynam- ical systems because nonlinearity will complicate the pro- cess of spatial synchronization. The interaction between the two correlating factors has not been studied in non- linear systems, but existing work suggests how it may differ from the interaction in simple linear systems. If the local dynamics give rise to limit cycles, then either a little local dispersal or weak correlation in the environment will in- duce region-wide synchronization through a process of phase locking (Ruxton 1996; Bascompte and Sole´  1998), but there may be multiple attractors in such systems, so that large environmental variance may destabilize this syn- chrony, even leading to negative correlations between patches (Kendall and Fox 1998). In contrast, our results here show that the population  synchrony scales linearly with environmental synchrony and roughly quadratically with dispersal rate. Chaotic dynamics, in contrast, appear to be harder to synchronize, either through dispersal or through correlated stochastic forcing (Ruxton 1996; Bas- compte and Sole´ 1998), although, in the absence of noise, moderately large dispersal rates can lead to at least locally stable synchrony (Kendall and Fox 1998). Such systems exhibit strong sensitivity to initial conditions and expo- nential divergence of nearby trajectories, so that even small levels of stochasticity can induce asynchrony when dis- persal rates are small (Allen et al. 1993). Thus, our results are most relevant to populations with a stable equilibrium and fluctuations that are not too large (so that the linear approximation  is valid). Many species of birds, for ex- ample, may fit these requirements.

Empirical studies of spatial synchrony have generally found  that  the correlation  decays with distance (Myers and Rothman 1995; Steen et al. 1996; Sutcliffe et al. 1996; Ranta et al. 1997; Bjørnstad et al. 1999). Ecological theory (as developed here and elsewhere; e.g., Tilman and Kareiva

1997; Bascompte and Sole´ 1998) shows that both dispersal and extrinsic factors (via the Moran effect) can synchro- nize populations. As pointed out by Ranta et al. (1997), an important challenge is to distinguish the contributions of these two factors with respect to the population  syn- chrony of real populations—a  task that  will require si- multaneous  consideration  of environmental  correlation and dispersal. The synchrony of fully isolated populations, such as on island archipelagos (Grenfell et al. 1998), testify to the synchronizing effect of a correlated environment. Causes of the synchrony of interconnected populations are more elusive. Sutcliffe et al. (1996) and Bjørnstad et al. (1999) speculated that wide-scale (region-wide) synchrony
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Figure 4: Dispersal-induced correlation (corrd), as a function of the dispersal rate (D) and the stability parameter (b)
is caused by population growth in a regionally correlated environment,  while local, above-average synchrony is caused by dispersal. Our current analysis shows that the real situation is likely to be somewhat more complicated. The decompositions inherent in equations (13) and (17),


however, promise that  disentangling the causes may be sought through contrasting local and regional synchrony, if dispersal is negligible across large distances. More work will be needed because the correlation in the environment is also likely to decay with distance.

In conclusion, we have shown in detail how dispersal and correlation in the environment interact to induce syn- chrony in the dynamics of a metapopulation. The effects of the two factors are not additive, even in a system gov- erned by very simple dynamics. The nonadditive com- ponent can be substantial. It can, however, be represented analytically by very simple expressions.
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