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Abstract. The inhibition in wave propagation at band gap energies plays
a central role in many areas of technology such as electronics (electron
gaps), nanophotonics (light gaps) and phononics (acoustic gaps), among
others. Here we demonstrate that metal surfaces featuring free-electron-
like bands may become semiconducting by periodic nanostructuration. We
combine scanning tunneling spectroscopy and angle-resolved photoemisssion
to accurately determine the energy-dependent local density of states and band
structure of the Ag/Cu(111) noble metal interface patterned with an array of
triangular dislocations, demonstrating the existence of a 25 meV band gap that
extends over the entire surface Brillouin zone. We prove that this gap is a
general consequence of symmetry reduction in close-packed metallic overlayers;
in particular, we show that the gap opening is due to the symmetry lowering of
the wave vector group at the K point from C3v to C3.
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1. Introduction

The electronic properties of solids depend on the chemical nature of the atomic constituents
and their bonding. However, periodicity, i.e. symmetry, can play a fundamental role since the
Bragg diffraction of the electron states can lead to gaps in the band structure. For example, the
semiconducting character of silicon is a direct consequence of the symmetry of its Si crystal
lattice. Similarly, the singular Fermi surface of graphene with linear dispersions associated with
massless Dirac electrons at the K point of the surface Brillouin zone (SBZ) [1]–[3] also results
from symmetry. Indeed, by changing the symmetry through interaction of a graphene plane with
a substrate, the linear dispersion disappears and an energy gap takes place at the K point [4, 5].
This is of particular importance because, in fact, the role of graphene as a base material in
nanoelectronics depends on the ability to engineer its semimetallic π bands in order to open
semiconducting gaps, i.e. full gaps at the Fermi energy. On the other hand, electronic bands can
be tailored and gaps can be induced by imposing a nanoscale super-periodicity with suitable
symmetry, as is done in photonic crystals. It has been shown that hexagonal arrays of holes
engraved in a dielectric yield gaps in the band diagrams for the directions of light propagation.
The shape of the holes can have drastic consequences in the photonic band gap [6].

In this paper, we show that the existence or absence of gaps at the K point of the Brillouin
zone (BZ) of a hexagonal lattice or superlattice is related to the symmetry of the crystal and
more precisely to the symmetry of the wave vector group at the K point. The wave vector group
is formed by the set of transformations leaving the wave vector unchanged. It depends on the
position in the BZ. Such behavior is generic and can be invoked to explain different properties
such as gaps not only in the electron band structure but also in the band diagrams for light
propagation in photonic crystals. In the latter example, the change of hole shape from circular
to elliptical that leads to the opening of a gap at the K point is accompanied by a change of
symmetry at this particular point. In this paper, we discuss in detail the role of symmetry in gap
opening, in the framework of the nearly free electron approach, which is the simplest and most
intuitive model of the electronic structure.

The free-electron-like framework is well suited for describing the electron band structure of
the Shockley states of noble metal (111) surfaces. The super-periodic potential associated with
surface reconstruction can be considered as a small perturbation revealing the relation between
symmetry and electronic properties. The Ag/Cu(111) surface is a prototype scenario to study
the transformation of the band structure due to symmetry changes in a nanoscale reconstruction
[7, 8]. When deposited at low temperature, the Ag monolayer exhibits a ∼8 × 8(Ag)-
on-9×9(Cu) coincidence lattice. Annealing to 300 K allows the system to relax, creating
a ∼9.5 × 9.5 network of triangular dislocation loops within the Cu(111) substrate [9, 10]. As a
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consequence, the weakly scattering, sixfold Moiré pattern turns into a stronger, threefold-
symmetric, repulsive potential superlattice in the dislocation network [11, 12]. Here we show
that such transformation allows one to lift the degeneracy of the K point of the surface band
structure, where a 25 meV gap is opened. We show that the gap opening and the evolution of
the local density of states (LDOS) can be simply explained by symmetry. The energy gap and
the LDOS have been obtained from angle-resolved photoemission spectroscopy (ARPES) and
scanning tunneling spectroscopy (STS). We show that group theory predicts a gap opening at
this K point, but is also able to give a satisfactory description of the LDOS associated with the
high symmetry points of the BZ.

2. Technical details

Scanning tunneling microscopy (STM) and STS experiments were performed using a
5 K-Omicron STM. The dI/dV maps (and spectra) were recorded at 5 K in the open feedback
loop mode using the lock-in technique with a bias modulation of 3 meV rms at 700 Hz. Before
transferring to the STM cryostat at 5 K, the Ag monolayer was evaporated at 150 K on the
clean Cu(111) crystal and then annealed to 350 K. This process leads to the sharp ∼(9.5 × 9.5)

hexagonal lattice of triangular dislocations. Annealing the Ag/Cu(111) monolayer at 350 K
is necessary for eliminating the unfavorable on-top positions of the low-temperature Moiré
lattice by creating triangular dislocation loops within the substrate [9]. This process implies the
removal of five Cu atoms from the topmost Cu(111) plane and the shift of another ten substrate
atoms to hcp positions, leaving a triangular dislocation loop around. A defect-free Ag(111)
layer is then observed to wet the nanostructured substrate. The angle-resolved photoemission
experiments were performed with a Scienta 200 high-resolution hemispherical analyzer at
the Synchrotron Radiation Center in Stoughton (Wisconsin) and were reported in [7]. The
sample was illuminated with monochromatized photons of hν = 21 eV and measured at room
temperature in order to populate states above the Fermi energy.

3. Results and discussion

In figure 1, we investigate the electronic surface band structure for a two-dimensional (2D)
superlattice potential based on symmetry arguments. The top panel describes real lattices
for hexagonal arrays of an empty crystal (b), circular (c) and triangular (d) potentials
and the corresponding BZ in reciprocal space (a), whereas the bottom panels represent
the respective band structure along the 0M and 0K directions. The unit cell in real space is
shown in red. Note that the six points at the corner of the hexagonal BZ are not the same
because they are not related by a reciprocal vector. Then, there are two inequivalent points K
and K ′. However, as the wave vector at K ′ corresponds to the opposite value at K , the two
associated states are related by time reversal and have the same energy. Firstly, let us consider
the empty lattice approximation (V ≡ 0). The space group is the 2D group P6mm or C1

6h .
For the electronic properties, it is useful to consider the small groups (i.e. the group of the
wave vector at the high symmetry Ek points of the BZ). At the 0 point, the symmetry group of
the wave vector is C6v and the lowest energy band that corresponds to the plane wave state
|Ek = 0〉 is associated with the totally symmetric irreducible representation A1g. At the M
point (C2v symmetry), the lowest energy level is twofold (|EkM〉 and |EkM− EG1〉) and the
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Figure 1. (a) The BZ of the hexagonal lattice with the high symmetry points and
directions. Lattices for the empty crystal (b) and for circular (c) and triangular
(d) reconstructions. Band dispersions in the 0M and 0K directions for the
empty lattice (e, f) and in the 0K direction for circular (g) and triangular (h)
reconstructions. The effect of a finite potential on the band dispersion in the 0M
direction is illustrated by the blue dotted line in (e).

corresponding 2D representation 0
(1)

M can be decomposed on the irreducible representations
of C2v: 0

(1)

M = 2A1.
A finite potential will lead to two non-degenerate states (|EkM〉 ± |EkM− EG1〉)/

√
2 separated

in first order by the corresponding Fourier component 2|V EG1
|, as illustrated by the blue

dotted line in figure 1(e). At the K point, the symmetry group is C3v and the lowest level
is a triplet spanned by the three states |EkK 〉, |EkK − EG1〉 and |EkK − EG2〉. The 3D reducible
representation associated with this energy level at K can be decomposed into the irreducible
representations of C3v: 00

= A1 ⊕ E , where A1 is the totally symmetric representation and E
is a 2D representation. Therefore, a finite potential with the same symmetry as, for example,
that generated by a circular reconstruction leads to a singlet (A1 representation) and a doublet
(E representation). This is illustrated in figure 1(g) and confirmed by calculation. Using
perturbation theory one can show that for a positive Fourier component VG of the potential,
the K point (EK energy) features a lower-energy, doubly degenerate state associated with E
(E = EK − VG), plus a higher-energy, non-degenerate state associated with the A1 symmetry
(E = EK + 2VG). Therefore, for a repulsive superlattice potential with hexagonal symmetry, no
gap appears at K .
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Figure 2. (a) STM topographic image evidencing the triangular dislocation
network of Ag/Cu(111) (top) and modelization of the electron potential
corresponding to the triangular dislocation loop (bottom). (b) Calculated band
dispersions (solid red lines) and ARPES experimental data recorded at room
temperature and shifted to take into account the rigid shift between 300 K and
5 K ([7]). (c) Calculated density of states and 5K-STS spectrum averaged over
the surface. In (b) and (c), the green and blue shadings represent the M and
K gaps, respectively.

For the lattice of triangles, the symmetry is lowered, the space group is P3m1 or C1
3v.

The group at 0 is C3v, at M , C1h and at K , C3. The lowering of symmetry at K from C3v

(circles) to C3 (triangles) is very similar to the change from graphene to hexagonal BN and
has a consequence of fundamental nature. As energy degeneracy is due to the existence of
non-commutative symmetry operators, the change from the non-abelian group C3v to the abelian
one C3 should lead to the disappearance of band crossing at the K point. This is confirmed by
the representation of decomposition at the K point, which leads to three singlets A, E1 and E2

as depicted in figure 1(h). It is interesting to note that the table of characters of the C3v group
shows that the E1 and E2 are complex conjugated, indicating that these two representations
are related by time reversal [13]. It does not mean that they are degenerate at the same point,
since the reversal of time transforms a wave vector into its opposite. As a consequence, the
state associated with E1 at the K point transforms into the state associated with E2 at the K ′

point. At the M point, as the wave vector group does not change, no modification is expected.
To conclude, the lowering of symmetry leads to an additional energy gap at the K point in the
band structure, no matter what the sign of the superlattice potential V is.

In figure 2(a), we show an STM topographic image of the Ag/Cu(111) surface. Two fcc-
like (fcc1 and fcc2) areas and one hcp-like (on top of the triangle hcp) area can be identified.
The schematic triangular lattice also depicted in figure 2(a) models the network of triangular
dislocation loops within the Cu(111) substrate. Surface bands are calculated by solving an
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effective one-electron Schrödinger equation in this modelled potential:

(∇2 + k2
− 2m∗V )φ = 0 (1)

in two dimensions, where m∗
= 0.42m0 stands for the effective mass of the Ag/Cu(111)

measured in photoemission. The periodic potential mimicking the triangular dislocation is
expanded in 2D plane waves. The potential is set to zero (the surface-state band minimum)
everywhere except in the regions defined by pairs of triangles that share their centers, where it
takes a value of 650 meV in order to fit the measured surface bands. The side of the inner (outer)
triangle is 5.78 (14.44) Å, as deduced from the STM images. The lattice constant (24.28 Å)
corresponds to a 9.5 × 9.5 reconstruction. The LDOS is obtained by direct integration of the
resulting bands over the 2D wave vector. Electron bands of such a network are measured
by ARPES in figure 2(b). Experiments have been performed at room temperature, making
it possible to probe thermally occupied states 50 meV above the Fermi energy [12]. Data
points in figure 2(b) were obtained from standard line fits of individual energy distribution
curves (EDCs), using two Lorentzian functions multiplied by the Fermi Dirac function and
convoluted with a Gaussian line to account for the experimental resolution [7]. This procedure
allows additional visualization of peaks within ±2kBT above the Fermi edge. Such an analysis
evidences a 100 meV gap at the M point and a small one (25 meV) at the K point. In fact, at
room temperature, the K -point gap is in the unoccupied part of the spectrum, as shown by the
position of the Fermi energy at 300 K (horizontal dashed line in figure 2(b)). It is important to
note that surface bands in noble metals shift by ∼50 meV to lower energy when going from 300
to 20 K [14]. This is also the case for the Ag/Cu(111) system, where an almost rigid shift as a
function of temperature is observed [12], which drives the K band gap to the Fermi energy at
5 K, as proved by STS in figure 2(c). Therefore, the band dispersion in figure 2(b) has been
shifted by −35 meV in order to compare with the low-temperature STS spectrum. The red
lines fit the ARPES data across the entire BZ. They represent the band structure calculation
obtained from the model potential reconstruction illustrated in figure 2(a), which was presented
and discussed elsewhere [12]. The potential inside the triangular loop is the only adjustable
parameter in this model, which is fixed at V = 650 meV in order to fit the measured surface
bands. The calculation allows us to determine the gap size (25 meV) at the K point of the
superlattice band structure. In figure 2(c), we compare the density of states calculated with the
same model (red spectrum), with the average density of states measured by STS at 5 K (dotted
spectrum). The STS spectrum exhibits a strong depletion between two peaks associated with
the gap edges at the M point. In the average STS spectrum, it is not possible to see the signature
of the additional gap at the K point. But, as mentioned above, the triangular reconstruction
of Ag/Cu(111) exhibits three inequivalent symmetry positions. The STS spectra recorded on
these three regions show a strong depletion close to the Fermi energy with a small shoulder at
E ∼ −40 meV, close to the energy of the calculated K gap, visible on the STS spectra recorded
in the hcp and fcc1 areas (figure 3(a)). Therefore, STS, photoemission and the model exhibit
excellent agreement, proving the presence of the M and K point band gaps spanning the entire
BZ at the Fermi energy. Therefore, in the Ag/Cu(111) system, the gap position can be driven by
changing the system temperature, making the noble metal surface effectively semiconducting at
5 K and metallic at room temperature.

Below 150 meV, the LDOS in the triangular hcp region is smaller than the LDOS in
the two fcc regions. Above 150 meV, a strong increase is observed on top of the triangular
dislocation loops. In figure 3(b), we present (dI/dV ) spectroscopy maps recorded at energies
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Figure 3. (a) Experimental STS spectra recorded on the different regions: the two
fcc regions and the triangular hcp region. (b) STS spectroscopic maps recorded at
energies corresponding to the localization of the LDOS in the different regions.
(c) LDOS simply obtained from group theory and associated with the basis
functions of the irreducible representations of the high symmetry M and K
points. The white triangles in the experimental and calculated maps represent
the triangular dislocation loops.

−80, −40, 22 and 200 meV, as indicated by arrows in figure 3(a). Dephasing behavior in
the electron density maps has been shown to reflect band gaps in such nearly-free-electron-
like systems [15, 16]. At −80 meV, LDOS maxima correspond to the two fcc regions in the
lattice. At −40 meV and +22 meV, the LDOS maxima are located in the fcc1 and fcc2 regions,
respectively. This dephasing is strong support for the existence of a band gap at the K point.
Around +200 meV, the maxima of the LDOS are found in the triangles. Such localizations of
the LDOS should reflect the symmetry of the band states at the K and M points where the
Bragg mechanism induces electron standing waves. To prove this statement, we have compared
these experimental maps with the calculated LDOS obtained from symmetry. Indeed the basis
states of the irreducible representations, in the first order of perturbation theory, can be obtained
without solving the Schrödinger equation by using the projector technique of group theory based
on the characters of irreducible representations [13]. The projector on the basis based on the
states of the irreducible representation B is given by

P (B)
=

`B

h

∑
R

χ (B)(R)∗ PR,

where χ (B)(R) is the character of the representation B for the symmetry operation R, h is the
number of symmetry elements, `B is the dimension of B and PR is the symmetry operator
corresponding to R. Then, by applying P (B) on a plane wave, one obtains the wave function
corresponding to the B irreducible representation. Therefore, by projecting the basis states of
the free electron representations at the M and K points on the irreducible representations of
the relevant wave vector groups, it is possible to deduce the Bloch waves and the corresponding
density at these high symmetry points without solving the Schrödinger equation. At the K point,
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for the totally symmetric representation A, the state is

9(A)(Er) =
1

√
3

[
eiEkK · Er + e(iEkK − EG1) · Er + ei(EkK − EG2) · Er

]
, (2)

whereas for the E1 and E2 representations we have

9(E1)(Er) =
1

√
3

[
eiEkK · Er + ε e(iEkK − EG1) · Er + ε∗ ei(EkK − EG2) · Er

]
,

9(E2)(Er) =
1

√
3

[
eiEkK · Er + ε∗ e(iEkK − EG1) · Er + ε ei(EkK − EG2) · Er

]
,

(3)

with ε = exp 2π i/3. The electron density corresponding to these representations at the K point
can be obtained by taking the square of these wave functions. To simulate a density map at
a given energy that could be compared with the STS images as in figure 3, it is necessary to
sum the contribution of the six corners (K and K ′ points) of the hexagonal BZ. The agreement
between experimental and calculated maps (figures 3(b) and (c)) suggests that the −80 eV and
−40 eV maps correspond to the low gap edges at the M and K points, respectively, whereas
the +20 meV and +200 meV maps are associated with the states at the K points with E1 and A
symmetry, respectively.

4. Conclusion

In summary, we have shown that the triangular potential associated with the dislocation network
in the Ag/Cu(111) system lowers the sixfold symmetry of the surface and opens a full band
gap in an otherwise metallic surface. The existence of a gap is related to the dimension of
the irreducible representation of the small or wave vector group at the relevant high symmetry
points of the BZ. For such a hexagonal lattice, symmetry lowering leads to symmetry change at
the K point whereas the symmetry at the M point is not modified. Moreover, projectors provide
an elegant way of obtaining the electron density at these high symmetry points. The virtuality
of symmetry breaking has been proposed for the graphene system, but within the atomic unit
cell [4]. In fact, breaking the carbon sublattice symmetry (e.g. with strongly interacting fcc
substrates) opens a gap at the K point of the graphene band structure [4]. We show in this
paper that a surface gap can be induced by the superlattice potential of a reconstruction. The
symmetry-induced superlattice gaps may have advantages with respect to atomic scale gaps.
Superlattice gaps are usually smaller than atomic lattice gaps, and are potentially easier to drive
by nanostructuration of the surface.

Acknowledgments

This work was supported in part by the Spanish MICINN (MAT2007-66050, MAT2007-63083
and Consolider NanoLight.es), the EU (NMP4-SL-2008-213669-ENSEMBLE), the Basque
Government (IT-257-07) and the Centre National de la Recherche Scientifique (CNRS).

References

[1] Zhou Y et al 2006 Nat. Phys. 2 595
[2] Bostwick A, Ohta T, Seyller T, Horn K and Rotenberg E 2006 Nat. Phys. 3 36

New Journal of Physics 13 (2011) 013026 (http://www.njp.org/)

http://dx.doi.org/10.1038/nphys393
http://dx.doi.org/10.1038/nphys477
http://www.njp.org/


9

[3] Sprinkle M et al 2009 Phys. Rev. Lett. 103 226803
[4] Zhou S Y et al 2007 Nat. Mater. 6 770
[5] Bostwick A, Ohta T, McChesney J L, Emtsev K V, Seyller T, Horn K and Rotenberg E 2007 New J. Phys.

9 385
[6] Quiñónez F et al 2006 Opt. Exp. 14 4873
[7] Schiller F, Cordón, Vyalikh D, Rubio A and Ortega J E 2005 Phys. Rev. Lett. 94 016103
[8] Bork J, Wahl P, Diekhöner L and Kern K 2009 New J. Phys. 11 113051
[9] Meunier I, Tréglia G, Gay J-M, Aufray B and Legrand B 1999 Phys. Rev. B 59 10910

[10] Bendounan A, Cercellier H, Fagot-Revurat Y, Kierren B, Yurov V and Malterre D 2003 Phys. Rev. B
67 165412

[11] Bendounan A et al 2006 Phys. Rev. Lett. 96 029701
Bendounan A et al 2006 Phys. Rev. B 72 075407

[12] Schiller F, Cordón J, Vyalikh D, Rubio A and Ortega J E 2006 Phys. Rev. Lett. 96 029702
[13] Tinkham M 1964 Group Theory and Quantum Mechanics (New York: McGraw-Hill)
[14] Paniago R, Matzdorf R, Meister G and Goldman A 1995 Surf. Sci. 336 113
[15] Didiot C, Fagot-Revurat Y, Pons S, Kierren B, Chatelain C and Malterre D 2006 Phys. Rev. B 74 081404
[16] Malterre D et al 2007 New J. Phys. 9 391

New Journal of Physics 13 (2011) 013026 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.103.226803
http://dx.doi.org/10.1038/nmat2003
http://dx.doi.org/10.1088/1367-2630/9/10/385
http://dx.doi.org/10.1364/OE.14.004873
http://dx.doi.org/10.1103/PhysRevLett.94.016103
http://dx.doi.org/10.1088/1367-2630/11/11/113051
http://dx.doi.org/10.1103/PhysRevB.59.10910
http://dx.doi.org/10.1103/PhysRevB.67.165412
http://dx.doi.org/10.1103/PhysRevLett.96.029701
http://dx.doi.org/10.1103/PhysRevB.72.075407
http://dx.doi.org/10.1103/PhysRevLett.96.029702
http://dx.doi.org/10.1016/0039-6028(95)00509-9
http://dx.doi.org/10.1103/PhysRevB.74.081404
http://dx.doi.org/10.1088/1367-2630/9/10/391
http://www.njp.org/

	1. Introduction
	2. Technical details
	3. Results and discussion
	4. Conclusion
	Acknowledgments
	References

