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Interactions between bacteria and the viruses that infect them
(i.e., phages) have profound effects on biological processes, but
despite their importance, little is known on the general structure
of infection and resistance between most phages and bacteria. For
example, are bacteria–phage communities characterized by com-
plex patterns of overlapping exploitation networks, do they con-
form to a more ordered general pattern across all communities, or
are they idiosyncratic and hard to predict from one ecosystem to
the next? To answer these questions, we collect and present a de-
tailed metaanalysis of 38 laboratory-verified studies of host–
phage interactions representing almost 12,000 distinct experimen-
tal infection assays across a broad spectrum of taxa, habitat, and
mode of selection. In so doing, we present evidence that currently
available host–phage infection networks are statistically different
from random networks and that they possess a characteristic
nested structure. This nested structure is typified by the finding
that hard to infect bacteria are infected by generalist phages (and
not specialist phages) and that easy to infect bacteria are infected
by generalist and specialist phages. Moreover, we find that cur-
rently available host–phage infection networks do not typically
possess a modular structure. We explore possible underlying mech-
anisms and significance of the observed nested host–phage inter-
action structure. In addition, given that most of the available host–
phage infection networks examined here are composed of taxa
separated by short phylogenetic distances, we propose that the
lack of modularity is a scale-dependent effect, and then, we de-
scribe experimental studies to test whether modular patterns exist
at macroevolutionary scales.
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Bacteria and their viruses (phages) make up two of the most
abundant and genetically diverse groups of organisms (1–3).

The extent of this diversity has become increasingly apparent
with the advent of community genomics. Microbial DNA iso-
lated from oceans, lakes, soils, and human guts has revealed
tremendous taxonomic diversity in a broad range of environ-
mental habitats and conditions (4–11). The ongoing discovery of
new taxonomic diversity has, thus far, outpaced gains in un-
derstanding the function of specific microbes and their most
basic ecology of who interacts with whom. One of the starkest
examples of this disparity is the lack of an efficient (bioinformatic
or otherwise) approach for determining which viruses can infect
which bacteria. Although it is well-known that individual phages
do not infect all bacteria, we have little understanding of what
the precise host range for any given phage is or whether there are
universal patterns or principles governing the set of viruses able
to infect a given bacterium and the set of bacteria that a given
virus can infect. This deficit is unfortunate given that phage–
bacterial interactions are important for both human health and
ecosystem function (12–16).
Phages have multifaceted effects on their hosts: they can lyse

host cells, thereby releasing new virons, transfer genes between
hosts, and form lysogens that can modify host function (17–19).
In some cases, phages can transfer genes for pathogenicity
between pathogenic and labile strains (e.g., for both Vibrio
cholerae and Shigella), facilitating the spread of bacterial infec-
tions (20–22). Phages also alter ecosystem functions by the high

levels of bacterial mortality that they cause. Bacteria lysed by
phage will release their contents, which consequently are scav-
enged by other bacteria rather than being incorporated into
bactivorous eukaryotes (23, 24). This weakened connection early
in the food chain can have effects that ripple throughout the
ecosystem. Information on a general pattern of infection by
phages on hosts could improve predictions of microbial population
dynamics, ecosystem functioning, and microbial community as-
sembly (25, 26).
What is our expectation for the general pattern of host–phage

infection networks? Host–phage infection networks have, in the
past, been measured by performing pair-wise infections of hosts by
phages isolated from natural ecological communities, evolution
experiments, or strain collections. The results of such pair-wise
infections can be represented as a network or a matrix, where the
rows indicate host isolates, the columns indicate phage isolates,
and the cells within the matrix describe whether each combination
results in a successful infection. We consider different classes of
host–phage interaction networks as alternative hypotheses for an
expected pattern (Fig. 1). First, phages may infect a unique host or
a limited number of closely related hosts, leading to nearly di-
agonal matrices (Fig. 1A) or block-like matrices that exhibit high
degrees of modularity (Fig. 1B). These patterns should occur if
host–viral interactions are the result of coevolutionary processes
that lead to specialization. Second, diversification of hosts and
phages may result in nested matrices in which the most specialist
phages infect those hosts that are most susceptible to infection
rather than infecting those hosts that are most resistant to in-
fection (Fig. 1C). The nested pattern is the predicted outcome of
a prominent theory of gene-for-gene coevolution, where phages
evolve so as to broaden host ranges and bacteria evolve so as to
increase the number of phages to which they are resistant (27, 28).
We should note that these two patterns and hypotheses for the
forms of coevolution are not mutually exclusive and in fact, could
be scale-dependent. Nested patterns could form within modules if,
for instance, microevolutionary changes result in nestedness;
however, genetic differences between species or genera that ac-
cumulate over macroevolutionary time may limit the exchange of
viruses between these phylogenetic groups and create an overall
modular structure. Finally, we consider a null model to be that
matrices of host–phage infection are statistically indistinguishable
from random matrices (Fig. 1D).
Contrary to this null expectation, we show that currently

available host–phage interaction matrices are, as a whole, sta-
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tistically distinguishable from random matrices and possess
a characteristic nested structure. We reach this conclusion by
performing a metaanalysis on the patterns of host–phage in-
fection matrices collected by a comprehensive search of the lit-
erature and supplementing these matrices with an experimental
analysis of host–phage infection. The data that we assemble
consist of 38 matrices of host–phage infection assays represent-
ing the cumulative study of 1,009 bacterial isolates, 502 phage
isolates, and almost 12,000 separate attempts to infect a bacteria
host with a phage strain (27, 29–64) (SI Appendix, Tables S1 and
S2 have more information on the examined studies). This work is
an attempt to subject host–phage infection assays to a unified
analysis. In doing so, we find a general pattern of host–phage
interactions. We discuss biophysical, ecological, and evolutionary
mechanisms that could lead to this nested (and not modular)
pattern as well as future studies to explore how such a pattern
may change as a function of phylogenetic scale.

Results
Compiling a Large-Scale Host–Phage Interaction Dataset. We com-
piled a set of 37 studies with direct laboratory evidence of host–
phage interactions using an extensive literature search supple-
mented by an experimental study of an evolved Escherichia coli
and phage λ-system (SI Appendix, Tables S1 and S2 have com-
plete details of all studies) (27, 29–64). The method of evaluating
infection ability in assembling a host–phage infection matrix
varies; however, the most commonly used approach is that of
spot assays, in which a single virus type is combined with a pop-
ulation of bacteria cells from a single strain. Infection is con-
sidered to have occurred given evidence that the phage has
infected and lysed (part of) the bacterial population. Hence, the

result of each study is a matrix of the infection ability for each
phage on each host. The studies included in the host–phage in-
fection assays analyzed here were isolated from one of three
sources: co-occurring isolates within natural communities taken
directly from the environment and then cultured, coevolutionary
laboratory experiments where a single bacterial clone and a sin-
gle phage clone were allowed to coevolve for a fixed amount of
time and then, their evolved progenitors examined, and labora-
tory stocks of phages and hosts that were artificially combined.
Some of the matrices used were composed of bacteria and phage
acquired from two separate isolation strategies. For these stud-
ies, we classified the matrix by which isolation strategy repre-
sented the majority of matrix cells and made a note of the other
sources (SI Appendix, Table S2). The criterion by which we
searched and cataloged these studies is explained in more detail
in SI Appendix, SI Materials and Methods. Overall, we identified
and analyzed a wide range of infection networks for organisms
that varied in their phylogenic position, traits, and habitats. For
example, thebacterial hosts includedGram-positives and -negatives,
heterotrophs, and phototrophs as well as pathogens and non-
pathogens.
Some of the assays include graded information about infection

(for example, whether a phage simply inhibits bacterial growth or
forms regions of complete bacterial mortality like plaques). In
other studies, replicate phage populations were used to deduce
whether phages always or only sometimes cause plaques. Details
of the criteria for the interactions can be found in the original
works (27, 29–64), and the experimental methods for the experi-
mental study of host–phage infection can be found in Materials
and Methods. Because graded information about infection was not
uniformly available in all studies, assays were standardized using
hand-curated extraction of original data into a single matrix of
ones and zeros with H rows (one for every bacterial host) and P
columns (one for every phage), where a 1-valued cell represents
evidence for infection (either full or partial) and a 0-valued cell
represents no evidence for infection (Fig. 2 shows a visual de-
piction of all host–phage interaction matrices).

Host–Phage Infection Statistics Do Not Vary with Study Type or Show
Significant Cross-Correlations. We calculated a variety of global
properties of these matrices: number of hosts (H), number of
phages (P), number of interactions (I), number of species (S =
H + P), size (M=HP), connectance (C = I/M), mean number of
interactions across host species (LH = I/H), and mean number of
interactions across phage species (LP = I/P) (SI Appendix, Tables
S1, S2, and S3 show values of each property within each of the 38
studies). Importantly, on a per-study basis, we find that the av-
erage number of phages infecting a given host is 4.88 (median =
3.04), whereas the average number of hosts that a phage can
infect is 10.91 (median = 6.13). Both results are inconsistent
with the hypothesis that phages only infect one host and that
hosts are only infected by one phage (Fig. 1A).
We first sought to establish whether the source type (natural

communities taken directly from the environment and then
cultured, coevolutionary laboratory experiments where a single
bacterial clone and a single phage clone were allowed to co-
evolve for a fixed amount of time and then, their evolved pro-
genitors examined, and laboratory stocks of phages and hosts
that were artificially combined) had any influence on basic
characteristics of the matrices. We performed a principal com-
ponent analysis (SI Appendix, SI Materials and Methods, SI Ap-
pendix, Table S4, and SI Appendix, Fig. S1) using these eight
global properties. Despite the significant variation in global
properties, we find no statistically significant distinction between
the three different types of studies. For example, the distri-
butions of type-specific matrices do not cluster into three groups.
We apply a Jaccard clustering validity index (65) and find that
the degree of clustering validity is 0.26 (indicating poor separa-
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Fig. 1. Schematic of expected host–phage interaction matrices (white cells
denote infection). (A) Host–phage interactions are unique (i.e., only one
phage infects a given host, and only one host is infected by a given phage). (B)
Host–phage interactions are modular (i.e., blocks of phages can infect blocks
of bacteria, but cross-block infections are not present). (C) Host–phage
interactions are nested (i.e., the generalist phage infects the most sensitive
and the most resistant bacteria, whereas the specialist phage infects the host
that is infected by the most viruses). (D) Host–phage interactions are random
and lack any particular structure. For B–D, a connectance of 0.33 was used so
that the expected total number of interactions was the same in each case.
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tion of labeled classes into distinct clusters), which is not sig-
nificantly different from random (P = 0.33) (SI Appendix, SI
Materials and Methods and SI Appendix, Figs. S3 and S4).
Not only do we not find evidence for clustering, we also do not

find evidence for significant and biologically meaningful corre-
lations among the global properties of all matrices when grouped
together. For example, previous work on the analysis of bipartite
networks within plant and pollinator systems found inverse
relationships between the total number of species in the network
and the fraction of interactions that actually occurred (66, 67).
We do not find this relationship here. SI Appendix, Fig. S2 plots
connectance (C) vs. number of species (S). The observed slope is
small and nonsignificant (SI Appendix, Table S5). Moreover, the
other correlations between connectance and the size of host–
phage infection matrices are not significant (Materials and
Methods has details and SI Appendix, Table S5 shows the cor-
relation values).

Host–Phage Infection Assays Are Typically Nested and Not Modular.
We measured higher-order properties of the host–phage in-
teraction matrices, specifically modularity and nestedness. In this
context, modularity is determined by the occurrence of groups of
phages that infect groups of hosts significantly more often than
they infect other hosts in the system. Modularity is typically
found in biological systems in which groups of organisms pref-
erentially interact with organisms within the group (e.g., plant–
pollinator network) (66, 67) and is thought to be an important

feature underlying the maintenance of biodiversity (68). Like-
wise, nestedness is determined by the extent to which phages that
infect the most hosts tend to infect bacteria that are infected by
the fewest phages (69, 70). Nestedness has been used to char-
acterize species interactions because it is predicted to affect
important properties of communities such as stability and ex-
tinction potential (67, 71). Both modularity and nestedness may
emerge because of coevolutionary adaptation of hosts and
phages (28, 72). The individual host–phage infection studies
collected here were not subjected to a network analysis with one
exception (27). Hence, we examined each study to see if pre-
viously unrealized patterns existed within each host–phage in-
teraction network (Fig. 3 and SI Appendix, Fig. S5 have an
example of how network properties are extracted from two
matrices, Datasets S1 and S2 shows data corresponding to each
matrix, and Materials and Methods has additional details on how
to calculate modularity and nestedness).
For the 38 matrices shown in Fig. 2, the maximally modular

relabeling of each matrix is displayed in Fig. 4 and the max-
imally nested resorting of each matrix is displayed in Fig. 5.
To evaluate the statistical significance of the modularity and
nestedness values of observed host–phage matrices, we have to
compare the observed values to those values of random ma-
trices. We generate random matrices that have the same size
and number of interactions as the original data (SI Appendix,
SI Materials and Methods). In that way, we constrain our null
model to have exactly the same global properties as detailed

1 − Abe 2007 2 − Barrangou 2002 3 − Braun−Breton 1981 4 − Campbell 1995 5 − Capparelli 2010 6 − Caso 1995

7 − Ceyssens 2009

8 − Comeau 2005 9 − Comeau 2006

10 − DePaola 1998

11 − Doi 2003 12 − Duplessis 2001

13 − Gamage 2004 14 − Goodridge 2003 15 − Hansen 2007
16 − Holmfeldt 2007

17 − Kankila 1994 18 − Krylov 2006

19 − Kudva 1999 20 − Langley 2003 21 − McLaughlin 2008 22 − Meyer unpub

23 − Middelboe 2009

24 − Miklic 2003

25 − Mizoguchi 2003 26 − Pantucek 1998 27 − Paterson 2010 28 − Poullain 2008 29 − Quiberoni 2003 30 − Rybniker 2006

31 − Seed 2005 32 − Stenholm 2009

33 − Sullivan 2003

34 − Suttle 1993 35 − Synott 2009 36 − Wang 2008

37 − Wichels 1998 38 − Zinno 2010

Fig. 2. Matrix representation of the compiled studies. The rows represent the hosts, and the columns represent the phages. White cells indicate the recorded
infections. Note the diversity in the size of these matrices.
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in SI Appendix, Table S1 for each study, whereas the nested-
ness and modularity will vary between realizations.
The titles of the study in Fig. 4 (the maximally modular config-

uration) are red if they are significantly modular, blue if they are

significantly antimodular, and black if they are nonsignificantly
modular. The majority of studies are significantly antimodular
(where we used a P value = 0.05 and 105 random matrices as our
null). Our findings stand in contrast to expectations that groups of
phages adsorb to nonoverlapping groups of hosts, which would be
expected if groups of phages had specialized on groups of hosts
within the study systems. The titles of each study in Fig. 5 (the
maximally nested configuration) are red if they are significantly
nested, blue if they are significantly antinested, and black if they
are nonsignificantly nested. The majority of studies are signifi-
cantly nested (P< 0.05),whereweused 105 randommatrices as our
null. Overall, we find 27 of 38 studies to be significantly nested,
and when broken down by type, we find significant nestedness in
13 of 19 ecological, 7 of 10 experimental, and 7 of 9 artificial
studies. Our findings corroborate, in one case, an earlier effort to
characterize nestedness by Poullain et al. (27) using a different
nestedness metric. It is also apparent that some matrices are al-
most perfectly nested [e.g., matrices in the works of Ceyssens et al.
(35), McLaughlin and King (49), and Seed and Dennis (57)]. In
some cases, like the work of Middelboe et al. (50), the data came
from a mix of ecological and experimental studies in that the
bacteria were derived from environmental and experimentally
evolved isolates, whereas the phages were wild from the same
environment as the host. Does the finding of a strongly nested
matrix mean, in this case, that in vitro evolution mimics selection
in nature, suggesting that there exists robust principles underlying
the emergence of nestedness?

A

B

Fig. 3. Two example matrices were resorted to maximize modularity and
nestedness. (A and B) The matrix in Left is the original data, the matrix in
Center is the output from the modularity algorithm (102), and the matrix in
Right is the output from the modified nestedness algorithm (103, 104).
Colors represent different communities within the maximal modular con-
figuration. (A) An example of a matrix with significantly elevated modularity
and insignificant nestedness. (B) An example of a matrix with insignificant
modularity and significantly elevated nestedness.

1 − Abe 2007 2 − Barrangou 2002 3 − Braun−Breton 1981 4 − Campbell 1995 5 − Capparelli 2010 6 − Caso 1995

7 − Ceyssens 2009

8 − Comeau 2005 9 − Comeau 2006

10 − DePaola 1998

11 − Doi 2003 12 − Duplessis 2001

13 − Gamage 2004 14 − Goodridge 2003 15 − Hansen 2007
16 − Holmfeldt 2007

17 − Kankila 1994 18 − Krylov 2006

19 − Kudva 1999 20 − Langley 2003 21 − McLaughlin 2008 22 − Meyer unpub

23 − Middelboe 2009

24 − Miklic 2003

25 − Mizoguchi 2003 26 − Pantucek 1998 27 − Paterson 2010 28 − Poullain 2008 29 − Quiberoni 2003 30 − Rybniker 2006

31 − Seed 2005 32 − Stenholm 2009

33 − Sullivan 2003

34 − Suttle 1993 35 − Synott 2009 36 − Wang 2008

37 − Wichels 1998 38 − Zinno 2010

Fig. 4. Modularity sorts of the collected studies. Blue labels (20/38) represent studies statistically antimodular, and red labels (6/38) represent studies sta-
tistically modular.
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Hence, given the number of studies, we ask what evidence is
there that host–phage matrices are, as a whole, nested and not
modular. We rank all 38 matrices from lowest to largest modu-
larity and lowest to largest nestedness (Fig. 6 A and B). It is
evident that matrices tend to be more nested than their random
counterparts but not more modular (and apparently, anti-
modular) than their random counterparts. How often do we
expect to find 27 significantly nested matrices in a sample of 38
random matrices if each of the significantly nested matrices has
a P < 0.05? Combinatorically, such a result is highly improbable
and given by a binomial distribution with resulting P << 10−10.
Likewise, the finding of an excess of antimodular matrices (20 of
38) compared with a small number of modular matrices (6 of 38)
is a highly improbable result. Moreover, most of the significantly
modular matrices have low values of modularity, suggesting that,
although modularity may be deemed significant in a few cases, it
is not a driving mechanism underlying the structure of most of
these matrices and may be incidental to other patterns. To-
gether, these results imply that currently available host–phage
infection networks are typically nested and not modular.

Previously Overlooked Nested Patterns Uncovered. An additional
power of subjecting host–phage infection networks to a unified
analysis is that, by doing so, we can extract meaningful biological
information about the organization of a system that may not
have been possible given the original placement of hosts and
phages in matrix format. For example, the work by Zinno et al.
(64) mentions variability in phage infection; however, Zinno

et al. (64) make no mention of the fact that there are evidently
groups of phages that preferentially infect groups of hosts (Fig.
3A). Such block-like variability suggests that resistance mecha-
nisms are less haphazard than they seem when network charac-
teristics are not analyzed. Similarly, the work by Holmfeldt et al.
(44) highlighted the variability and possibly unique signature of
infection for each host and phage. However, reordering hosts
according to the number of infecting phages while also reor-
dering phages based on the number of hosts that they can infect
leads to a nested pattern, suggesting that specific forms of in-
fection rules may underlie infection variability (Fig. 3B). To what
extent is our finding of nestedness novel? As a reminder, nest-
edness is a property of a host–phage infection matrix as calcu-
lated for a given row and column ordering. Hence, we calculated
nestedness for all of the matrices in the format as they were first
reported in the literature and then compared these results to the
nestedness calculated from our reshuffled matrices. We found
that, in 35 of 37 cases of the previously published studies, the
reshuffled matrix had a nestedness value higher than that of the
original publication, whereas in 2 of 37 studies, the nestedness
was equal (47, 50) (SI Appendix, Fig. S6). Hence, our results
suggest that, by and large, prior efforts did not identify the extent
to which their matrices were nested or whether such nestedness
was significant.

Addressing Sample Composition Biases as Potential Drivers of
Network Structure. We report a set of analyses to quantify the
extent to which potential biases might impact our results. One

1 − Abe 2007 2 − Barrangou 2002 3 − Braun−Breton 1981 4 − Campbell 1995 5 − Capparelli 2010 6 − Caso 1995

7 − Ceyssens 2009

8 − Comeau 2005 9 − Comeau 2006

10 − DePaola 1998

11 − Doi 2003 12 − Duplessis 2001

13 − Gamage 2004 14 − Goodridge 2003 15 − Hansen 2007
16 − Holmfeldt 2007

17 − Kankila 1994 18 − Krylov 2006

19 − Kudva 1999 20 − Langley 2003 21 − McLaughlin 2008 22 − Meyer unpub

23 − Middelboe 2009

24 − Miklic 2003

25 − Mizoguchi 2003 26 − Pantucek 1998 27 − Paterson 2010 28 − Poullain 2008 29 − Quiberoni 2003 30 − Rybniker 2006

31 − Seed 2005 32 − Stenholm 2009

33 − Sullivan 2003

34 − Suttle 1993 35 − Synott 2009 36 − Wang 2008

37 − Wichels 1998 38 − Zinno 2010

Fig. 5. Nestedness sorts of the collected studies. Red line represents the isocline. Blue labels (0/38) represent studies statistically antinested, and red labels (27/
38) represent studies statistically nested.
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potential bias in our study derives from the methods some
researchers used for phage isolation. Phages require a bacterial
host to reproduce, and therefore, the bacterial host(s) chosen by
the researcher can affect the form of the interaction matrix. For
instance, if researchers used a single host to isolate phages and
included this host in the matrix, then their matrix will necessarily
possess a full row of positive infections, thereby introducing the
first element of a perfectly nested matrix. We found only six
studies that used such an approach (46, 47, 49, 50, 56, 58). To
determine if phage isolation strategy biased our results to nest-
edness, we reanalyzed all six of these matrices after removing the
isolation host(s). We found no significant difference between the
nestedness and modularity for each of these six matrices with or
without the excluded host (SI Appendix, Table S6).
Another potential bias is that studies included zero rows and

columns, which implies that there are hosts that no phages infect
and phages that do not infect hosts, respectively. Note that in-
clusion of zero rows and columns has the potential to bias the
structure to a nested pattern. However, such zero rows and
columns may be biologically meaningful if hosts or phages have
evolved resistance that leads to noninteraction between partic-
ular sets of strains. Nonetheless, we performed the entire anal-
ysis again by generating alternative matrices such that hosts and
phages were only included if they had had at least one nonzero

element in their row or column, respectively. Then, we recalcu-
lated nestedness for the modified matrices and compared it to
the nestedness of appropriately resized null matrices. We found
that 26 of 38 studies were nested compared with 27 of 38 using
the original analysis (SI Appendix, Fig. S7). Moreover, although
the quantitative value of nestedness did decrease in one case,
that particular study (39) was, in fact, still highly nested and
marginally significant at a P = 0.067 level. We also recalculated
modularity for the modified matrices and found that 9 of 38 are
modular compared with 6 of 38 in the original analysis (SI Ap-
pendix, Fig. S8). Hence, although there are minor changes in the
number of significantly nested and modular networks, our find-
ing that matrices have a characteristic nested structure is robust
to either of these sources of bias.
Finally, we ask whether there are certain characteristics of

matrices that defy the general pattern of nestedness and if it is
possible to learn from these outliers? Interestingly, the three
matrices with the most significant modular structures (40, 55, 64)
were determined for a single bacterial species, Streptococcus
thermophilus, and its phages. This finding seems robust, because
different laboratories performed the studies and the microbes
were isolated from three separate continents. Additionally, we
did not find an example where a matrix that included S. ther-
mophilus did not have the modular structure. We examined
bacteria from the same taxonomic order (Lactobacillales) and
isolated from the same environment (dairy products), but these
bacteria lacked a modular structure. The consistent modularity
observed for this species suggests that species-specific traits may
have strong deterministic effects on the form that their inter-
actions with parasites take. We are unsure of which traits pro-
duce the modular interactions; however, additional research may
help reveal if and what resistance mechanisms determine the
shape of microbial interaction networks.

Possible Scale Dependence of Host–Phage Interactions: From
Nestedness to Modularity? The data that we analyzed included
almost 12,000 separate attempts to infect a host isolate with
a phage isolate. Although the scale of the current data is beyond
the scope of any individual project, it still pales compared with
the number of possible interactions in a community at local or
regional levels. Scaling up to larger assays presents technical
challenges aside from increasing the depth of sampling. Studying
many host strains beyond the species (or genus) level often
requires distinct culture conditions, a prerequisite for studies
that many laboratories cannot or do not want to reach. Here, we
present an analysis of what such a hypothesized study may reveal.
Consider an experiment in which the hosts from two groups of
experiments were combined in a large cross-infection assay with
the phages from the same two groups of experiments. If the
original matrix sizes were H1 • P1 and H2 • P2, then the final
matrix size is (H1 + H2) • (P1 + P2). A total of H1P2 + H2P1 new
experiments would need to be performed. If the hosts were of
sufficiently distant types (e.g., E. coli and Synecoccocus), we
should expect that nearly all of the new cross-infection experi-
ments would lead to no additional infections. Hence, if the
original matrices were nested, then the new matrix would have
two modules, each of which was nested (Fig. 7 has the results of
such a numerical experiment). In other words, we predict that, at
larger, possibly macroevolutionary scales, host–phage interaction
matrices should be typified by a modular structure, even if there
is nested structure at smaller scales.

Discussion
Summary of Major Results.We have established a unified approach
to analyzing host–phage infection matrices. In so doing, we find
that a compilation of 38 empirical studies of host–phage in-
teraction networks is nested on average and not modular (Figs. 4
and 5). In most cases, our finding of higher-order structure such
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Fig. 6. Statistical distribution of modularity and nestedness for random
matrices compared with that of the original data. (A) Sorted comparison
of modularity of the collected studies vs. random networks. (B) Sorted
comparison of nestedness of the collected studies vs. random networks.
In both cases, error bars denote 95% confidence intervals based on 105

randomizations.
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as nestedness within an individual study was not previously ob-
served, in that prior analyses of host–phage interaction matrices
usually did not attempt to estimate the network characteristics
examined here. We found that host–phage interaction networks
are not perfectly nested and that interactions that defy perfect
nestedness are typical throughout nearly all of the data. Addi-
tionally, we found no significant difference in nestedness or
modularity based on taxa, sources, or isolation method. This
dataset, although far larger than any individual study, is limited
to (largely) microevolutionary scales, an issue that we addressed
in Results and will return to later in Discussion. Considering the
large range of taxa, habitats, and sampling techniques used to
construct the matrices, the repeated sampling of a nested pattern
of host–phage infections is salient, although the process driving
the nestedness is not obvious. It could result from multiple
mechanisms or a single principle. Here, we examine three hy-
potheses to explain the nestedness pattern based on biochemical,
ecological, and evolutionary principles. Note that these hypoth-
eses are not mutually exclusive and that we have only limited
ability to test them given our comparative approach. However,
each of these hypotheses can be tested with additional labora-
tory-based or field experiments.

Mechanisms Responsible for Nestedness: Biophysical, Ecological, and
Evolutionary. Phage and bacterial infection matrices at micro-
evolutionary scales may be constrained to a nested shape by the
nature of their molecular interactions. Phages infect bacteria by
using specialized proteins that target and bind to molecules on
the outer membranes of bacteria (receptor molecules). Nested
infection matrices have been shown for T-phages, which infect
strains of E. coli, to be the result of the interactions of the phage
proteins and receptor molecules (73). T-phages bind to the li-
popolysaccharide (LPS) chains on the cell surface. Mutant E. coli
has been observed with shortened LPS chains that confer re-
sistance to some but not all T-phages. There are T-phages that

are able to infect these mutants, because they require fewer
segments of the LPS molecule to bind. If phage–bacterial mo-
lecular interactions are dominated by single traits and variation in
these traits is constrained along a single hierarchical dimension
such as LPS, then one should expect the nested pattern to arise.
There are other examples of traits with physical characteristics that
behave similarly: bacteria that evolve a thicker and thicker pro-
tective coating (74), phages that evolve increased host range by
continually reducing tail length (73), bacteria that reduce their
number of receptors, and phages that target fewer receptors (75).
Although there aremany examples of this type of one-dimensional
interaction, the problem with this finding being a universal ex-
planation for the form of bacterial–phage interactions are that
host–phage interactions are governed by hundreds of other genes
(76), bacteria can use multiple strategies for resistance (74), and
phages have complex mechanism to evade bacteria defenses
(74, 77). Moreover, a recent discovery of an adaptive immune
system, where bacteria acquire targeted sequences to prevent
phage infection and phages evolve to evade such immunity, sug-
gests a complex interaction space (78). Given the diversity of
host–phage interactions, it seems unlikely that the molecular
details alone would constrain the form of their relationship (79).
Instead, we turn to the potential guiding forces of community as-
sembly and coevolution to explain this reoccurring pattern.
The nested pattern may be common, because the processes

of microbial community assembly select for species with nested
relationships. One could imagine that communities may settle
into this pattern if this interaction structure is more stable than
others (67, 71), noting that the stability of host–phage interaction
structures may depend on ecological factors such as resource
availability (80). Cohesive interaction structures such as nested
patterns have been shown to be more stable than other structures
for mutualistic networks (81, 82). The regularity of the inter-
actions and redundancies make these communities less suscep-
tible to the random removal of nodes. However, these networks
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Fig. 7. Union of two nested matrices indicates possible host–phage interaction structure at larger, possibly macroevolutionary scales. In this figure, we
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are thought to be susceptible to invasion by new species that
violate the nested pattern, suggesting that migration of a species
would perturb the nestedness. Furthermore, the spatiotemporal
complexity of microbial and viral communities suggests that prior
theoretical efforts that consider community addition as a process
in which invasions occur infrequently may not be widely appli-
cable. Moreover, community assembly models rarely invoke the
influence of evolutionary change at similar time scales as eco-
logical change—an issue highly relevant to the study of microbial
and viral communities.
Indeed, there may be an evolutionary explanation for nest-

edness. Most attempts to characterize the form of coevolution
with host–phage experiments to date have shown a form of an-
tagonistic evolution called expanded host range (or gene for
gene) coevolution (52, 83, 84). Under this model, bacteria evolve
ever-increasing resistance to more and more phage genotypes,
and phages evolve broader host ranges. If one were to sample
a community of bacteria and phages coevolving under this
model, they would uncover a diversity of phages and bacteria
that exhibit a nested interaction pattern. At any time point, the
most-derived bacteria should exist, which is either completely
resistant or depending on the timing, sensitive to the most-
derived phage. Given that selection by phage may be slow to
alleviate the more sensitive ancestral variants or that there may
be a tradeoff between resistance and competitiveness, there will
exist a diversity of bacteria with ever decreasing sets of phages to
which they are resistant. Similarly, the most-derived phages will
have the broadest host range, and by the same logic as for the
bacteria, its ancestors are likely to persist in the community and
display ever-decreasing host ranges. The nested pattern could be
a product of taking a snapshot of a dynamically evolving com-
munity. Although the majority of experimental results observed
in artificial laboratory settings support this hypothesis, there is
a single laboratory experiment (85) and models of bacterial host–
parasite coevolution that suggest that other forms of coevolution
are possible when there are bottom-up costs for modifications to
resistance (86, 87). Furthermore, if coevolution provided the
only explanation, then the artificially assembled matrices would
not have the nested pattern.

Dispelling and Recognizing Potential Biases. Three sources of
sampling bias challenge the generality of our findings. First, the
taxa sampled may poorly represent microbial diversity given that
they are subject to both human and methodological biases. If, for
instance, only taxa associated with humans were selected or all
taxa were cultured similarly, then our results would only be rel-
evant for a small group of microbes. Indeed, the majority of
microbial studies were performed on the family Enterobacteriaceae,
which lives within human digestive systems; however, the spectrum
of bacteria that we examined is much broader and includes both
heterotrophic and photosynthetic species. Further, gram-nega-
tive and -positive bacteria examined here were isolated from six
continents and many disparate environments from the extreme
conditions of hot springs, the rich resource conditions of sewage,
depauperate marine environments, and the complex matrix of
soil to the simplified laboratory environment. Although this
study cannot feasibly test the full microbial diversity of the globe,
it does include examples from much of it (SI Appendix, Tables S1
and S2).
Second, as previously discussed, the number of hosts used to

isolate phages and the inclusion of noninteracting hosts and
phages have the potential to alter the nestedness of a matrix.
Ideally, the same number of hosts studied in the matrix would be
used to isolate phages, or if only a subset of hosts was used, then
these hosts would not be included in the matrix. This finding is
important to ensure that the pattern of infection is independent
of how the parasites were isolated. We found that these biases
were not a problem by (i) testing matrices that were created by

isolating phages on a single host and (ii) removing hosts and
phages that were not interacting. We found that whether the
matrices were significantly nested was not affected by including
the isolation host in the matrix or by removing noninteracting
hosts and phages, which is strong support that the isolation
method did not enrich for nestedness.
The last category of bias, phylogenetic, is likely to mean that

our results define a pattern at relatively narrow taxonomic scales.
The majority of our studies was of closely related genotypes and
species. As described in Results, we anticipate that more complex
patterns of infection may form at larger phylogenetic scales that
likely include increasing compartmentalization. Hence, we hy-
pothesize that a multiscale view of host–phage infection net-
works will reveal nestedness at small scales and modularity at
large scales. Our finding of nested interaction matrices is still
relevant for characterizing patterns at short phylogenetic dis-
tances; they are, arguably, the most relevant for many ecological
and evolutionary scenarios, because they likely share the richest
connections.

Prospective View. Whatever the limitations of this dataset, it is
important to point out that viewing host–phage interaction net-
works through a unifying lens will likely unveil other common-
alities of microbial and viral communities. By way of analogy,
over 25 y ago, the study of food webs was radically altered by the
compilation of many small food webs that were subject to
a unified analysis (88–91). The key finding of the earliest food
web studies was that the members of a community could be
ranked, and that larger species would eat a random fraction of
those species smaller than them. From this stage, there were two
ways forward. First, by studying larger food webs, the original
pattern was refined such that species ranking was found to be
correlated with body size (but not equivalent to body size);
therefore, individuals eat prey that are smaller, although they are
a part of a well-defined size class (92, 93). Second, the topology
of food webs was then used as a target and basis for dynamic
models of community behavior (i.e., what mechanisms can ex-
plain the patterns and how do the patterns influence community
function) (94). We hope and envision that a similar process
unfolds here in that the finding of a general pattern in the cur-
rent dataset will stimulate the collection of more and larger host–
phage infection networks to continue to provide a fuller picture
of who infects whom across an entire community. In so doing, we
caution that data completeness can alter the observed patterns of
connectivity and refer readers to a number of recent papers that
address this topic (95–99).
What do we expect to find when analyzing ever larger host–

phage interaction networks collected from an ecological commu-
nity, evolution experiments, or culture collections? We hypothe-
size that host–phage interaction matrices are likely characterized
by modularity at larger taxonomic scales even if there is structure
(e.g., nestedness) at small taxonomic scales (Fig. 7). What would
such a multiscale phenomenon inform us about the structure and
function of microbiological communities? First, it would suggest
the existence of diversifying coevolutionary-induced selection that
gave rise to (largely) independent host–phage communities. The
molecular basis of such diversification could then be explored.
Second, cross-infection assays or similar laboratory-based strate-
gies (100) that test whether phages can infect or at least transmit
their genes between phylogenetically divergent hosts have the
potential to provide significant advances in understanding patterns
of global gene transfer. Such phages (and the bacteria that they
infect) may be critical to understanding the direct transfer of genes
on a global scale. Instead of phages acting locally (in a taxonomic
sense) to shuttle genes between closely related bacteria, a few rare
links would permit greater cross-talk between bacterial taxa.
Quantifying the frequency of such events may represent the small-
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world links that connect distant microbial populations (101), and it
is in need of experimental testing.
Furthermore, infections of distantly related groups by the

same phages would imply that the bacteria are in indirect com-
petition with one another, even if they do not seem to compete
directly for the same set of carbon and nutrient sources. Al-
though whole genome-based approaches to infer host range and
phage susceptibility may help provide candidates for such rare
links, they are not the only solution. Rather, we suggest that the
continued use of laboratory-based assays to catalog the life his-
tory traits of culturable host–phage pairs is essential if we are to
improve our understanding of the population dynamics of host–
phage communities in the wild. Of course, many (if not most)
bacteria and phages are not currently culturable. Hence, in
parallel, we recommend attention be given to the development
of inverse methods to catalog the life history traits of phages
based on community infection assays in those circumstances in
which culturing is impossible or yet intractable.

Materials and Methods
Network Statistics. Modularity is estimated by reshuffling the rows and
columns of the matrix to find groupings of highly interconnected phages and
bacteria, labeling these groups and assessing matrix-wide the ratio of the
number of within to outside group connections. This calculation is done using
a heuristic called the BRIM algorithm (102) to efficiently find the configu-
ration that maximizes this ratio. We ported the BRIM algorithm to MATLAB
from the original code in Octave and used the adaptive BRIM algorithm for
all calculations here. By this definition, a perfectly modular matrix is com-
prised of clusters of completely isolated groups, and modularity declines as
the number of cross-group connections increases. Nestedness is estimated by
reordering the rows and columns (103, 104) to determine whether phages
that infect fewer hosts are only able to infect a subset of bacteria that are
susceptible to many phages. This reordering tries to maximize the position
of ones in the matrix such that they clusters above a nullcline (Fig. 1C shows

a perfectly nested matrix). The value for nestedness depends on how fre-
quently ones fall above rather than below this nullcline. Complete details
are provided in SI Appendix, SI Materials and Methods.

Host–Phage Infection Assay. Matrix 22 is the only dataset not previously
published.Weconstructed thematrixby coevolvinganobligately lytic phage-λ
strain with its host E. coli. The E. coli studied was of strain REL606, a de-
rivative of E. coli B acquired from Richard Lenski (Michigan State University,
Lansing, MI) and described in ref. 105, and phages were of strain cI21 (λvir)
provided by Donald Court (National Cancer Institute, Frederick, MD). The
phages and bacteria were cocultured in 50-mL Erlenmeyer flasks with 10 mL
liquid medium, shaken at 120 rpm, and incubated at 37 °C (New Brunswick
Innova 4300 Incubator Shaker). This flask was incubated, and the cycle of
transfer and incubation was continued one more time. Three 24-h incuba-
tions were long enough for the bacteria to evolve resistance and the phages
to counter it; however, it was not long enough for a second round of co-
evolution. We randomly selected 150 bacteria and 150 phage isolates. We
determined which of the 150 bacteria isolates were resistant to the 150
phage isolates. To do this task, we performed spot plate assays. All bacterial–
phage combinations were replicated five separate times, and a total of
28,125 spots were assayed. To make this processes more efficient, we placed
up to 96 separate phage stocks onto a single dish (150 mm radius). Phage
stock replicates were never placed on the same plate to reduce the signal
of any stochastic plating effects. The five replicates were combined, and
a phage was only determined to be able to infect a bacterium if three of
five replicates were given ones. Lastly, phages or bacteria that had identi-
cal infection or resistance profiles as their ancestors were removed from
the matrix. Complete details are provided in SI Appendix, SI Materials
and Methods.
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