Discovery of Inhibitors of Protein-Protein Interactions from Combinatorial Libraries

María J. Vicent¹, Enrique Pérez-Payá¹² and Mar Orzáez¹,*

² Instituto de Biomedicina de Valencia (CSIC). E-46010 Valencia, Spain.

Corresponding author: Dr. Mar Orzáez. Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler, 16, E-46013 Valencia, Spain. Phone: +34-963289680; Fax: +34-963289701; E-mail: morzaez@cipf.es
Abstract:

Protein-protein interactions play a central role within numerous processes in the cell. The relevance of the processes in which this type of interactions are implicated make them responsible of many pathological situations. In the last decade protein-protein interfaces have shown their potential as new drug targets, and combinatorial chemistry has been defined as an useful tool in this line. This review gives a global vision of the actual situation of combinatorial chemistry, highlighting its applicability to high-throughput drug discovery and giving some crucial examples of its contribution to find modulators of protein-protein interactions.

Abbreviations:

Acquired immunodeficiency syndrome (AIDS), conformationally restricted libraries (CRL), highthroughput methods of screening (HTS), human immunodeficiency virus type 1 (HIV-1), nuclear magnetic resonance (NMR), rabies virus Nucleoprotein (N), rabies virus Phosphoprotein (P), structure activity relationship (SAR).
PROTEIN-PROTEIN INTERACTIONS AS DRUG TARGETS.

The most generalised approach used to develop new therapeutic agents has been mostly based on the choice of a single gene product of clinical relevance as target. However, as it was early postulated and more recently experimentally confirmed, a large number of proteins inside the cell rarely stays alone. Molecular signalling and signal transduction pathways at cellular level require massive protein usage in order to transmit signals through protein-protein interactions producing cell-answerings in response to different environmental changes or modifications. Not only proteins in cellular pathways are busy seeking for interactions but structural proteins are also forming part of macromolecular structures and enzymes have regulatory and catalytically active subunits. In this crowded scenario, in which protein-protein interactions are the main actors, it is reasonable to speculate that the modulation of protein-protein interactions could open new alternatives to the development of molecules that could modulate cellular pathways that in turn could have relevant future therapeutic applications. Special attention is devoted to the drawing of the protein interaction maps. In fact, there are now available cellular-protein interaction maps of model organisms[1], human[2,3], and some cellular pathways and, in addition, many genomes have been completely sequenced (see http://www.ensembl.org). However, these maps represent only a very partial picture of the complete set of real interactions. Because detecting and analysing all protein-protein interactions by classical experimental methods is not as fast as genome sequencing, there is an unbalance between our knowledge on the basic pieces of the puzzle (the proteins) and the higher order relationships between them. Thus, it would be useful for the identification of new potential targets the use of predictive bioinformatics methods based on different types of evidences such as sequence features [4] or different indirect experimental evidences.
such as co-expression [5], domain-domain co-occurrence [6] and others methods. These approaches are becoming more and more accurate and now it is reasonable to take them as a starting point in absence of previous experimental evidence. In addition, systematic whole-cell mass spectrometry approaches are currently used to identify protein complexes [7,8], which includes strong, transient and weak interactions between proteins that will increase our knowledge of interacting networks [9,10]. Nevertheless, data derived from all these methodologies clearly point to the need of taking into consideration protein-protein interactions as targets for the development of new drugs. In fact a study of the pairwise interactions among 8100 human open reading frames (that represents only about 10% of the total protein-coding genes), showed that at least in 424 of them one of the partners is implicated in human diseases [3].

Figure 1

The development of modulators for protein-protein interactions is not exempt of difficulties. Among others, one of the first identified problems is related to the nature of the surfaces that define these interactions. While the ‘classical’ protein sites targeted by drug discovery programs are ligand binding sites, defined by small-concave cartographic spots, the protein-protein interaction surfaces are flat and large. An extensive network of weak molecular interactions maintains the structure of the complex, then at a first glance, they were classified as extremely difficult target for small-molecules, that in turn were the favourite choice for drugs. Years of investigation are now providing information on the detailed nature of these interactions that for sure will provide the hints to afford disruption of this type of complexes. For example, now we know that the packing between molecules is not as tight as the core packing of
proteins, probably due to the less hydrophobic interaction surfaces and the presence of interfacial water molecules [11]. This flexibility allows multiple forms of protein-protein complexes that can be initially classified as permanent, with no individual components found in the cell during protein lifetime and, transient complexes that are formed and disrupted in response to different cell situations. The total extension of the interactive surface, considered a key parameter of the discovery strategy, would then probably vary when facing a small (close to 1000 Å²) or a middle to large (> 4000 Å²) interacting interface [11]. In addition, it is well established now that when comparing the folding of an individual protein versus the structural arrangements needed for a protein-protein interaction there are differences on the role of the structural elements. A correct ‘hydrophobic-driven’ single protein packing tends to collect hydrophobic elements of secondary structure inside the protein core regardless of their secondary structure. However, it has been observed that in protein-protein interaction surfaces there is a ranking of preferences on packing, from high to low, between β-sheet/β-sheet, loop/loop, α-helix/α-helix while α-helix/β-sheet interactions are less favoured [11]. Furthermore, statistical data also suggests that some defined amino acids have tendency to be more present than others at the protein-protein interfaces. Methionine, tryptophan, cysteine, phenylalanine, tyrosine, arginine and histidine are overrepresented at transient molecular interfaces opposed to hydrophobic residues that are in general underrepresented in this type of surfaces [12]. Some amino acid pairs are frequently found in association like tryptophan and proline or phenylalanine and isoleucine. It should be also noted that exposed hydrophobic interfaces tend to be small and although hydrophobic residues contribute to the binding affinity, these types of interactions are less specific than those composed of polar or charged residues.
Taking all this information together it seems that there is an infinite diversity in the universe of protein-protein interactions difficult to cope with from the point of view of the design of new therapeutics. Nevertheless proteins are often constructed of modular domains that are used repeatedly in distinct molecules to mediate their interactions [13]. For example, proline rich motifs are recognized by conserved interaction modules such as SH3, WW and EVH1 domains or phosphotyrosine motifs are recognized by SH2 or PTB domains. These common features facilitate the development of general strategies for the inhibition of different molecular targets, which share an interaction motif although their cellular function could be completely different.

In any case the remaining question is whether or not relatively small molecules, a desirable characteristic to consider a molecule as a potential drug candidate, could or not be capable of disrupting protein-protein interaction surfaces. Recent progress in the field has provided a large number of examples [14,15] in which this strategy of modulation has prospered opening a new field for drug discovery. Relevant and difficult to target diseases such as acquired immunodeficiency syndrome (AIDS), Alzheimer or cancer are being favoured with recent discoveries from methodologies using this strategy.

A second key question is related to the methodological strategy that could be used to ensure the identification of active compounds able to inhibit these protein-protein interactions. Is it necessary to use traditional searching or it is maybe better to use a combinatorial approach?. The limiting factor for rational design is the requirement of an exhaustive knowledge of the targets in order to identify ‘hot spots’ along the interaction surface of proteins where small drugs could disrupt the complexes. Unfortunately, our current knowledge about protein-protein surfaces, even with enough structural data available, is extremely limited to permit the use of this rational strategy.
as a general approach to modulate interactions. Moreover in this new technological era where the information about protein interactions emerge as global interactome maps [3] in which thousands of proteins are inter-connected, it seems necessary to find a global strategy to perform the search of modulators for all these interactions. It is in these situations where combinatorial approaches could be extremely beneficial and profitable, offering a great diversity of compounds to test protein-protein disruption activity and therefore overcoming the problem of lack of information. From the technological point of view the use of combinatorial chemistry requires the development of high-throughput methods of screening (HTS) for protein-protein interactions in order to increase the probability of finding a lead compound. There are many techniques available to identify protein partners such as yeast two hybrid system, mass spectrometry, protein chips (reviewed in [16]), POSSYCCAT for the study of interactions between transmembrane fragments [17], etc. Once an active product has been identified, deeper studies could permit the location of the interaction site with its target and give the necessary information to improve the drug-protein interaction surface. This site could probably be considered as a ‘hot spot’ on the interaction surface between the proteins. Furthermore, the discovery of a new inhibitor could facilitate the identification of the cellular processes in which this interaction is implicated. In the cases where enough information about the target is available to initiate an adequate drug rational design, combinatorial chemistry could also contribute offering the possibility of improving its inhibition capabilities through structural modifications of the defined lead compound [18,19].

This review will try to illustrate in a first stage the principles and types of combinatorial chemistry and how with this combinatorial approach it is possible to identify inhibitors for key protein-protein interactions.
COMBINATORIAL CHEMISTRY: A VALID APPROACH FOR TARGET VALIDATION AND DRUG DISCOVERY

Combinatorial vs. traditional chemistry. Principles of combinatorial chemistry

Traditionally, natural product extracts or industrial collections of randomly synthesised organic molecules (synthesised one at a time) were screened to discover “hits”, which were then optimised in an iterative process by the synthesis of derivatives. Many important drugs were identified following this approach however the ratio of novel to previously discovered compounds started to diminish with time. This fact together with the cost constraints found on pharmaceutical research forced the investigation of methods in the pharmaceutical industry that could offer higher productivity at lower expenses. By that time, genomics and proteomics had experienced an exponential growth and more potent and efficient technological devices for biological screening had also been achieved. Altogether, triggered the appearance of a new discipline in the early 1980s: Combinatorial Chemistry [20].

Combinatorial chemistry could be defined as “the generation of large collections, or ‘libraries’, of compounds by synthesising all possible combinations of a set of smaller chemical structures, or ‘building blocks’, in a time and submitted for pharmacological assay” [19-28]. In this way, the chemist can synthesise up to thousands of compounds at once instead of preparing only a few by simple methodology. The traditional approach of organic synthesis to sequentially synthesise a logically designed set of analogues based on a lead compound has been surpassed by the ability to screen whole compound libraries accumulated over the years by large pharmaceutical companies. Therefore, with the combinatorial strategy the productivity has been amplified beyond the levels obtained as routine in the last century [29,30].
Solid-phase and solution-phase combinatorial chemistry

Solid phase peptide synthesis methodology, introduced by Merrifield in 1963, paved the way for solid-phase combinatorial approaches (extensively reviewed in [27,28,31-35]). Geysen [36,37] was the pioneer in this field synthesising peptides on pin-shaped solid supports followed by Houghten with his “teabag” approach to epitope mapping [38]. Solid-phase combinatorial chemistry has been widely implemented for hit discovery as well as lead optimisation due to its advantages and simplicity of use, advantages such as: (i) the compounds can be isolated once they are attached to solid supports, (ii) the isolation of the immobilised product by simple filtration permits the use of large reagent excesses to get high-yield conversions for each of the steps, (iii) pseudo-dilution effects are present and (iv) the use of split-and-mix synthesis simplifies the preparation of large libraries [15].

The split-and-mix solid–phase synthesis on beads was introduced by Furka et al.[39,40]. This technique has been enthusiastically exploited by many others since its first disclosure. For example, Houghten has used split-and-mix on a macro scale in a "teabag" approach for the generation of large libraries of peptides [41]. Lam et al. [42-44] was able to enhance the production and rapid evaluation of random libraries of millions of peptides in a way that acceptor-binding ligands of high affinity could be rapidly identified and sequenced, on the basis of a 'one-bead, one-peptide' approach. Consequently to the large acceptance achieved by the split-and-mix strategy, several identification techniques have been also developed, such as nucleotide- [45,46], peptide- [47,48], chemical- [49], radiofrecuency- [50], color- [51], and shape- [52-54] encoded or iterative [55-57] and recursive [58,59] deconvolution.

Unfortunately, there is not an ideal general technique, therefore, among the limitations of solid-phase combinatorial synthesis should be mentioned the restriction
of being only suitable in linear synthetic strategies and the requirements for linkage or cleavage steps that may restrict the possible chemical reactions. A hydroxyl, amine, carboxyl, or other polar group must be present on a molecule to be able to attach it to a support. This is a potentially undesirable constraint on the structure of compounds synthesized on solid phase, as products retain the polar group even after they are cleaved from the support. Several groups have been devoted to diminish these drawbacks in order to continue improving the implementation of solid-phase synthesis. The use of ‘Traceless linkers’ [12,60-62] have been one of the most remarkable implementations. For instance, Mori and coworkers [60,63] have developed an aniline linker for solid-phase synthesis of azomethines or Ellman et al. [64] have reported an acylsulfonamide linker able to add diversity to a library when displaced by various nucleophiles at the same time that is completely removed from products during the cleavage process. Furthermore, other innovative techniques for solid-phase synthesis have been developed, including: react-and-release type chemistry [65], in which reagents used to cleave products from the solid support are incorporated into the product; use of scavenger resins [66]; the introduction of safety-catch linkers [67-69] or the improvement of resin properties and loading capacities [70-72].

Although the solid-phase combinatorial chemistry is still the most widely used, several groups have been applying an alternative solution-phase approach to complement solid-phase techniques. Solution-phase synthesis offers the possibility of expanding the repertoire of chemical reactions and allows the application of convergent synthetic strategies, the synthesis of mixture libraries or the use of dynamic libraries [73,74].

Dynamic combinatorial chemistry [29,73,74] is based on continuous interconversion between the library constituents, it uses reversible connections
between the initial building blocks producing flexible and adaptive libraries. This approach is driven by the interactions of the library constituents with the target site. This strategy allows a target-driven generation or amplification of active constituents by performing a self-screening process where the active species are preferentially expressed and retrieved from the library [73]. A similar concept is found in Phage displayed libraries (biologically displayed libraries) [75-77] first published on 1985 by Smith et al.[78]. These offer a strategy to isolate peptide ligands to target proteins and to define interaction sites between proteins [79]. In phage displayed libraries, instead of using inter-convertible building blocks as it is done in dynamic libraries, possible active peptides or oligonucleotides (phage population) are screened by incubation with the target molecule adsorbed to a solid support. Active phages bind the target, then target-bound phages are isolated and propagated by infection of E. coli and subjected to an additional round of adsorption to the immobilised target. The use of biological displayed libraries for the isolation of peptide ligands is an interesting alternative to chemical libraries.

Both, solid-phase and solution-phase strategies can be easily automated, however, the major limitation to solution-phase is the isolation and purification of the library compounds [80,81]. To date, most of the isolation/purification steps are based on acid-base chemistry and sequestration-enabling reagents [82-84]. The pioneering acid-base extraction approach of Boger et al. [85], clearly showed the possibility of generate large libraries of pure molecules. His work has been mainly focused on the main concept raised in this review, the discovery of small compounds (mainly peptidomimetics) inhibitors of protein-protein interactions [15]. Mixture synthesis provides for solution-phase synthesis what split-and-mix synthesis provides for solid-phase approaches (reviewed in [86,87]).
Analogous to encoding approaches for split-and-mix synthesis of large libraries (also known as iterative approach), there are two key and complementary deconvolution strategies that permit the immediate identification of active lead compounds from large mixture libraries: positional scanning [88,89] and deletion synthesis [90,91] techniques. The positional scanning approach was first described by Houghten et al. [88,89] and was developed as an alternative to the iterative strategy where the lead identification was achieved through successive steps of mixture selection with the active compound, synthesis of sublibrary and subsequent evaluation, that is, only one residue can be identified at a time by a synthesis-assay cycle. When using a positional scanning approach [92,93] several sublibraries can be synthesised at a time, in each sublibrary an individual component is placed in one position but mixtures are used in all others. The most active sublibrary in each set indicates the optimal substituent for that position so, an increase in activity is measured that allows the identification of active lead structures. On the other hand, in deletion synthesis deconvolution libraries [90], an individual component is missing in each sublibrary but full mixtures are used in all other positions. The least active sublibrary in each set indicates the optimal substituent for that position as the missing component that in turn, will be the most active. This strategy provides less global information that positional-scanning but is better at identifying a uniquely potent library member. It is important to note that, with either of both techniques, the lead identification comes out from a single round of screening.

SUITABILITY OF COMBINATORIAL APPROACH TO TARGET PROTEIN-PROTEIN INTERACTIONS
Despite the already described inherent difficulties in the process to identify small compounds modulators of protein-protein interactions, there are several important modulators of this type of complexes that have been defined using combinatorial approaches. Some of the more representative examples are described in more detail below (Table 1).

Apoptosis inhibitors

Programmed cell death or apoptosis is a highly regulated process of cell deletion that plays crucial roles in development and maintenance of tissue homeostasis in multicellular organisms. Due to the relevance of this cellular mechanism its deregulation is a key issue in the pathogenesis of several human diseases such as cancer or neurodegenerative disorders [94]. This type of cellular death can be triggered by a variety of extrinsic and intrinsic signals [95].

Inhibitors of apoptosome formation.

In the apoptosis pathway in mammals the formation of a multiprotein complex called apoptosome between cytochrome c, Apaf-1 (apoptotic protease-activating factor) and procaspase-9 links mitochondria dysfunction with the activation of the effector caspases starting the cascade of cell death [8,96-98]. Our laboratory focused on the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a positional scanning diversity-oriented combinatorial library of trimers of N-alkylglycines [99]. These type of molecules also known as peptoids present a series of characteristics that make them good candidates to cope with the disruption of protein-protein interactions. Its main chain is quite similar to a polypeptide but with the lateral side chain on the nitrogen atom instead of the
carbon thus giving the advantage of the similarity at the same time that conferring flexibility to the scaffold which could favour the interaction with the target surface [100]. Moreover, due to this chemical difference with proteins, cellular proteases are not able to degrade this type of substrates increasing the lifetime of the drug inside the organism. The library consisted in 52 controlled mixtures and a total of 5120 compounds. Mixtures 1 to 20 (O1XX) contain as defined position one of 20 selected commercially available primary amines, while at the ‘X’ positions (mixture positions) a set of 16 primary amines was present. Mixtures 21 to 36 (XO2X) and 37 to 52 (XXO3) contain at the defined position only a set of 16 amines. The mixtures making up each sublibrary were screened for their ability to prevent the apoptosome-dependent activation of procaspase-9. For this goal the apoptosome was assembled in vitro by incubating rApaf-1, cytochrome c, dATP and [35S]-Met procaspase-9.

After the identification of a lead compound (peptoid 1) rescued from the library a rational strategy was used to improve its solubility as well as its cellular internalisation capability, obtaining finally a drug with antiapoptotic activity in different cell lines, see Fig (2).

Figure 2

Inhibitors of interaction between pro- and anti-apoptotic proteins.

The response of mitochondria to apoptotic signals is a key point of regulation of apoptosis that is controlled by the Bcl-2 family of proteins. In particular by the balance between pro- and anti-apoptotic proteins in the mitochondrial membrane. Anti-apoptotic Bcl-2 proteins (for example, Bcl-2 and Bcl-X\textsubscript{L}) are the target of pro-apoptotic proteins (like Bad, Bax, Bak) that through their BH3 domain bind to a hydrophobic cleft on the surface of Bcl-2 or Bcl-X\textsubscript{L}. Several lines of evidence indicate that BH3-mediated
binding has a key role in regulating apoptotic functions. In fact, short peptides derived from BH3 domains of various pro-apoptotic Bcl-2 family members are sufficient to induce apoptosis in cells [101]. To identify small-molecule inhibitors of Bcl-X\textsubscript{L}-BH3 domain interaction, Degterev et al. [102] screened a commercially available library of 16320 chemicals and found hit compounds that after chemical optimisation rendered biologically active compounds that inhibited the interaction between Bcl-X\textsubscript{L} and BH3 domains and induced apoptosis in Jurkat cells. The same protein-protein complex was selected as target by Oltersdorf et al. [103]. However in this study they applied the methodology of SAR by NMR. In this methodology a library of small chemical fragments is screened against the protein target to identify low-affinity binding compounds. Then the chemical linkage of proximal fragments would render a new molecule with high binding affinity to the target. Using this technique a small molecule, named ABT-737, with high affinity (Ki< 1 nM) to Bcl-X\textsubscript{L} was identified, see Fig (3). ABT-737 displayed synergism with chemotherapeutics and radiation. Furthermore, the compound showed in vivo anti-tumor activity causing complete regression of established tumor xenografts.

Figure 3

Viral inhibitors

Combinatorial libraries have also contributed to the inhibition of the life cycle of certain viruses such as the human immunodeficiency virus or the rabies virus.

HIV protease dimerisation inhibitors

Human immunodeficiency virus type 1 (HIV-1) is a retrovirus with a very complex life cycle in which at least 15 protein are implicated [104]. Several drugs targeting
different steps of this cycle have been developed. One of the main pharmacological targets is the virus protease (PR), a pivotal enzyme in viral maturation responsible of processing the polyproteins encoded by the virus rendering active proteins needed for the assembly and the infection steps of the virus particle [105]. PR is an homodimeric aspartil protease with the active site located at the interface of the dimmer [106]. This dimerisation interface is a highly conserved region which makes it a relevant target for drug discovery. The main dimerisation region is folded as an interdigitating N-and C-terminal four stranded β-sheet. The group of Chmielewski using rational design developed inhibitors of the PR dimerisation derived from crosslinked interfacial peptides corresponding to this conserved β-sheet region and identified the minimal structure necessary for the activity of these peptides [107]. Moreover in an attempt to improve its activity a focused library on the basis of this minimized molecule was designed (compound 6) in which certain side chains were substituted by different natural and non natural amino acid side chains, see Fig (4). The analysis of the library not only gave information about the groups that confer better characteristics in each position but also rendered a molecule (compound 36, Fig (3)) with improved activity respect to the initial scaffold.

Figure 4

Rabies virus infection inhibition

Infection by rabies virus is the cause of thousands of deaths by encephalomyelitis per year in the world. The clear need to have a post-exposure treatment led the group of Yves Jacob to work on the development of a new virucidal drug [108]. Rabies virus is a member of the lyssaviruses family. Among other viral constituents the Phosphoprotein (P) is crucial for the formation of the transcription-replication complex, in which
interacts with the RNA-polymerase and the nucleoprotein (N). Moreover P also interacts in the cell with Dynein LC8 a protein implicated in retrograde transport. These characteristics made P a good target to develop a new virucidal drug, although there was no structural information about the complexes in which it participates. Ybes Jacob and coworkers designed two genetically encoded combinatorial peptide libraries, called coactamer libraries. In these libraries the peptide scaffold is structurally constrained due to the presence of either prolines or cysteines. This structure mimics conotoxins and insect antimicrobial peptides, which easily reach the cellular interior, in an attempt to increase drug bioavailability. A two hybrid assay was used to identify peptides interacting with phosphoproteins from two different lyssaviruses. Peptides selected from the library were tested for its viral transcription-replication complex interference activity. To be sure that their activity were related with an alteration of the N-P interaction a ProteinChip with an anti-Flag M2 monoclonal antibody cross-linked was used to immunoprecipitate P and its associated proteins from cell extracts in the presence or absence of the co-transfected inhibitor peptides. Peaks corresponding to the interaction between P and N were analysed by SELDI-TOF, and four peptides modulators of the ratio P/N (indicator of an altered interaction) were identified.

Table 1

<table>
<thead>
<tr>
<th>Integrin αvβ3 / MMP-2</th>
</tr>
</thead>
</table>

Integrin αvβ3 is an heterodimeric cell surface receptor that promotes cell attachment to the extracellular matrix. MMP-2 (gelatinase A) a protein secreted by vascular endothelial cells is crucial for the degradation of collagen matrix which permits new vessels to proliferate. Moreover, the interaction between integrin αvβ3 and MMP-2
seems to be responsible for the activation of MMP-2 in invasive endothelial cells [109]. Disruption of this protein-protein interaction is one of therapeutic strategies that are being exploited for tumor growth inhibition. Screening of a library composed of ten mixtures of 60 small organic compounds designed to mimic potential protein–protein interactive moieties have led to the identification of a lead compound with \textit{in vitro} activity. Posterior refinement experiments permitted to obtain a more water-soluble molecule with antitumor and antiangiogenic \textit{in vivo} activity [110]. One of the active compounds, termed TSRI265, was shown to prevent collagen IV degradation in hamster CS-1 melanoma cells transfected with the human \(\beta_3 \)-integrin, see Fig (3). Furthermore, TSRI265 almost completely inhibited \(\beta_3 \)-FGF-stimulated angiogenesis in 10-day-old chick chorioallantoic membrane. The data obtained from this study set the basis to consider inhibition of MMP-2/\(\alpha_4\beta_3 \) binding as a crucial molecular target to block the angiogenic process [111].

\textit{Integrin} \(\alpha_4\beta_1 / \text{Paxillin} \)

The interaction between the signal adaptor protein Paxillin and the cytoplasmic tail of integrin \(\alpha_4\beta_1 \), a cell surface receptor, has been implicated in several pathogenic situations including enhanced rates of cell migration, reduced rates of cell spreading, focal adhesion, and stress fibre formation [112]. All these processes contribute to leukocyte migration into tissues and to the expression of genes involved in chronic inflammation. From the screening of a combinatorial library in an ELISA assay using immobilised His-tagged \(\alpha_4 \) and examining the binding of Paxillin, Boger and coworkers obtained a lead molecule that inhibits this interaction [92]. The library consisted of a scaffold composed of three different variable subunits (\(X, Y \) and \(Z \)) linked by amide bonds, and a basic side chain 4-(dimethylamino) butyric acid linked to the \(X \) subunit,
see Fig (5). For each variable position ten aromatic amino acids were used. The library was prepared in solution using two different formats, as 100 mixtures of 10 compounds and using a positional scanning approach in which 30 sublibraries were generated. Results using the two types of library formats were quite similar. The lead molecule (11 X7-Y7-Z7), see Fig (3), obtained from the screening not only disrupted Paxillin/Integrin α_β interaction but also demonstrated a potent inhibition activity of human Jurkat T cell migration.

Figure 5

Cell cycle inhibitors

Cell growth in eukaryotic cells is under control of a series of concerted molecular mechanisms defined as the cell cycle. In cell life cycle there are strict checkpoints controlling cells prepared to enter mitosis. The p16-cyclinD-pRB-E2F pathway controls the G1/S transition of the mammalian cell cycle. E2Fs are a family of transcription factors (E2F1 to E2F7 in mammalian cells) that require heterodimerization with proteins of the DP family to bind DNA and exert its regulatory function over genes implicated in DNA replication [113,114]. Activiation of E2F dependent transcription promotes progression from G1 to S and conversely its inhibition arrests cells in G1 [115]. Sardet and coworkers [116] identified, from the screening of a combinatorial library of thiorredoxin-20mer peptide (called aptamers), a molecule that interacts with E2F1 dimerization domain. For this purpose, a two hybrid assay with E2F1 dimerization domain as a bait, was used. Among the molecules identified there was one peptide (Apt5) that shared notable sequence similarity with a region of DP1. More extensive studies demonstrated that this molecule interferes with the interaction between E2F/DP. Moreover, deeper studies in mammalian cells demonstrated that Apt5 is
capable of blocking fibroblasts in G1 reinforcing the hypothesis that this interaction could be considered as a key target for the development of pharmaceutical antiproliferative agents.

Inhibitors of G-proteins

Heterotrimeric G-proteins \((G_{\alpha \beta \gamma})\) transform the signal produced by G-protein coupled receptors in an intracellular signal. In humans the wide diversity of receptors together with the great number of isoforms of G-proteins generate a pool of complexes implicated in a wide variety of cellular processes ranging from neurotransmission or embryonic development [117] to respiratory control [118]. Drug discovery efforts that initially were directed to G-coupled receptors now have been focused in G-proteins and its intracellular partners.

In an attempt of interfere with these interactions the group of Scott JK used different phage displayed peptide libraries (Table 1) that were screened against immobilized \(\beta \gamma\) subunits as target [119]. Selected peptides were grouped into different families and one of the groups identified was shown to share notable homology with peptides derived from Phospholipase C \(\beta_2\) (PLC \(\beta_2\)). These peptides in fact prevented activation of PLC \(\beta_2\) by \(G_{\beta \gamma}\) subunits but did no block \(G_{\beta \gamma}\)-mediated of voltage-gated calcium channels which remarks the pathway specificity of the molecules. Moreover all peptides selected were predicted to bind to the same site of the \(G_{\beta \gamma}\)-subunits. In this sense the screening of the library not only rendered active molecules but also gave information about a 'hot spot' site in \(G_{\beta \gamma}\) for binding interaction [120]. This information could be of great interest for the posterior refinement of the peptide/protein interactions as well as for the development of new pharmaceuticals using a traditional strategy.
Conformationally restricted libraries (CRL).

The main characteristic of these libraries is that the random sequences (the diversity) are grafted onto a rigid natural protein domain or into stable secondary structural motifs usually named as the scaffold of the CRL [121,122]. The sequence of the scaffold is kept in its major part and only a few positions are combinatorialised. Hence, the library presents dual diversity, namely of sequences and structures. An adequate selection of the combinatorialised positions in the scaffold allows the generation of molecules that virtually populate the conformational space between the random and the fully folded conformation which, in turn, depends on the selected scaffold. The aims of the design of a monomeric α-helix CRL was based on its potential use as source for the identification of molecules that would modulate protein-protein interactions. In this context, the α-helical based CRL was screened in two different biological assays. In particular, we were interested in the modulation of protein-protein interactions that mediate membrane fusion. The mechanism of virus-cell fusion of some enveloped viruses and in particular for rhabdoviruses revealed that, to fuse with the cellular membranes, the G protein trimeric spikes find and bind to their target cells. However, the molecular mechanisms involved in rhabdovirus fusion are not well understood and it might involve new proteins or principles yet to be discovered. The screening of the library allowed the identification of peptides that enhanced the infectivity of rhabdoviruses [8,123]. These peptides are currently being used in studies addressed to understand the molecular mechanism that control the fusion of the rhabdovirus to the target cell. In a different biological assay we addressed the identification of novel modulators of the SNARE complex as inhibitors of regulated exocytosis. Calcium-dependent exocytosis in excitable cells is mediated by the precise docking and fusion of neurotransmitter-loaded cargo vesicles.
Mechanistically, neuronal exocytosis is an orchestrated cascade of protein-protein interactions that involve several proteins. At the centre of the process are found the so-called SNARE proteins that assemble into a highly stable, ternary complex known as the SNARE core complex. Structurally, the SNARE complex is a highly stable parallel four helix bundle formed by coiled coil arrangements. The high stability of the SNARE complex has hampered the discovery of small molecules that modulate the assembly of the proteins and only clostridial neurotoxins and peptides patterned after protein domains of SNARE proteins have been reported to have an effect on the assembly. However, the discovery of amino acid sequences unrelated to the SNARE proteins capable to inhibit the assembly of the core complex remained elusive. From the screening of the α-helix CRL we identified up to 8 peptides that inhibited in vitro the formation of the SDS resistant SNARE complex. The most active 17-mer peptide abrogated the Ca^{2+}-dependent release of L-glutamate in intact hippocampal neurons.

Conclusion

The network of protein interactions that defines the full interactome of proteins of cellular regulatory mechanisms is far broader than the subject matter reviewed here. Consequently, the identification of molecules that inhibit protein-protein interactions reviewed here should be viewed as a starting point upon which to build the concept that such protein-protein interactions are pharmacologically accessible by small molecules. The actual and future molecules that will modulate interactions between proteins, not only would have the chance to be promote to ‘more promising hits to drugs’ but also will define valuable tools for the study of cell biology. The use of collections of molecules or compound libraries together with the availability of
structural and bioinformatics information for key protein-protein complexes have significantly open new views to the understanding of how modulators of protein-protein interaction could be developed. In turn, these findings open important questions and perspectives that will be the driving force for future research. Questions ahead will look upon the ‘strength’ of the interactions between proteins and how many transient interactions (difficult to identify in the cellular context) that are still undiscovered, will be classified as key points of regulation in cellular pathways. However, combinatorial chemistry in its different formats will be always a valuable and useful tool to face research programs for the identification of modulators of protein-protein interactions, specially when structural information of the complex is not available but a biological activity could be evaluated.

References

Several web pages are dedicated to give state-of-the-art information about development of combinatorial chemistry techniques and its applications, s. a., http://www.combichemistry.com, http://www.combi-web.com or http://www.chemsoc.org/networks/cnn/ (from the Royal Society of Chemistry (RSC)).

Borman, S. Combinatorial chemists focus on small molecules, molecular recognition, and automation. *Chemical & Engineering News* **1996**, *74*, 29-.

[71] Kappe, C. O. Synthesis and reactions of Biginelli compounds, part 17 - Highly versatile solid phase synthesis of biofunctional 4-aryl-3,4-dihydropyrimidines

[107] Shultz, M. D.; Bowman, M. J.; Ham, Y. W.; Zhao, X.; Tora, G. Chmielewski, J. Small-Molecule Inhibitors of HIV-1 Protease Dimerization Derived from Cross-Linked Interfacial Peptides This work was supported by NIH (GM52739) and NSF (9457372-CHE). Angew. Chem. Int Ed. 2000, 39, 2710-2713.

spot' on heterotrimeric G protein betagamma subunits is used for recognition of

[120] Davis, T. L.; Bonacci, T. M.; Sprang, S. R.; Smrcka, A. V. Structural and
molecular characterization of a preferred protein interaction surface on G protein

[121] Pastor, M. T.; Mora, P.; Ferrer-Montiel, A.; Perez-Paya, E. Design of bioactive
and structurally well-defined peptides from conformationally restricted libraries.

A., Taylor, P., Bennett, K., Boutillier, K., Yang, L. Y., Wolting, C., Donaldson,
I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat,
B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A. R., Sassi,
H., Nielsen, P. A., Rasmussen, K. J., Andersen, J. R., Johansen, L. E., Hansen,
L. H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V.,
Sorensen, B. D., Matthiesen, J., Hendrickson, R. C., Gleeson, F., Pawson, T.,
Moran, M. F., Durocher, D., Mann, M., Hogue, C. W. V., Figy, D., Tyers, M..
Systematic identification of protein complexes in Saccharomyces cerevisiae by

[123] Mas, V.; Perez, L.; Encinar, J. A.; Pastor, M. T.; Rocha, A.; Perez-Paya, E.,
haemorrhagic septicaemia virus: fusion-related enhancement of virus infectivity
by peptides derived from viral glycoprotein G or a combinatorial library. *J. Gen.

[124] Brunger, A. T. Structure of proteins involved in synaptic vesicle fusion in

SNARE complex involved in synaptic exocytosis at 2.4 A resolution. *Nature.*

[127] Xiao, W.; Poirier, M. A.; Bennett, M. K.; Shin, Y. K. The neuronal t-SNARE

[128] Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting

[129] Blanes-Mira, C.; Pastor, M. T.; Valera, E.; Fernandez-Ballester, G.; Merino, J.
M. Gutierrez, L. M., Perez-Paya, E., Ferrer-Montiel, A.. Identification of
SNARE complex modulators that inhibit exocytosis from an alpha-helix-

[130] Ferrer-Montiel, A. V.; Gutierrez, L. M.; Apland, J. P.; Canaves, J. M.; Gil, A.
Viniegra, S., Biser, J. A., Adler, M., Montal, M. The 26-mer peptide released
from SNAP-25 cleavage by botulinum neurotoxin E inhibits vesicle docking.

migration that inhibit intracellular paxillin/alpha A binding: A well-documented

[132] Qin, H. X.; Srinivasula, S. M.; Wu, G.; Fernandes-Alnemri, T.; Alnemri, E. S.
Shi, Y. G. Structural basis of procaspase-9 recruitment by the apoptotic

[133] Rutenber, E.; Fauman, E. B.; Keenan, R. J.; Fong, S.; Furth, P. S. Demontellano,
P. R. O., Meng, E., Kuntz, I. D., Decamp, D. L., Salto, R., Rose, J. R., Craik, C.

Tables

Table 1. Libraries and screening methods used in the different protein-protein interaction assays.

<table>
<thead>
<tr>
<th>PROTEIN-PROTEIN INTERFACE</th>
<th>METHOD OF SCREENING</th>
<th>TYPE OF LIBRARY</th>
<th>REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apaf-1/apoptosome</td>
<td>[S35] Procaspase 9 processing</td>
<td>Trimers of N-alkylglycines</td>
<td>[99]</td>
</tr>
<tr>
<td>Bcl-X$_i$/BH3 Bak</td>
<td>Fluorescence polarization assay</td>
<td>16320 organic compounds</td>
<td>[102]</td>
</tr>
<tr>
<td>HIV-protease dimerization interface</td>
<td>Enzymatic assay</td>
<td>Focused library of interfacial peptides</td>
<td>[107]</td>
</tr>
<tr>
<td>Phosphoprotein/ nucleoprotein from Rabies virus</td>
<td>Yeast two hybrid assay</td>
<td>Coactamer libraries</td>
<td>[108]</td>
</tr>
<tr>
<td>Integrin $\alpha_i\beta_3$/MMP-2</td>
<td>Solid phase receptor-binding assays</td>
<td>Mixtures of small organic compounds</td>
<td>[111]</td>
</tr>
<tr>
<td>Paxillin/ integrin $\alpha_4\beta_i$</td>
<td>ELISA assay with immobilized His-tagged α_4</td>
<td>4-(dimethylamino) butyric acid-A-B-C</td>
<td>[131]</td>
</tr>
<tr>
<td>E2F/DP</td>
<td>Yeast two hybrid assay</td>
<td>Thioredoxin-20mer peptides (aptamers)</td>
<td>[116]</td>
</tr>
<tr>
<td>$G_{\beta\gamma}$</td>
<td>Phage displayed libraries against immobilized $\beta\gamma$ subunits</td>
<td>Linear Disufide-bridged-loop Half – Cys α-conotoxin</td>
<td>[119]</td>
</tr>
<tr>
<td>Rhabdovirus Trimeric G protein</td>
<td>Virus infectivity</td>
<td>α-helical CRL</td>
<td>[123]</td>
</tr>
<tr>
<td>Snare complex</td>
<td>SDS-PAGE</td>
<td>α-helical CRL</td>
<td>[129]</td>
</tr>
</tbody>
</table>
Legend to figures

Figure 1. Representative examples of solved structures of known protein-protein interfaces. (A) CARD domain of Apaf-1/prodomain of caspase (3YGS) [132] (B) Dimeric HIV protease (1AID) [133] (C) Integrin alpha2 I domain/collagen complex (1DZI) [134]

Figure 2. Apaf 1 inhibition by identified peptoids. (A) Structure of the lead compound obtained from the screening, peptoid 1, and a more soluble derivative peptoid 1a. (B) Apoptosome-dependent activation of pro caspase-9 followed by incubating *in vitro* transcribed-translated [35S]-Met pro caspase-9 and rApaf-1 in the presence cytochrome at different concentrations of peptoid 1a. (C) Structures peptoid 1 third generation derivatives: penetratin-GG-peptoid 1, cyclo-peptoid 1a and PGA-GG-peptoid 1.

Figure 3. Structure of active compounds obtained from the screening of different libraries in protein-protein interaction assays.

Figure 4. Structure of the focused library designed to inhibit HIV protease dimerisation. The library consisted of 49 single modifications of the parent compound in the four marked different positions.

Figure 5. General structure of the library designed to interfere with the Paxillin/α4 interaction. The positions marked as X, Y and Z were substituted by ten different aromatic amino acids.