TRY – a global database of plant traits

Authors:

Jens Kattge, Sandra Díaz, Sandra Lavorel, I. Colin Prentice, Paul Leadley, Gerhard Bönisch, Eric Garnier, Mark Westoby, Peter B. Reich, Ian J. Wright, Johannes H.C. Cornelissen, Cyrille Violle, Sandy P. Harrison, Peter M. van Bodegom, Markus Reichstein, Brian J. Enquist, Nadejda A. Soudzilovskaia, David D. Ackerly, Madhur Anand, Owen Atkin, Michael Bahn, Timothy R. Baker, Dennis Baldocchi, Renée Bekker, Carolina C. Blanco, Benjamin Blonder, William Bond, Ross Bradstock, Daniel E. Bunker, Fernando Casanoves, Jeannine Cavender-Bares, Jeffrey Q. Chambers, F. Stuart Chapin III, Jerome Chave, David Coomes, Will K. Cornwell, Joseph M. Craine, Barbara H. Dobrin, Leandro Duarte, Walter Durka, James Elser, Gerd Esser, Marc Estiarte, William F. Fagan, Jingyun Fang, Fernando Fernández-Méndez, Alessandra Fidelis, Bryan Finegan, Olivier Flores, Henry Ford, Dorothea Frank, Gregoire T. Freschet, Nikolaos M. Fyllas, Rachael Gallagher, Walton A. Green, Alvaro G. Gutierrez, Thomas Hickler, Stephen Higgins, John G. Hodgson, Adel Jalili, Steven Jansen, Carlos Joly, Andrew J. Kerkhoff, Don Kirkup, Kaoru Kitajima, Michael Kleyer, Stefan Klotz, Johannes M. H. Knops, Koen Kramer, Ingolf Kühn, Hiroko Kurokawa, Daniel Laughlin, Tali D. Lee, Michelle Leishman, Frederic Lens, Tanja Lenz, Simon L. Lewis, Jon Lloyd, Joan Llusià, Frédérique Louault, Siyan Ma, Miguel D. Mahecha, Pete Manning, Tara Massad, Belinda Medlyn, Julie Messier, Angela Moles, Sandra C. Müller, Karin Nadrowski, Shahid Naeem, Ülo Niinemets, Stefanie Nöllert, Angela Nüske, Roma Ogaya, Jacek Oleksyn, Vladimir G. Onipchenko, Yusuke Onoda, Jenny Ordoñez, Gerhard Overbeck, Wim Ozinga, Sandra Patiño, Susana Paula, Juli G. Pausas, Josep Peñuelas, Oliver L. Phillips, Valerio Pillar, Hendrik Poorter, Lourens Poorter, Peter Poschlod, Andreas Prinzing, Raphaël Proulx, Anja Rammig, Sabine Reinsch, Björn Reu, Lawren Sack, Beatriz Salgado-Negret, Jordi Sardans, Satomi Shiodera, Bill Shipley, Andrew Siefert, Enio Sosinski, Jean-Francois Soussana, Emily Swaine, Nathan Swenson, Ken Thompson, Peter Thornton, Matthew Waldram, Evan Weiher, Michael White, S. Joseph Wright, Benjamin Yguel, Sönke Zaehle, Amy E. Zanne, Christian Wirth

Corresponding Author:

Jens Kattge Max-Planck-Institute for Biogeochemistry Hans-Knöll Straße 10, 07745 Jena, Germany phone: +49 (0) 3641 576226 fax: +49 (0) 3641 577200 email: jkattge@bgc-jena.mpg.de

Keywords:

comparative ecology, database, environmental gradient, functional diversity, global analysis, global change, interspecific variation, intraspecific variation, plant attribute, plant trait, plant functional type, vegetation model

57 Abstract

58 Plant traits – the morphological, anatomical, physiological, biochemical, and 59 phenological characteristics of plants and their organs – determine how primary 60 producers respond to environmental factors, affect other trophic levels, influence 61 ecosystem processes and services, and provide a link from species richness to 62 ecosystem functional diversity. Trait data thus represent the raw material for a wide 63 range of research from evolutionary biology, community and functional ecology to 64 biogeography. Here we present the global database initiative named TRY, which has 65 united a wide range of the plant trait research community worldwide and gained an 66 unprecedented buy-in of trait data: so far 93 trait databases have been contributed. 67 The data repository currently contains almost three million trait entries for 69,000 out 68 of the world's 300,000 plant species, with a focus on 52 groups of traits characterising 69 the vegetative and regeneration stages of the plant life cycle, including growth, 70 dispersal, establishment and persistence. A first data analysis shows that most plant 71 traits are approximately log-normally distributed, with widely differing ranges of 72 variation across traits. Most trait variation is between species (interspecific), but 73 significant intraspecific variation is also documented, up to 40% of the overall 74 variation. Plant functional types (PFTs), as commonly used in vegetation models, 75 capture a substantial fraction of the observed variation - but for several traits most 76 variation occurs within PFTs, up to 75% of the overall variation. In the context of 77 vegetation models these traits would better be represented by state variables rather 78 than fixed parameter values. The improved availability of plant trait data in the 79 unified global database is expected to support a paradigm shift from species to trait-80 based ecology, offer new opportunities for synthetic plant trait research and enable a

- 81 more realistic and empirically grounded representation of terrestrial vegetation in
- 82 Earth system models.

83 Introduction

84	Plant traits - morphological, anatomical, biochemical, physiological or phenological
85	features measurable at the individual level (Violle et al. 2007) - reflect the outcome
86	of evolutionary and community assembly processes responding to abiotic and biotic
87	environmental constraints (Valladares et al. 2007). Traits and trait syndromes
88	(consistent associations of plant traits) determine how primary producers respond to
89	environmental factors, affect other trophic levels, and influence ecosystem processes
90	and services (Aerts and Chapin 2000, Grime 2001, Lavorel and Garnier 2002, Díaz et
91	al. 2004, Grime 2006, Garnier and Navas in press.). In addition, they provide a link
92	from species richness to functional diversity in ecosystems (Díaz et al. 2007). A focus
93	on traits and trait syndromes therefore provides a promising basis for a more
94	quantitative and predictive ecology and global change science (McGill et al. 2006,
95	Westoby and Wright 2006).
96	Plant trait data have been used in studies ranging from comparative plant ecology
97	(Grime 1974, Givnish 1988, Peat and Fitter 1994, Grime et al. 1997) and functional
98	ecology (Grime 1977, Reich et al. 1997, Wright et al. 2004) to community ecology
99	(Shipley et al. 2006, Kraft et al. 2008), trait evolution (Moles et al. 2005a), phylogeny
100	reconstruction (Lens et al. 2007), metabolic scaling theory (Enquist et al. 2007),
101	palaeobiology (Royer et al. 2007), biogeochemistry (Garnier et al. 2004, Cornwell et
102	al. 2008), disturbance ecology (Wirth 2005, Paula and Pausas 2008), plant migration
103	and invasion ecology (Schurr et al. 2005), conservation biology (Ozinga et al. 2009,
104	Römermann et al. 2009) and plant geography (Swenson and Weiser 2010). Access to
105	trait data for a large number of species allows testing levels of phylogenetic

106 conservatism, a promising principle in ecology and evolutionary biology (Wiens et al.

2010). Plant trait data have been used for the estimation of parameter values in
vegetation models, but only in a few cases based on systematic analyses of trait
spectra (White et al. 2000, Kattge et al. 2009, Wirth and Lichstein 2009, Ziehn et al.
accepted). Recently plant trait data have been used for the validation of a global
vegetation model as well (Zaehle and Friend 2010).

112 While there have been initiatives to compile data sets at regional scale for a range of traits (e.g. LEDA¹, BiolFlor², EcoFlora³, BROT⁴) or at global scale focusing on a 113 small number of traits (e.g. GlopNet⁵, SID⁶), a unified initiative to compile data for a 114 115 large set of relevant plant traits at the global scale was lacking. As a consequence 116 studies on trait variation so far have either been focussed on the local to regional scale 117 including a range of different traits (e.g. Baraloto et al. 2010), while studies on global 118 scale were restricted on individual aspects of plant functioning, e.g. the leaf economic 119 spectrum (Wright et al. 2004), the evolution of seed mass (Moles et al. 2005 a,b) or 120 the characterisation of the wood economic spectrum (Chave et al. 2009). Only few 121 analyses on global scale have combined traits from different functional aspects, but 122 for a limited number of plant species (e.g. Diaz et al. 2004). 123 In 2007, the TRY⁷ initiative started compiling plant trait data from the different 124 aspects of plant functioning on global scale to make the data available in a consistent 125 format through one single portal. Based on a broad acceptance in the plant trait 126 community (so far 93 trait databases have been contributed, Table 1), TRY has 127 accomplished an unprecedented coverage of trait data and is now working towards a

¹ LEDA - Life History Traits of the Northwest European Flora: http://www.leda-traitbase.org

² BiolFlor – Trait Database of the German Flora: http://www.ufz.de/biolflor

³ EcoFlora - The Ecological Flora of the British Isles: www.ecoflora.co.uk

⁴ BROT – Plant Trait Database for Mediterranean Basin Species: http://www.uv.es/jgpausas/brot.htm

⁵ GlopNet – Global Plant Trait Network: http://www.bio.mq.edu.au/~iwright/glopian.htm

⁶ SID - Seed Information Database: data.kew.org/sid/

⁷ TRY – Not an acronym, rather an expression of sentiment: http://www.try-db.org

communal global repository for plant trait data. The new database initiative is
expected to contribute to a more realistic and empirically based representation of
plant functional diversity on global scale supporting the assessment and modelling of
climate change impacts on biogeochemical fluxes and terrestrial biodiversity
(McMahon et al. in press).

For several traits the data coverage in the TRY database is sufficient to quantify the relative amount of intra- and interspecific variation, as well as variation within and between different functional groups. Thus the dataset allows to examine two basic tenets of comparative ecology and vegetation modelling, which, due to lack of data, had not been quantified so far:

138 (1) On the global scale the aggregation of plant trait data at the species level captures 139 the majority of trait variation. This central assumption of plant comparative ecology 140 implies that, while there is variation within species, this variation is smaller than the 141 differences between species (Garnier et al. 2001, Keddy et al. 2002, Westoby et al. 142 2002, Shipley 2007). This is the basic assumption for using average trait values of 143 species to calculate indices of functional diversity (Petchey and Gaston 2006, de Bello 144 et al. 2010, Schleuter et al. 2010), to identify ecologically important dimensions of 145 trait variation (Westoby 1998), or to determine the spatial variation of plant traits 146 (Swenson and Enquist 2007, Swenson and Weiser 2010).

(2) On the global scale basic plant functional classifications capture a sufficiently
important fraction of trait variation to represent functional diversity. This assumption
is implicit in today's dynamic global vegetation models (DGVMs), used to assess the
response of ecosystem processes and composition to CO₂ and climate changes. Due to
computational constraints and lack of detailed information these models have been

152	developed to represent the functional diversity of >300,000 documented plant species
153	on Earth with a small number (5-20) of basic plant functional types (PFTs, e.g.
154	Woodward and Cramer 1996, Sitch et al. 2003). This approach has been successful so
155	far, but limits are becoming obvious and challenge the use of such models in a
156	prognostic mode, e.g. in the context of Earth system models (Lavorel et al. 2008,
157	McMahon et al., in press).
158	This article first introduces the TRY initiative and presents a summary of data
159	coverage with respect to different traits and regions. For a range of traits we
160	characterise general statistical properties of the trait density distributions, a
161	prerequisite for statistical analyses, and provide mean values and ranges of variation.
162	For ten traits that are central to leading dimensions of plant strategy we then quantify
163	trait variation with respect to species and plant functional type and thus examine the
164	two tenets mentioned above. Finally we demonstrate how trait variation within PFT is
165	currently represented in the context of global vegetation models.

166 Material and Methods

167 *Types of data compiled*

168 The TRY data compilation focuses on 52 groups of traits characterising the vegetative

and regeneration stages of plant life cycle, including growth, reproduction, dispersal,

- 170 establishment and persistence (Table 2). These groups of traits were collectively
- agreed to be the most relevant for plant life-history strategies, vegetation modelling,
- and global change responses on the basis of existing shortlists (Grime et al. 1997,
- 173 Weiher et al. 1999, Lavorel and Garnier 2002, Cornelissen et al. 2003b, Díaz et al.
- 174 2004, Kleyer et al. 2008) and wide consultation with vegetation modellers and plant

175	ecologists.	They in	nclude p	plant tr	aits <i>sensu</i>	stricto,	but also	'performances'	(sensu
-----	-------------	---------	----------	----------	-------------------	----------	----------	----------------	--------

176 Violle et al. 2007), such as drought tolerance or phenology.

177	Quantitative traits vary within species as a consequence of genetic variation (among
178	genotypes within a population/species) and phenotypic plasticity. Ancillary
179	information is necessary to understand and quantify this variation. The TRY dataset
180	contains information about the location (e.g. geographical coordinates, soil
181	characteristics), environmental conditions during plant growth (e.g. climate of natural
182	environment, or experimental treatment), and information about measurement
183	methods and conditions (e.g. temperature during respiration or photosynthesis
184	measurements). Ancillary data also include primary references.
105	Dy profession in dividual macaurements are compiled in the detabase, like sincle
100	By preference individual measurements are complied in the database, like single
186	respiration measurements or the wood density of a specific individual tree. The
187	dataset therefore includes multiple measurements for the same trait, species and site.
188	For some traits, e.g. leaf longevity, such data are only rarely available on single
189	individuals (e.g. Reich et al. 2004), and data are expressed per species per site instead.
190	Different measurements on the same plant (resp. organ) are linked to form
191	observations that are hierarchically nested. The database structure ensures that (1) the
192	direct relationship between traits and ancillary data and between different traits that
193	have been measured on the same plant (resp. organ) is maintained and (2) conditions
194	(e.g. at the stand level) can be associated with the individual measurements (Kattge et
195	al. 2010). The structure is consistent with the Extensible Observation Ontology
196	(OBOE; Madin et al. 2008), which has been proposed as a general basis for the
197	integration of different data streams in ecology.

The TRY dataset combines several pre-existing databases based on a wide range of primary data sources, which include trait data from plants grown in natural environments and under experimental conditions, obtained by a range of scientists with different methods. Trait variation in the TRY dataset therefore reflects natural and potential variation on the basis of individual measurements at the level of single organs, and variation due to different measurement methods and measurement error (random and bias).

- 205 Data treatment in the context of the TRY database
- 206 The TRY database has been developed as a Data Warehouse (Fig. 1) to combine data
- 207 from different sources and make them available for analyses in a consistent format

208 (Kattge et al. 2010). The Data Warehouse provides routines for data extraction,

- 209 import, cleaning and export. Original species names are complemented by
- 210 taxonomically accepted names, based on a checklist developed by IPNI⁸ and
- 211 TROPICOS⁹, which had been made publicly available on the TaxonScrubber website
- by the SALVIAS¹⁰ initiative (Boyle 2006). Trait entries and ancillary data are
- standardized and errors are corrected after consent from data contributors. Finally,
- 214 outliers and duplicate trait entries are identified and marked (for method of outlier
- 215 detection see S1). The cleaned and complemented data are moved to the data
- 216 repository, whence they are released on request.
- 217 Selection of data and statistical methods in the context of this analysis
- 218 For the analyses in the context of this manuscript we have chosen traits with sufficient
- 219 coverage from different aspects of plant functioning. The data were standardized,

⁸ IPNI – The International Plant Names Index: http://www.ipni.org

⁹ TROPICOS - Missouri Botanical Garden: http://www.tropicos.org

¹⁰ SALVIAS – Analysis of Local Vegetation Inventories Across Sites: http://www.salvias.net

220	checked for errors and duplicates excluded. Maximum photosynthetic rates and
221	stomatal conductance were filtered for temperature (15-30°C), light (PAR
222	$>500 \mu molm^2 s^{-1}$), and atmospheric CO ₂ concentration during measurements (300-
223	400ppm); data for respiration were filtered for temperature (15-30°C) ¹¹ . Statistical
224	properties of density distributions of trait data were characterised by skewness and
225	kurtosis on the original scale and after log-transformation. The Jarque-Bera test was
226	applied to assess departure from normality (Bera and Jarque 1980). Finally outliers
227	were identified (see supplementary material, S1). The subsequent analyses are based
228	on standardized trait values, excluding outliers and duplicates.
229	PFTs were defined similar to those used in global vegetation models (e.g. Woodward
230	and Cramer 1996, Sitch et al. 2003; see Table 5), based on standardized tables for the
231	qualitative traits 'plant growth form', 'leaf type', 'leaf phenology type',
232	'photosynthetic pathway', and 'woodiness' ¹² .
233	The evaluation of the two tenets of comparative ecology and vegetation modelling
234	focuses on ten traits that are central to leading dimensions of trait variation or that are
235	physiologically relevant and closely related to parameters used in vegetation
236	modelling (Westoby et al. 2002, Wright et al. 2004): plant height, seed mass, specific
237	leaf area (one-sided leaf area per leaf dry mass, SLA), leaf longevity, leaf nitrogen
238	content per leaf dry mass (N_m) and per leaf area (N_a) , leaf phosphorus content per leaf
239	dry mass (P_m) and maximum photosynthetic rate per leaf area $(Amax_a)$, per leaf dry

¹¹ A temperature range for respiration from 15-30°C will add variability to trait values. Nevertheless, an immediate response of respiration to temperature is balanced by an opposite adaptation of basal respiration rates to long-term temperature changes. More detailed analyses will have to take short and long term impact of temperature on both scales into account. With respect to photosynthetic rates the problem is similar, but less severe.
¹² Description of qualitative traits used for PFT classification: plant growth form: grass, herb, climber,

¹² Description of qualitative traits used for PFT classification: plant growth form: grass, herb, climber, shrub, tree; leaf type: needle-leaved, broadleaved; leaf phenology type: deciduous, evergreen; photosynthetic pathway: C3, C4, CAM; woodiness: woody, non-woody.

240	mass $(Amax_m)$ and per leaf nitrogen content $(Amax_N)^{13}$. For each of the ten traits we
241	quantified variation across species and PFTs in three ways: (1) Differences between
242	mean values of species and PFTs were tested, based on one-way ANOVA. (2)
243	Variation within species, in terms of standard deviation (SD), was compared to
244	variation between species (same for PFTs). (3) The fraction of variance explained by
245	species and PFT was calculated ¹⁴ .
246	We observed large variation in SD within species if the number of observations per
247	species was small (see funnel plot in S1). With an increasing number of observations,
248	SD within species approached an average, trait specific level. To avoid confounding
249	effects due to cases with very few observations per species, only species with at least
250	five trait entries were used in statistical analyses (with exception of leaf longevity,
251	where two entries per species were taken as the minimum number because species
252	with multiple entries were very rare). The number of measurements per PFT was
253	sufficient in all cases. Statistical analyses were done in R (R Development Core Team
254	2009).

255 **Results**

256 Data coverage in the TRY database

¹³ Specific relevance of the ten selected traits: plant height: vegetation carbon storage capacity; seed mass: plant regeneration strategy; leaf longevity: trade-off between leaf carbon investment and gain; SLA: link of light capture (area based) and plant growth (mass based); leaf N and P content: link of carbon and respective nutrient cycle; photosynthetic rates expressed per leaf area, dry mass and Ncontent: link of carbon gain to light capture, growth and nutrient cycle. Although we realize the relevance of traits related to plant water relations, we did not feel comfortable to include traits such as maximum stomatal conductance or leaf water potential into the analyses for the lack of sufficient coverage for a substantial number of species. 14 Explained variance (R^2) was calculated as one minus the residual sum of squares divided by the total

sum of squares.

257	As of 31.03.2011 the TRY data repository contains 2.88 million trait entries for
258	69,000 plant species, accompanied by 3.0 million ancillary data entries ¹⁵ . About 2.8
259	million of the trait entries have been measured in natural environment, less then
260	100.000 in experimental conditions (e.g. glasshouse, climate or open top chambers).
261	About 2.3 million trait entries are for quantitative traits, while 0.6 million entries are
262	for qualitative traits (Table 2). Qualitative traits, like plant growth form, are often
263	treated as distinct and invariant within species (even though in some cases they are
264	more variable than studies suggest, e.g. flower colour or dispersal mode), and they are
265	often used as covariates in analyses, as when comparing evergreen vs. deciduous
266	(Wright et al. 2005) or resprouting vs. non-resprouting plants (Pausas et al. 2004).
267	The qualitative traits with the highest species coverage in the TRY dataset are the five
268	traits used for PFT classification and leaf compoundness: woodiness (44,000 species),
269	plant growth form (40,000), leaf compoundness (35,000), leaf type (34,000),
270	photosynthetic pathway (32,000) and leaf phenology type (16,000); followed by N-
271	fixation capacity (11,000) and dispersal syndrome (10,000). Resprouting capacity is
272	noted for $3,000$ species ¹⁶ .
273	The quantitative traits with the highest species coverage are seed size (27,000
274	species), plant height (18,000), leaf size (17,000), wood density (12,000), SLA
275	(9,000), plant longevity (8,000), leaf nitrogen content (7,000), and leaf phosphorus
276	content (5,000). Leaf photosynthetic capacity is characterised for more than 2,000
277	species. Some of these traits are represented by a substantial number of entries per
278	species, e.g. SLA has on average 10 entries per species, leaf N, P and photosynthetic

¹⁵ Not all data from the databases listed in Table 1 and summarized in Table 2 could be used in the subsequent analyses, because some recently contributed datasets were still being checked and cleaned in the data staging area (see Fig. 1). ¹⁶ Description of qualitative traits: Plant dispersal syndrome: dispersed by wind, water, animal; N-fixation capacity: able/not able to fix atmospheric N₂; leaf compoundness: simple versus compound, recently able/not able to recently

resprouting capacity: able/not able to resprout.

279 capacity have about 8 resp. 5 entries per species, with a maximum of 1470 entries for 280 leaf nitrogen per dry mass (N_m) for *Pinus sylvestris*.

281 About 40% of the trait entries (1.3 million) are geo-referenced, allowing trait entries 282 to be related to ancillary information from external databases such as climate, soil, or 283 biome type. Although latitude and longitude are often recorded with high precision, 284 the accuracy is unknown. The geo-referenced entries are associated with 8502 285 individual measurement sites, with sites in 746 of the 4200 2x2° land grid cells of e.g. 286 a typical climate model (Fig. 2). Europe has the highest density of measurements, and 287 there is good coverage of some other regions, but there are obvious gaps in boreal 288 regions, the tropics, northern and central Africa, parts of South America, southern and 289 western Asia. In tropical South America, the sites fall in relatively few grid cells, but 290 there are high numbers of entries per cell. This is an effect of systematic sampling efforts by long-term projects such as LBA¹⁷ or RAINFOR¹⁸. For two individual traits 291 292 the spatial coverage is shown in Figure 3. Here we additionally provide coverage in 293 climate space, identifying biomes for which we lack data (e.g. temperate rainforests). 294 More information about data coverage of individual traits is available on the website 295 of the TRY initiative (http://www.try-db.org).

296 General pattern of trait variation: test for normality

297 For 52 traits the coverage of database entries was sufficient to quantify general pattern

298 of density distributions in terms of skewness and kurtosis, and to apply the Jarque-

Bera test for normality (Table 3). On the original scale all traits but one are positively

300 skewed, indicating distributions tailed to high values. After log-transformation the

¹⁷ LBA – The Large Scale Biosphere-Atmosphere Experiment in Amazonia:

http://www.lba.inpa.gov.br/lba

¹⁸ RAINFOR – Amazon Forest Inventory Network: http://www.geog.leeds.ac.uk/projects/rainfor

301 distributions of 20 traits are still positively skewed, while 32 traits show slightly 302 negative skewness. For 49 of the 52 traits the Jarque-Bera test indicates an 303 improvement of normality by log-transformation of trait values - only for three traits 304 normality was deteriorated (leaf phenolics, tannins and carbon content per dry mass; 305 Table 3). The distribution of leaf phenolics and tannins content per dry mass is in 306 between normal and log-normal: positively skewed on the original scale, negatively 307 skewed on log-scale. Leaf carbon content per dry mass has a theoretical range from 308 zero to 1000 mg/g. The mean value, about 476 mg/g, is in the centre of the theoretical 309 range, and the variation of trait values is small (Table 4). 310 Nevertheless, according to the Jarque-Bera test, also on a logarithmic scale all traits 311 show some degree of deviation from normal distributions (indicated by small p-312 values, Table 3). Seed mass, for example, is still positively skewed after log-313 transformation (Table 3). This is due to substantial differences in the number of 314 database entries and seed masses between grasses/herbs, shrubs and trees (Figure 4a). 315 Maximum plant height in the TRY database has a strong negative kurtosis after log-316 transformation (Table 3). This is due to a bimodal distribution: one peak for 317 herbs/grass and one for trees (Fig. 4b). The number of height entries for shrubs is 318 comparatively small - which may be due to a small number or abundance of shrub 319 species *in situ* (i.e. a real pattern) but is more likely due to a relative 'under-sampling' 320 of shrubs (i.e. an artefact of data collection). Within the growth forms herbs/grass and 321 shrubs, height distribution is approximately log-normal. For trees the distribution is

322 skewed to low values, because there are mechanical constrictions to grow taller than

323 100 m. The distribution of SLA after log-transformation is negatively skewed with

324 positive kurtosis (Table 3) - an imprint of needle-leaved trees and shrubs besides the

325 majority of broadleaved plants (Figure 4c). The distribution of leaf nitrogen content

per dry mass after log-transformation has small skewness, but negative kurtosis (Table 3) - the data are less concentrated around the mean than normal (Fig. 4d). In several cases, sample size is sufficient to characterise the distribution at different levels of aggregation, down to the species level. Again we find approximately lognormal distributions (e.g. *SLA* and N_m for *Pinus sylvestris*; Fig. 4c,d).

331 Ranges of trait variation

332 There are large differences in variation across traits (Table 4). The standard deviation (SD, expressed on a logarithmic scale¹⁹) ranges from 0.03 for leaf carbon content per 333 334 dry mass (resp. about 8% on the original scale) to 1.08 for seed mass (resp. -95% and 335 +1100% on the original scale). Leaf carbon content per dry mass, stem density and 336 leaf density show the lowest variation, followed by the concentration of macro-337 nutrients (nitrogen, phosphorus), fluxes and conductance (photosynthesis, stomatal 338 conductance, respiration), the concentration of micro-nutrients (e.g. aluminium, 339 manganese, sodium), traits related to length (plant height, plant and leaf longevity), 340 and traits related to leaf area. Mass-related traits show the highest variation (seed 341 mass, leaf dry mass, N and P content of the whole leaf - in contrast to concentration 342 per leaf dry mass or per leaf area). The observations reveal a general tendency 343 towards higher variation with increasing trait dimensionality (length < area < mass; 344 for more information see S3).

345 *Tenet 1: Aggregation at the species level represents the major fraction of trait*

346 variation

¹⁹Note two characteristics of SD on the logarithmic scale: (1) it corresponds to an asymmetric distribution on the original scale: small range to low values, large range to high values; (2) it can be compared directly across traits. For more information see supplementary material S2.

347 There is substantial intraspecific variation for each of the ten selected traits (Table 5): 348 for single species the standard deviation is above 0.3 on logarithmic scale, e.g. 349 SD=0.34 for maximum plant height of *Phyllota phyllicoides* (-55 and +121% on the 350 original scale), but based on only six observations, and SD=0.32 in case of *Dodonaea* 351 viscosa (n = 26). The SD of N_m for Poa pratensis is 0.17 (n = 63), which is almost 352 equal to the range of all data reported for this trait, but this is an exceptional case. The 353 trait and species with the most observations is nitrogen content per dry mass for *Pinus* 354 sylvestris with 1470 entries (SD = 0.088, -18% and +22%). The variation in this 355 species spans almost half the overall variation observed for this trait (SD=0.18), 356 covering the overall mean (Figure 4d). For several trait-species combinations the 357 number of measurements is high enough for detailed analyses of the variation within 358 species (e.g. on an environmental gradient). 359 The mean SD at the species-level is highest for plant height (0.18) and lowest for leaf 360 longevity (0.03, but few observations per species, Table 5). For all ten traits the mean 361 SD within species is smaller than the SD between species mean values (Table 5). 362 Based on ANOVA, mean trait values are significantly different between species: at

- 363 the global scale 60-98% of trait variance occurs interspecific (between species, Fig.
- 364 5). Nevertheless, for three traits (P_m , N_a , $Amax_a$) almost 40% of the variance occurs
- intraspecific (within species, Fig.5).
- 366 Tenet 2: Basic PFTs capture a sufficiently important fraction of trait variation to
- 367 represent functional diversity
- 368 For all ten traits, the PFT mean values are significantly different between PFTs
- 369 (Table 5). Four traits show larger variation between PFT mean values than within
- 370 PFTs (plant height, seed mass, leaf longevity, $Amax_m$), two traits show similar

371	variation between PFT means and within PFTs (<i>SLA</i> , $Amax_N$). As a consequence,
372	more than 60% of the observed variance occurs between PFTs for plant height and
373	leaf longevity, and about 40% of the variation occurs between PFTs for seed mass,
374	SLA, $Amax_m$ and $Amax_N$ (Fig. 5). The high fraction of explained variance for these six
375	traits reflects the definition of PFTs based on the closely related qualitative traits:
376	plant growth form, leaf phenology (evergreen/deciduous), leaf type (needle-
377	leaved/broadleaved) and photosynthetic pathway (C3/C4). For theses traits plant
378	functional types, such as those commonly used in vegetation models capture a
379	considerable fraction of observed variation with relevant internal consistency.
380	However, for certain traits the majority of variation occurs within PFTs: four traits
381	show smaller variation between than within PFTs, causing substantial overlap across
382	PFTs (N_m , N_a , P_m , $Amax_a$). In these cases only about 20-30% of the variance is
383	explained by PFT, and about 70-80% of variation occurs within PFTs.
384	Representation of trait variation in the context of global vegetation models
385	To demonstrate how the observed trait variation is represented in global vegetation

- 386 models, we first compare observed trait ranges of SLA to parameter values for SLA
- used in 12 global vegetation models; then we compare observed trait ranges of N_m to

388 state-variables of nitrogen concentration calculated within the dynamic global

389 vegetation model O-CN (Zaehle and Friend 2010).

390 Some vegetation models separate PFTs along climatic gradients into biomes, for

- 391 which they assign different parameter values. A rough analysis of SLA along the
- 392 latitudinal gradient (as a proxy for climate) indicates no major impact on SLA within
- 393 PFT (Fig. 6), and we further jointly analyse *SLA* data by PFT. However, the range of
- 394 observed trait values for SLA per PFT is remarkably large, except for the PFT 'needle-

395	leaved deciduous trees' (Fig. 6, 7). The parameter values from most of the 12 models
396	match moderately high density of SLA observations, but most are clearly different
397	from the mean, and some parameter values are at the low ends of probabilities,
398	surprisingly far off the mean value of observations.

399	The range of observed trait values for N_m per PFT is also high (Fig. 8), except for the
400	PFT 'needle-leaved evergreen trees'. Modelled state-variables are in most cases
401	within the range of frequently observed trait values - model values for the PFT
402	'needle-leaved evergreen trees' match the observed distribution almost perfectly.
403	Nevertheless, there are considerable differences between modelled and observed
404	distributions: the modelled state-variables are approximately normally distributed on
405	the original scale, while the observed trait values are log-normally distributed; the
406	range of modelled values is substantially smaller than the range of observations; and
407	the highest densities are shifted. Apart from possible deficiencies of the O-CN model,
408	the deviation between observed and modelled distributions may be due to
409	inconsistencies between compiled traits and modelled state-variables: trait entries in
410	the database are not abundance-weighted with respect to natural occurrence, and they
411	represent the variation of single measurements, while the model produces
412	"community" measures. The distribution of observed data presented here is therefore
413	likely wider than the abundance-weighted leaf nitrogen content of communities in a
414	given model grid cell.

415 Discussion

416 The TRY initiative and the current status of data coverage

The TRY initiative has been developed as a Data Warehouse to integrate different 417

trait databases. Nevertheless, TRY does not aim to replace existing databases, but 418

419 rather provides a complementary way to access these data consistently with other trait 420 data - it facilitates synergistic use of different trait databases. Compared to a Meta 421 Database approach, which would link a network of separate databases, the integrated 422 database (Data Warehouse) provides the opportunity to standardize traits, add 423 ancillary data, provide accepted species names, and to identify outliers and duplicate 424 entries. A disadvantage of the Data Warehouse approach is that some of the databases 425 contributing to TRY are continuously being developed (see Table 2). However, these 426 contributions to TRY are regularly updated.

427 The list of traits in the TRY database is not fixed, and it is anticipated that additional 428 types of data will be added to the database in the future. Examples include sap-flow 429 measurements, which are fluxes based on which trait values can be calculated, just as 430 photosynthesis measurements can be used to determine parameter values of the 431 Farquhar model (Farquhar et al. 1980), and leaf venation, which has recently been 432 defined in a consistent way and appears to be correlated with other leaf functional 433 traits (Sack and Frole 2006, Brodribb et al. 2007, Blonder et al. 2011). Ancillary data, 434 contributed with the trait data, may include images. There is also room for expansion 435 of the phylogenetic range of the data incorporated in the database. There is currently 436 little information on non-vascular autotrophic cryptogams in TRY (i.e. bryophytes 437 and lichens), despite their diversity in species, functions and ecosystem effects, and 438 the growing number of trait measurements being made on species within these 439 groups.

The qualitative traits with greatest coverage (more than 30,000 species for woodiness,
plant growth form, leaf compoundness, leaf type, photosynthetic pathway) represent
about 10% of the estimated number of vascular plant species on land. The quantitative

443	traits with most coverage (5,000-20,000 species for e.g. seed mass, plant height, wood
444	density, leaf size, leaf nitrogen content, SLA) approach 5% of named plant species.
445	Although it represents a limited set of species (5-10%), most probably it includes the
446	most abundant (dominant) species. The high number of characterised species opens
447	up the possibility of identifying the evolutionary branch-points at which large
448	divergences in trait values occurred. Such analyses will improve our understanding of
449	trait evolution at both temporal and spatial scales. They highlight the importance of
450	including trait data for autotrophs representing very different branches of the Tree of
451	Life (Cornelissen et al. 2007, Lang et al. 2009) in the TRY database.
450	
452	For some traits, we know that many more data exist, which could potentially be added
453	to the database. Nevertheless, for some traits the lack of data reflects difficulties in
454	data collection. Table 2 shows some traits where species coverage is thin, most
455	probably because the measurements are currently difficult or laborious. Root
456	measurements fall into this category. Rooting depth (or more exactly, maximum water
457	extraction depth) is among the most influential plant traits in global vegetation
458	models, yet we have estimates for only about 0.05% of the vascular plant species.
459	Data for other root traits is even scarcer. However, many above ground traits correlate
460	with below ground traits (see Kerkhoff et al. 2006), so the data in TRY do give some
461	indication about below ground traits. Apart from this, root traits are focus of current
462	studies (Paula and Pausas 2011). Anatomical traits also have weak coverage in
463	general. Quantifying anatomy from microscopic cross-sections is a slow and
464	painstaking work and there is currently no consensus on which are the most valuable
465	variables to quantify in leaf sections, apart from standard variables such as tissue
466	thicknesses and cell sizes, which show important correlations with physiological
467	function, growth form and climate (Givnish 1988, Sack and Frole 2006, Markesteijn

et al. 2007, Dunbar-Co et al. 2009, Hao et al. 2010). An exception is wood anatomy,
where TRY contains conduit densities and sizes for many species (about 7000 and
3000 species, respectively). Finally, allometric or architectural relationships that
describe relative biomass allocation to leaves, stems, and roots through the ontogeny
of individual plants are presently scattered across 72 different traits, each with low
coverage. These traits are essential for global vegetation models and this is an area
where progress in streamlining data collection is needed.

475 Many trait data compiled in the database were not necessarily collected according to

476 similar or standard protocols. Indeed many fields of plant physiology and ecology

477 lack consensus definitions and protocols for key measurements. However, progress is

478 being made as well towards *a posteriori* data consolidation (e.g. Onoda et al. 2011),

479 as towards standardizing trait definitions and measurement protocols, e.g. via a

480 common plant trait Thesaurus²⁰, and a handbook and website²¹ of standard definitions

481 and protocols (Cornelissen et al. 2003b, Sack et al. 2010).

482 Information about the abiotic and biotic environment in combination with trait data is

483 essential to allow an assessment of environmental constraints on the variation of plant

traits (Fyllas et al. 2009, Meng et al. 2009, Ordoñez et al. 2009, Albert et al. 2010b,

485 Poorter et al. 2010). Some of this information has been compiled in the TRY

486 database. However, the information about soil, climate and vegetation structure at

487 measurement sites is not well structured, because there is no general agreement on

488 what kind of environmental information is most useful to report in addition to trait

489 measurements. A consensus on these issues would greatly improve the usefulness of

²⁰ Plant Trait Thesaurus: http://trait_ontology.cefe.cnrs.fr:8080/Thesauform/

²¹ PrometheusWiki: http://prometheuswiki.publish.csiro.au/tiki-custom_home.php

ancillary environmental information. Geographic references should be a priority fornon-experimental data.

492	The number of observations or species with data for all traits declines rapidly with an
493	increasing number of traits: fewer species have data for each trait (see S3). In cases
494	where multivariate analyses rely on completely sampled trait-species matrices, this
495	issue poses a significant constraint on the number of traits and/or species that can be
496	included. Gap filling techniques, e.g. hierarchical Bayesian approaches or filtering
497	techniques (Shan and Banerjee 2008, Su and Khoshgoftaar 2009) offer a potential
498	solution. On the other hand, simulation work in phylogenetics has shown that missing
499	data are not by themselves problematic for phylogenetic reconstruction (Wiens 2003,
500	2005). Similar work could be done in trait-based ecology, and the emerging field of
501	ecological informatics (Recknagel 2006) may help to identify representative trait
502	combinations while taking incomplete information into account (e.g. Mezard 2007).

503 General pattern and ranges of trait distribution

504 Based on the TRY dataset, we characterised two general patterns of trait density 505 distributions: (1) plant traits are rather log-normal than normal distributed, and (2) the 506 range of variation tends to increase with trait-dimensionality. Here the analysis did 507 benefit from compiling large numbers of trait entries for several traits from different 508 aspects of plant strategy. Based on the rich sampling we could quantify simple 509 general rules for trait distributions and still identify deviations in the individual case. 510 The approximately log-normal distributions confirm prior reports for individual traits 511 (e.g. Wright et al. 2004) and are in agreement with general observations in biology 512 (Kerkhoff and Enquist 2009), although we also observe deviation from log-normal 513 distribution, e.g. as an imprint of plant growth form or leaf type. Being approximately

514	log-normal distributed is most probably due to the fact that plant traits often have a
515	lower bound of zero but no upper bound relevant for the data distribution. This log-
516	normal distribution has several implications: (1) On the original scale relationships
517	are to be expected multiplicative rather than additive (Kerkhoff and Enquist 2009, see
518	as well S2). (2) Log- or log-log scaled plots are not sophisticated techniques to hide
519	huge variation, but the appropriate presentation of the observed distributions (e.g.
520	Wright et al. 2004). On the original scale bivariate plots of trait distributions are to be
521	expected heteroscedastic (e.g. Kattge et al. 2009). (3) Trait related parameters and
522	state-variables in vegetation models can be assumed log-normal distributed as well,
523	e.g. Fig. 7 and 8 (Knorr and Kattge 2005). For more details see S2.
524	For several traits we quantified ranges of variation: overall variation, intra- and
525	interspecific variation, and variation with respect to different functional groups. Most
526	of the trait data compiled within the TRY database have been measured within natural
527	environments and only a small fraction comes from experiments. Therefore the
528	impact of experimental growth conditions on observed trait variation is probably
529	small in most cases (see Figure 3) and the observed trait variation in the TRY
530	database comprises primarily natural variation at the level of single organs, including
531	variation due to different measurement methods and, of course, measurement errors.
532	However, systematic sampling of trait variation at single locations is a relatively new
533	approach (Albert et al. 2010a, Albert et al. 2010b, Baraloto et al. 2010, Hulshof and
534	Swenson 2010, Jung et al. 2010b, Messier et al. 2010), and it may therefore be shown
535	that trait variability under natural conditions is underestimated in the current data set.

536 Tenets revisited

537 The results presented here are a first step to illuminate two basic tenets of plant 538 comparative ecology and vegetation modelling at a global scale: (1) The aggregation 539 of trait data at the species level represents the major fraction of variation in trait 540 values. At the same time, we have shown surprisingly high intraspecific variation - for 541 some traits responsible for up to 40% of the overall variation (Table 5, Fig. 4, 5). This 542 variation reflects genetic variation (among genotypes within a population/species) and 543 phenotypic plasticity. Through the TRY initiative, a relevant amount of data is 544 available to quantify and understand trait variation beyond aggregation on species 545 level. The analysis presented here is only a first step to disentangle within and 546 between species variability. It is expected that in combination with more detailed 547 analyses the TRY database will support a paradigm shift from species to trait-based 548 ecology.

549 (2) Basic plant functional types, such as those commonly used in vegetation models 550 capture a considerable fraction of observed variation with relevant internal 551 consistency. However, for certain traits the majority of variation occurs within PFTs – 552 responsible for up to 75% of the overall variation (Table 5, Fig. 4, 5, 6, 7, 8). This 553 variation reflects the adaptive capacity of vegetation to environmental constraints 554 (Fyllas et al. 2009, Meng et al. 2009, Ordoñez et al. 2009, Albert et al. 2010b, Poorter 555 et al. 2010) and it highlights the need for refined plant functional classifications for 556 Earth system modeling. The current approach to vegetation modelling, using few 557 basic PFTs and one single fixed parameter value per PFT (even if this value equals 558 the global or regional mean) does not account for the rather wide range of observed 559 values for related traits and thus does not account for the adaptive capacity of 560 vegetation. A more empirically based representation of functional diversity is

561 expected to contribute to an improved prediction of biome boundary shifts in a562 changing environment.

563	There are new approaches in Earth system modelling to better account for the
564	observed variability: suggesting more detailed PFTs, modelling variability within
565	PFTs, or replacing PFTs by continuous trait spectra. In the context of this analysis we
566	focused on a basic set of plant functional types. This schema is not immutable and
567	there is not one given functional classification scheme. In fact, PFTs are very much
568	chosen and defined along specific needs – and the availability of information. For
569	example, the PFTs used in an individual based forest simulator (e.g. Chave 1999), are
570	by necessity very different to those used for DGVMs. The TRY dataset will be as
571	important for allowing the definition of new, more detailed PFTs as for
572	parameterizing the existing ones. Some recent models represent trait-ranges as state
573	variables along environmental gradients rather than as fixed parameter values. The O-
574	CN model (Zaehle and Friend 2010) is an examples towards such a new generation of
575	vegetation models, also the NCIM model (Esser et al. 2011), or in combination with
576	an optimality approach the VOM model (Schymanski et al. 2009). Finally, functional
577	diversity may be represented by model ensemble runs with continuous trait spectra
578	and without PFT classification (Kleidon et al. 2009). However, compared to current
579	vegetation models, these new approaches will be more flexible with respect to the
580	adaptive capacity of vegetation. The TRY database is expected to contribute to these
581	developments, which will provide a more realistic, empirically grounded
582	representation of plants and ecosystems in Earth system models.

583 A unified database of plant traits in the context of global biogeography

584	The analyses presented here are only a first step to introduce the TRY data set. To
585	better understand, separate, and quantify the different contributions to trait variation
586	observed in TRY, more comprehensive analyses could be carried out, e.g. variance
587	partitioning accounting for phylogeny and disentangling functional and regional
588	influences or analysis of (co-)variance of plant traits along environmental gradients.
589	An integrative exploration of ecological and biogeographical information in TRY is
590	expected to substantially benefit from progress in the science of machine learning and
591	pattern recognition (Mjolsness and DeCoste 2001). In principle, we are confronted
592	with a similar challenge that genomics faced after large-scale DNA sequencing
593	techniques had become available. Instead of thousands of sequences, our target is
594	feature extraction and novelty detection in thousands of plant traits and ancillary
595	information. Nonlinear relations among items and the treatment of redundancies in
596	trait space have to be addressed. Nonlinear dimensionality reduction (Lee and
597	Verleysen 2007) may shed light on the inherent structures of data compiled in TRY.
598	Empirical inference of this kind is expected to stimulate and strengthen hypothesis
599	driven research (Golub 2010, Weinberg 2010) towards a unified ecological
600	assessment of plant traits and their role for the functioning of the terrestrial biosphere.
601	The representation of trait observations in a spatial or climate context in the TRV
(0)	detektore is limited (Fig. 2, 2). This situation are he seemen as in a spanal of the situation of the situat
602	database is limited (Fig. 2, 3). This situation can be overcome using complementary
603	data streams: trait information can be spatially expanded with comprehensive
604	compilations of species occurrence data, e.g. from GBIF or herbarium sources. For
605	SLA and leaf nitrogen content we provide an example for combining trait information
606	with species occurrence data from the GBIF database and with climate reconstruction

607	data derived from the CRU ²² database (Fig. 3). Given that the major fraction of
608	variation is between species, the variation of species mean trait values may be used -
609	but with caution - as a proxy for trait variation, as has already been done in recent
610	studies at regional and continental scales (Swenson and Enquist 2007, Swenson and
611	Weiser 2010). Ollinger et al. (2008) derived regional maps of leaf nitrogen content
612	and maximum photosynthesis from trait information in combination with eddy
613	covariance fluxes and remote sensing data. Based on these approaches and advanced
614	spatial interpolation techniques (Shekhar et al. 2004), a unified global database of
615	plant traits may permit spatial mapping of key plant traits at a global scale (Reich
616	2005).

617 The relationship between plant traits (organism-level) and ecosystem or land surface 618 functional properties is crucial. Recent studies have built upon the eddy covariance network globally organized as FLUXNET²³ and inferred site specific ecosystem-level 619 620 properties from the co-variation of meteorological drivers and ecosystem-atmosphere 621 exchange of CO₂ and water (Baldocchi 2008). These include inherent water use 622 efficiency (Reichstein et al. 2007, Beer et al. 2009), maximum canopy photosynthetic 623 capacity (Ollinger et al. 2008), radiation use efficiency, and light response curve 624 parameters (Lasslop et al. 2010). How species traits relate to these ecosystem-level 625 characteristics has not been investigated, but should be possible via a combined 626 analysis of FLUXNET and TRY data. For example, it is possible to test the 627 hypothesized correlation between SLA, P, and N content of dominant species with 628 radiation use efficiency and inherent water use efficiency at the ecosystem level (as 629 implicit in Ollinger et al. 2008). Similarly, patterns of spatially interpolated global

 ²² CRU - Climate Research Unit at the University of East Anglia, UK: http://www.cru.uea.ac.uk
 ²³FLUXNET - a network of regional networks coordinating observations from micrometeorological tower sites: http://www.fluxnet.ornl.gov

fields of biosphere-atmosphere exchange (Beer et al. 2010, Jung et al. 2010a) may be
related to spatialized plant traits in order to detect a biotic imprint on the global
carbon and water cycles. Such increased synthetic understanding of variation in plant
traits is expected to support the development of a new generation of vegetation
models with a better representation of vegetation structure and functional variation
(Lavorel et al. 2008, Violle and Jiang 2009).

636 Conclusions and Perspectives

637 The TRY database provides unprecedented coverage of information on plant traits 638 and will be a permanent communal repository of plant trait data. The first analyses 639 presented here confirm two basic tenets of plant comparative ecology and vegetation 640 modelling at global scale: (1) the aggregation of trait data at the species level 641 represents the major fraction of variation and (2) plant functional types cover a 642 relevant fraction of trait variation to represent functional diversity in the context of 643 vegetation modelling. Nevertheless, at the same time these results reveal for several 644 traits surprisingly high variation within species, as well as within PFTs - a finding, 645 which poses a challenge to large-scale biogeography and vegetation modelling. In 646 combination with improved (geo)-statistical methods and complementary data 647 streams, the TRY database is expected to support a paradigm shift in ecology from 648 being based on species to a focus on traits and trait syndromes. It also offers new 649 opportunities for research in evolutionary biology, biogeography, and ecology. 650 Finally, it allows the detection of the biotic imprint on global carbon and water cycles, 651 and fosters a more realistic, empirically grounded representation of plants and 652 ecosystems in Earth system models.

653 Acknowledgements

654	We would like to thank the subject editor and two anonymous reviewers for
655	supportive comments. The TRY initiative and database is hosted, developed and
656	maintained at the Max-Planck-Institute for Biogeochemistry (MPI-BGC) in Jena,
657	Germany. TRY is or has been supported by DIVERSITAS, IGBP, the Global Land
658	Project, the UK Natural Environment Research Council (NERC) through it's
659	programme QUEST (Quantifying and Understanding the Earth System), the French
660	Foundation for Biodiversity Research (FRB), and GIS "Climat, Environnement et
661	Société" France. We wish to thank John Dickie and Kenwin Liu for making the data
662	from the KEW Seed Information Database available in the context of the TRY
663	initiative, Alastair Fitter, Henry Ford and Helen Peat for making the Ecological Flora
664	of the British Isles available, and Andy Gillison for the VegClass database. We wish
665	to thank Brad Boyle and the SALVIAS project for building and making available a
666	global checklist of plant species names, and GBIF (Andrea Hahn) for making the
667	species occurrence data available.

668 **References**

- Ackerly, D. D. and W. K. Cornwell. 2007. A trait-based approach to community
- assembly: partitioning of species trait values into within- and among-community
- 671 components. Ecology Letters **10**:135-145.
- 672 Aerts, R. and F. S. Chapin. 2000. The mineral nutrition of wild plants revisited: A re-
- evaluation of processes and patterns. Advances in Ecological Research **30**:1-67.
- Albert, C. H., W. Thuiller, N. G. Yoccoz, R. Douzet, S. Aubert, and S. Lavorel.
- 675 2010a. A multi-trait approach reveals the structure and the relative importance of
- 676 intra- vs. interspecific variability in plant traits. Functional Ecology **24**:1192–1201.
- Albert, C. H., W. Thuiller, N. G. Yoccoz, A. Soudant, F. Boucher, S. P, and S.
- 678 Lavorel. 2010b. Intraspecific functional variability: extent, structure and sources of
- 679 variation. Journal of Ecology **98**:604-613.
- 680 Atkin, O. K., M. Schortemeyer, N. McFarlane, and J. R. Evans. 1999. The response of
- fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of
- the underlying components of relative growth rate. Oecologia **120**:544-554.
- Atkin, O. K., M. H. M. Westbeek, M. L. Cambridge, H. Lambers, and T. L. Pons.
- 684 1997. Leaf respiration in light and darkness A comparison of slow- and fast-growing
- 685 Poa species. Plant Physiology **113**:961-965.
- Bahn, M., G. Wohlfahrt, E. Haubner, I. Horak, W. Michaeler, K. Rottmar, U.
- 687 Tappeiner, and A. Cernusca. 1999. Leaf photosynthesis, nitrogen contents and

- 688 specific leaf area of 30 grassland species in differently managed mountain ecosystems
- 689 in the Eastern Alps. Pages 247-255 in A. Cernusca, U. Tappeiner, and N. Bayfield,
- 690 editors. Land-use changes in European mountain ecosystems. ECOMONT- Concept
- and Results. Blackwell Wissenschaft, Berlin.
- Baker, T. R., O.L. Phillips, W.F. Laurance, N.C.A. Pitman, S. Almeida, L. Arroyo, A.
- 693 DiFiore, T. Erwin, N. Higuchi, T.J. Killeen, S.G. Laurance, H. Nascimento, A.
- Monteagudo, D.A. Neill, J.N.M. Silva, Y. Malhi, G. Lopez Gonzalez, J. Peacock,
- 695 C.A. Quesada, S. L. Lewis, and J. Lloyd. 2009. Do species traits determine patterns of
- 696 wood production in Amazonian forests? Biogeosciences **6**:297-307.
- 697 Bakker, C., J. Rodenburg, and P. Bodegom. 2005. Effects of Ca- and Fe-rich seepage
- on P availability and plant performance in calcareous dune soils. Plant and Soil
 275:111-122.
- 700 Bakker, C., P. M. Van Bodegom, H. J. M. Nelissen, W. H. O. Ernst, and R. Aerts.
- 701 2006. Plant responses to rising water tables and nutrient management in calcareous
- dune slacks. Plant Ecology **185**:19-28.
- 703 Baldocchi, D. 2008. Breathing of the terrestrial biosphere: lessons learned from a
- global network of carbon dioxide flux measurement systems. Australian Journal of
- 705 Botany 56:1-26.
- 706 Baraloto, C., C. E. T. Paine, S. Patino, D. Bonal, B. Herault, and J. Chave. 2010.
- Functional trait variation and sampling strategies in species-rich plant communities.
- 708 Functional Ecology 24:208-216.

- 709 Beer, C., P. Ciais, M. Reichstein, D. Baldocchi, B. E. Law, D. Papale, J. F. Soussana,
- 710 C. Ammann, N. Buchmann, D. Frank, D. Gianelle, I. A. Janssens, A. Knohl, B.
- 711 Kostner, E. Moors, O. Roupsard, H. Verbeeck, T. Vesala, C. A. Williams, and G.
- 712 Wohlfahrt. 2009. Temporal and among-site variability of inherent water use
- efficiency at the ecosystem level. Global Biogeochemical Cycles 23. GB2018,
- 714 doi:10.1029/2008GB003233.
- 715 Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C.
- 716 Rodenbeck, M. A. Arain, D. Baldocchi, G. B. Bonan, A. Bondeau, A. Cescatti, G.
- 717 Lasslop, A. Lindroth, M. Lomas, S. Luyssaert, H. Margolis, K. W. Oleson, O.
- 718 Roupsard, E. Veenendaal, N. Viovy, C. Williams, F. I. Woodward, and D. Papale.
- 719 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation
- 720 with Climate. Science **329**:834-838.
- 721 Bera, A. K. and C. M. Jarque. 1980. Efficient tests for normality, homoscedasticity
- and serial independence of regression residuals. Economics Letters 6:255–259.
- 723 Blanco, C. C., E. E. Sosinski, B. R. C. dos Santos, M. A. da Silva, and V. D. Pillar.
- 724 2007. On the overlap between effect and response plant functional types linked to
- 725 grazing. Community Ecology **8**:57-65.
- 726 Blonder, B., C. Violle, L. Patrick Bentley, and B. J. Enquist. 2011. Venation networks
- and the origin of the leaf economic spectrum. Ecology Letters 14:91-100.

- 728 Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson. 2003. A dynamic
- global vegetation model for use with climate models: concepts and description of
- simulated vegetation dynamics. Global Change Biology **9**:1543-1566.
- 731 Boyle, B. L. 2006. TaxonScrubber, Version 2.0 The SALVIAS Project
- 732 http://www.salvias.net/pages/taxonscrubber.html. (Accessed 02.02.2008).
- 733 Brodribb, T. J., T. S. Feild, and G. J. Jordan. 2007. Leaf maximum photosynthetic rate
- and venation are linked by hydraulics. Plant Physiology **144**:1890-1898.
- 735 Campbell, C., L. Atkinson, J. Zaragoza-Castells, M. Lundmark, O. Atkin, and V.
- Hurry. 2007. Acclimation of photosynthesis and respiration is asynchronous in
- response to changes in temperature regardless of plant functional group. New
- 738 Phytologist **176**:375-389.
- 739 Castro-Diez, P., J. P. Puyravaud, and J. H. C. Cornelissen. 2000. Leaf structure and
- anatomy as related to leaf mass per area variation in seedlings of a wide range of
- woody plant species and types. Oecologia **124**:476-486.
- 742 Castro-Diez, P., J. P. Puyravaud, J. H. C. Cornelissen, and P. Villar-Salvador. 1998.
- 743 Stem anatomy and relative growth rate in seedlings of a wide range of woody plant
- species and types. Oecologia **116**:57-66.
- 745 Cavender-Bares, J., A. Keen, and B. Miles. 2006. Phylogenetic structure of floridian
- plant communities depends on taxonomic and spatial scale. Ecology **87**:S109-S122.

- 747 Cavender-Bares, J., L. Sack, and J. Savage. 2007. Atmospheric and soil drought
- reduce nocturnal conductance in live oaks. Tree Physiology **27**:611-620.
- 749 Chambers, J. Q., E. S. Tribuzy, L. C. Toledo, B. F. Crispim, N. Higuchi, J. d. Santos,
- A. C. Araujo, B. Kruijt, A. D. Nobre, and S. E. Trumbore. 2004. Respiration from a
- tropical forest ecosystem: Partitioning of sources and low carbon use efficiency.
- 752 Ecological Applications **14**:72.
- 753 Chambers, J. Q., E. S. Tribuzy, L. C. Toledo, B. F. Crispim, N. Higuchi, J. d. Santos,
- A. C. Araujo, B. Kruijt, A. D. Nobre, and S. E. Trumbore. 2009. LBA-ECO CD-08
- 755 Tropical Forest Ecosystem Respiration, Manaus, Brazil. Data set. Available on-line
- 756 [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active
- 757 Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/912.
- 758 Chave, J. 1999. Study of structural, successional and spatial patterns in tropical rain
- 759 forests using TROLL, a spatially explicit forest model. Ecological Modelling
- 760 **124**:233-254.
- 761 Chave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson, and A. E. Zanne. 2009.
- Towards a world wide wood economics spectrum. Ecology Letters **12**:351-366.
- 763 Choat, B., L. Sack, and N. M. Holbrook. 2007. Diversity of hydraulic traits in nine
- 764 Cordia species growing in tropical forests with contrasting precipitation. New
- 765 Phytologist **175**:686-698.

- 766 Clüsener-Godt, M. 1989. Statistische Analysen zur Beziehung von Nährelementen in
- 767 Pflanze und Boden am natürlichen Standort in globaler Hinsicht. Dissertationes
- 768 Botanicae, 135, Bornträger Berlin Stuttgart. PhD thesis, University of Osnabrück,
- 769 Germany (in German), 105 pp.
- 770 Coomes, D. A., S. Heathcote, E. R. Godfrey, J. J. Shepherd, and L. Sack. 2008.
- Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters4:302-306.
- 773 Cornelissen, J. H. C. 1996. An experimental comparison of leaf decomposition rates
- in a wide range of temperate plant species and types. Journal of Ecology 84:573-582.
- 775 Cornelissen, J. H. C., R. Aerts, B. Cerabolini, M. J. A. Werger, and M. G. A. van der
- Heijden. 2001. Carbon cycling traits of plant species are linked with mycorrhizal
- 777 strategy. Oecologia **129**:611-619.
- 778 Cornelissen, J. H. C., B. Cerabolini, P. Castro-Diez, P. Villar-Salvador, G.
- 779 Montserrat-Marti, J. P. Puyravaud, M. Maestro, M. J. A. Werger, and R. Aerts. 2003a.
- Functional traits of woody plants: correspondence of species rankings between field
- adults and laboratory-grown seedlings? Journal of Vegetation Science 14:311-322.
- 782 Cornelissen, J. H. C., P. C. Diez, and R. Hunt. 1996. Seedling growth, allocation and
- 783leaf attributes in a wide range of woody plant species and types. Journal of Ecology
- 784 **84**:755-765.

- 785 Cornelissen, J. H. C., S. I. Lang, N. A. Soudzilovskaia, and H. J. During. 2007.
- 786 Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive
- biogeochemistry. Annals of Botany **99**:987-1001.
- 788 Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D. E. Gurvich, P.
- 789 B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas, and H.
- Poorter. 2003b. A handbook of protocols for standardised and easy measurement of
- 791 plant functional traits worldwide. Australian Journal of Botany 51:335-380.
- 792 Cornelissen, J. H. C., N. Perez-Harguindeguy, S. Diaz, J. P. Grime, B. Marzano, M.
- 793 Cabido, F. Vendramini, and B. Cerabolini. 1999. Leaf structure and defence control
- 794 litter decomposition rate across species and life forms in regional floras on two
- continents. New Phytologist **143**:191-200.
- 796 Cornelissen, J. H. C., H. M. Quested, D. Gwynn-Jones, R. S. P. Van Logtestijn, M. A.
- H. De Beus, A. Kondratchuk, T. V. Callaghan, and R. Aerts. 2004. Leaf digestibility
- and litter decomposability are related in a wide range of subarctic plant species and
- types. Functional Ecology **18**:779-786.
- 800 Cornelissen, J. H. C., M. J. A. Werger, P. CastroDiez, J. W. A. vanRheenen, and A. P.
- 801 Rowland. 1997. Foliar nutrients in relation to growth, allocation and leaf traits in
- seedlings of a wide range of woody plant species and types. Oecologia 111:460-469.
- 803 Cornwell, W. K. and D. D. Ackerly. 2009. Community assembly and shifts in plant
- trait distributions across an environmental gradient in coastal California. Ecological
- 805 Monographs **79**:109-126.
- 806 Cornwell, W. K., R. Bhaskar, L. Sack, S. Cordell, and C. K. Lunch. 2007. Adjustment
- 807 of structure and function of Hawaiian Metrosideros polymorpha at high vs. low
- 808 precipitation. Functional Ecology **21**:1063-1071.
- 809 Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O.
- 810 Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez-Harguindeguy, H. M.
- 811 Quested, L. S. Santiago, D. A. Wardle, I. J. Wright, R. Aerts, S. D. Allison, P. van
- 812 Bodegom, V. Brovkin, A. Chatain, T. V. Callaghan, S. Díaz, E. Garnier, D. E.
- 813 Gurvich, E. Kazakou, J. A. Klein, J. Read, P. B. Reich, N. A. Soudzilovskaia, M. V.
- 814 Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant control on
- 815 litter decomposition rates within biomes worldwide. Ecology Letters **11**:1065-1071.
- 816 Cornwell, W. K., D. W. Schwilk, and D. D. Ackerly. 2006. A trait-based test for
- habitat filtering: Convex hull volume. Ecology 87:1465-1471.
- 818 Craine, J. M., A. J. Elmore, M. P. M. Aidar, M. Bustamante, T. E. Dawson, E. A.
- 819 Hobbie, A. Kahmen, M. C. Mack, K. K. McLauchlan, A. Michelsen, G. B. Nardoto,
- 820 L. H. Pardo, J. Penuelas, P. B. Reich, E. A. G. Schuur, W. D. Stock, P. H. Templer, R.
- A. Virginia, J. M. Welker, and I. J. Wright. 2009. Global patterns of foliar nitrogen
- 822 isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient
- 823 concentrations, and nitrogen availability. New Phytologist **183**:980-992.
- 824 Craine, J. M., W. G. Lee, W. J. Bond, R. J. Williams, and L. C. Johnson. 2005.
- 825 Environmental constraints on a global relationship among leaf and root traits of
- 826 grasses. Ecology **86**:12-19.

- de Bello, F., S. Lavorel, S. Diaz, R. Harrington, J. H. C. Cornelissen, R. D. Bardgett,
- 828 M. P. Berg, P. Cipriotti, C. K. Feld, D. Hering, P. M. da Silva, S. G. Potts, L. Sandin,
- J. P. Sousa, J. Storkey, D. A. Wardle, and P. A. Harrison. 2010. Towards an
- 830 assessment of multiple ecosystem processes and services via functional traits.
- Biodiversity and Conservation 19:2873-2893.
- 832 Díaz, S., J. G. Hodgson, K. Thompson, M. Cabido, J. H. C. Cornelissen, A. Jalili, G.
- 833 Montserrat-Martí, J. P. Grime, F. Zarrinkamar, Y. Asri, S. R. Band, S. Basconcelo, P.
- 834 Castro-Díez, G. Funes, B. Hamzehee, M. Khoshnevi, N. Pérez-Harguindeguy, M. C.
- 835 Pérez-Rontomé, F. A. Shirvany, F. Vendramini, S. Yazdani, R. Abbas-Azimi, A.
- 836 Bogaard, S. Boustani, M. Charles, M. Dehghan, L. de Torres-Espuny, V. Falczuk, J.
- 837 Guerrero-Campo, A. Hynd, G. Jones, E. Kowsary, F. Kazemi-Saeed, M. Maestro-
- 838 Martínez, A. Romo-Díez, S. Shaw, B. Siavash, P. Villar-Salvador, and M. R. Zak.
- 839 2004. The plant traits that drive ecosystems: Evidence from three continents. Journal
- of Vegetation Science 15:295-304.
- 841 Díaz, S., S. Lavorel, F. de Bello, F. Quétier, K. Grigulis, and T. M. Robson. 2007.
- 842 Incorporating plant functional diversity effects in ecosystem service assessments.
- 843 Proceedings of the National Academy of Sciences of the United States of America844 104:20684-20689.
- 845 Duarte, L. D., M. B. Carlucci, S. M. Hartz, and V. D. Pillar. 2007. Plant dispersal
- 846 strategies and the colonization of Araucaria forest patches in a grassland-forest
- 847 mosaic. Journal of Vegetation Science 18:847-858.

- 848 Dunbar-Co, S., M. J. Sporck, and L. Sack. 2009. Leaf Trait Diversification and
- B49 Design in Seven Rare Taxa of the Hawaiian Plantago Radiation. International Journal
 of Plant Sciences 170:61-75.
- 851 Enquist, B. J., A. J. Kerkhoff, S. C. Stark, N. G. Swenson, M. C. McCarthy, and C. A.
- 852 Price. 2007. A general integrative model for scaling plant growth, carbon flux, and
- 853 functional trait spectra. Nature **449**:218-222.
- 854 Esser, G., J. Kattge, and A. Sakalli. 2011. Feedback of carbon and nitrogen cycles
- 855 enhances carbon sequestration in the terrestrial biosphere. Global Change Biology856 17:819–842.
- 857 Farquhar, G. D., S. V. Caemmerer, and J. A. Berry. 1980. A Biochemical Model of
- 858 Photosynthetic CO₂ Assimilation in Leaves of C₃ Species. Planta **149**:78-90.
- 859 Fitter, A. H. and H. J. Peat 1994. The Ecological Flora Database. Journal of Ecology860 82:415-425.
- Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A.
- 862 Haxeltine. 1996. An integrated biosphere model of land surface processes, terrestrial
- carbon balance, and vegetation dynamics. Global Biogeochemical Cycles **10**:603-628.
- Fonseca, C. R., J. M. Overton, B. Collins, and M. Westoby. 2000. Shifts in trait-
- 865 combinations along rainfall and phosphorus gradients. Journal of Ecology 88:964-
- 866 977.

- 867 Fortunel, C., E. Garnier, R. Joffre, E. Kazakou, H. Quested, K. Grigulis, S. Lavorel,
- 868 P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, H. Freitas, C. Golodets, C.
- Jouany, J. Kigel, M. Kleyer, V. Lehsten, J. Leps, T. Meier, R. Pakeman, M.
- 870 Papadimitriou, V. P. Papanastasis, F. Quetier, M. Robson, M. Sternberg, J. P. Theau,
- A. Thebault, and M. Zarovali. 2009. Leaf traits capture the effects of land use changes
- and climate on litter decomposability of grasslands across Europe. Ecology 90:598-
- 873 611.
- 874 Freschet, G. T., J. H. C. Cornelissen, R. S. P. van Logtestijn, and R. Aerts. 2010a.
- 875 Evidence of the 'plant economics spectrum' in a subarctic flora. Journal of Ecology
- **98**:362-373.
- 877 Freschet, G. T., J. H. C. Cornelissen, R. S. P. van Logtestijn, and R. Aerts. 2010b.
- 878 Substantial nutrient resorption from leaves, stems and roots in a sub-arctic flora: what
- is the link with other resource economics traits? New Phytologist **186**:879-889.
- Friend, A. D. and P. M. Cox. 1995. Modeling the effects of atmospheric CO2 on
- vegetation atmosphere interactions. Agricultural and Forest Meteorology **73**:285-295.
- 882 Friend, A. D., A. K. Stevens, R. G. Knox, and M. G. R. Cannell. 1997. A process-
- based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological
- 884 Modelling **95**:249-287.
- Fyllas, N. M., S. Patino, T. R. Baker, G. Bielefeld Nardoto, L. A. Martinelli, C. A.
- 886 Quesada, R. Paiva, M. Schwarz, V. Horna, L. M. Mercado, A. Santos, L. Arroyo, E.
- 887 M. Jimenez, F. J. Luizao, D. A. Neill, N. Silva, A. Prieto, A. Rudas, M. Silviera, I. C.

- 888 G. Vieira, G. Lopez-Gonzale, and J. Lloyd. 2009. Basin-wide variations in foliar
- properties of Amazonian forest: phylogeny, soils and climate Biogeosciences 6:26772708.
- Gallagher, R., M. R. Leishman, and A. T. Moles. 2011. Traits and ecological
- 892 strategies of Australian tropical and temperate climbing plants. Journal of
- 893 Biogeography; DOI: 10.1111/j.1365-2699.2010.02455.x.
- 894 Garnier, E., J. Cortez, G. Billès, M.-L. Navas, C. Roumet, M. Debussche, G. Laurent,
- A. Blanchard, D. Aubry, A. Bellmann, C. Neill, and J.-P. Toussaint. 2004. Plant
- 896 functional markers capture ecosystem properties during secondary succession.
- 897 Ecology **85**:2630-2637.
- 898 Garnier, E., G. Laurent, A. Bellmann, S. Debain, P. Berthelier, B. Ducout, C. Roumet,
- and M.-L. Navas. 2001. Consistency of species ranking based on functional leaf traits.
- 900 New Phytologist **152**:69-83.
- 901 Garnier, E., S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, C.
- 902 Fortunel, H. Freitas, C. Golodets, K. Grigulis, C. Jouany, E. Kazakou, J. Kigel, M.
- 903 Kleyer, V. Lehsten, J. Lepš, T. Meier, R. Pakeman, M. Papadimitriou, V. P.
- 904 Papanastasis, H. Quested, F. Quétier, M. Robson, C. Roumet, G. Rusch, C. Skarpe,
- 905 M. Sternberg, J.-P. Theau, A. Thébault, D. Vile, and M. P. Zarovali. 2007. Assessing
- 906 the effects of land-use change on plant traits, communities and ecosystem functioning
- 907 in grasslands: A standardized methodology and lessons from an application to 11
- 908 European sites. Annals of Botany 99:967-985.

- Garnier, E. and M.-L. Navas. In press. A trait-based approach to comparative
- 910 functional plant ecology: concepts, methods and applications for agroecology. A
- 911 review. Agronomy for Sustainable Development.
- 912 Gillison, A. N. and G. Carpenter. 1997. A generic plant functional attribute set and
- 913 grammar for dynamic vegetation description and analysis. Functional Ecology
- **914 11**:775-783.
- 915 Givnish, T. J. 1988. Adaptation to Sun and Shade a Whole-Plant Perspective.
- 916 Australian Journal of Plant Physiology **15**:63-92.
- 917 Golub, T. 2010. Counterpoint: Data first. Nature **464**:679.
- 918 Green, W. 2009. USDA PLANTS Compilation, version 1, 09-02-02.
- 919 (http://bricol.net/downloads/data/PLANTSdatabase/) NRCS: The PLANTS Database
- 920 (http://plants.usda.gov, 1 Feb 2009). National Plant Data Center: Baton Rouge, LA
- 921 70874-74490 USA.
- 922 Grime, J. P. 1974. Vegetation classification by reference to strategies. Nature 250:26923 31.
- Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and
 its relevance to ecological and evolutionary theory. American Naturalist 111:11691194.

- 927 Grime, J. P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties.
- 928 John Wiley & Sons, Chichester.
- 929 Grime, J. P. 2006. Trait convergence and trait divergence in herbaceous plant
- 930 communities: Mechanisms and consequences. Journal of Vegetation Science 17:255-
- 931 260.
- 932 Grime, J. P., K. Thompson, R. Hunt, J. G. Hodgson, J. H. C. Cornelissen, I. H.
- 933 Rorison, G. A. F. Hendry, T. W. Ashenden, A. P. Askew, S. R. Band, R. E. Booth, C.
- 934 C. Bossard, B. D. Campbell, J. E. L. Cooper, A. W. Davison, P. L. Gupta, W. Hall, D.
- 935 W. Hand, M. A. Hannah, S. H. Hillier, D. J. Hodkinson, A. Jalili, Z. Liu, J. M. L.
- 936 Mackey, N. Matthews, M. A. Mowforth, A. M. Neal, R. J. Reader, K. Reiling, W.
- 937 Ross-Frazer, R. E. Spencer, F. Sutton, D. E. Tasker, P. C. Thorpe, and J. Whitehouse.
- 938 1997. Integrated screening validates primary axes of specialisation in plants. Oikos
- 939 **79**:259-281.
- 940 Gutiérrez, A. G. 2010. Long-term dynamics and the response of temperate rainforests
- 941 of Chiloé Island (Chile) to climate change. Doctoral thesis. Lehrstuhl für
- 942 Waldwachstumskunde. Technische Universität München. 160 p.
- 943 Han, W. X., J. Y. Fang, D. L. Guo, and Y. Zhang. 2005. Leaf nitrogen and
- 944 phosphorus stoichiometry across 753 terrestrial plant species in China. New
- 945 Phytologist **168**:377-385.

- Hao, G. Y., L. Sack, A. Y. Wang, K. F. Cao, and G. Goldstein. 2010. Differentiation
- 947 of leaf water flux and drought tolerance traits in hemiepiphytic and non-
- hemiepiphytic Ficus tree species. Functional Ecology **24**:731-740.
- He, J. S., L. Wang, D. F. B. Flynn, X. P. Wang, W. H. Ma, and J. Y. Fang. 2008. Leaf
- 950 nitrogen : phosphorus stoichiometry across Chinese grassland biomes. Oecologia
- **155**:301-310.
- He, J. S., Z. H. Wang, X. P. Wang, B. Schmid, W. Y. Zuo, M. Zhou, C. Y. Zheng, M.
- 953 F. Wang, and J. Y. Fang. 2006. A test of the generality of leaf trait relationships on
- 954 the Tibetan Plateau. New Phytologist **170**:835-848.
- 955 Hickler, T. 1999. Plant functional types and community characteristics along
- 956 environmental gradients on Öland's Great Alvar (Sweden). Masters Thesis, University
- 957 of Lund, Sweden.
- 958 Hoof, J., L. Sack, D. T. Webb, and E. T. Nilsen. 2008. Contrasting structure and
- 959 function of pubescent and glabrous varieties of Hawaiian Metrosideros polymorpha
- 960 (Myrtaceae) at high elevation. Biotropica **40**:113-118.
- 961 Hulshof, C. M. and N. G. Swenson. 2010. Variation in leaf functional trait values
- 962 within and across individuals and species: an example from a Costa Rican dry forest.
- 963 Functional Ecology **24**:217-223.
- 964 Jung, M., M. Reichstein, P. Ciais, S. I. Seneviratne, J. Sheffield, M. L. Goulden, G.
- Bonan, A. Cescatti, J. Q. Chen, R. de Jeu, A. J. Dolman, W. Eugster, D. Gerten, D.

- Gianelle, N. Gobron, J. Heinke, J. Kimball, B. E. Law, L. Montagnani, Q. Z. Mu, B.
- 967 Mueller, K. Oleson, D. Papale, A. D. Richardson, O. Roupsard, S. Running, E.
- 968 Tomelleri, N. Viovy, U. Weber, C. Williams, E. Wood, S. Zaehle, and K. Zhang.
- 969 2010a. Recent decline in the global land evapotranspiration trend due to limited
- 970 moisture supply. Nature **467**:951-954.
- 971 Jung, V., C. Violle, C. Mondy, L. Hoffmann, and S. Muller. 2010b. Intraspecific
- variability and trait-based community assembly. Journal of Ecology **98**:1134-1140.
- 973 Kaduk, J. and M. Heimann. 1996. A prognostic phenology scheme for global
- 974 terrestrial carbon cycle models. Climate Research **6**:1-19.
- 975 Kattge, J., W. Knorr, T. Raddatz, and C. Wirth. 2009. Quantifying photosynthetic
- 976 capacity and its relationship to leaf nitrogen content for global-scale terrestrial
- biosphere models. Global Change Biology 15:976-991.
- 978 Kattge, J., K. Ogle, G. Bönisch, S. Diaz, S. Lavorel, J. Madin, K. Nadrowski, S.
- 979 Nöllert, K. Sartor, and C. Wirth. 2010. A generic structure for plant trait databases.
- 980 Methods in Ecology and Evolution 2:202-213.
- 981 Kazakou, E., D. Vile, B. Shipley, C. Gallet, and E. Garnier. 2006. Co-variations in
- 982 litter decomposition, leaf traits and plant growth in species from a Mediterranean old-
- 983 field succession. Functional Ecology **20**:21-30.

- Keddy, P., K. Nielsen, E. Weiher, and R. Lawson. 2002. Relative competitive
- 985 performance of 63 species of terrestrial herbaceous plants. Journal of Vegetation986 Science 13:5-16.
- 987 Kerkhoff, A. J. and B. J. Enquist. 2009. Multiplicative by nature: Why logarithmic
- transformation is necessary in allometry. Journal of Theoretical Biology 257:519-521.
- 989 Kerkhoff, A. J., W. F. Fagan, J. J. Elser, and B. J. Enquist. 2006. Phylogenetic and
- growth form variation in the scaling of nitrogen and phosphorus in the seed plants.
- 991 American Naturalist **168**:103-122.
- Kirkup, D., P. Malcolm, G. Christian, and A. Paton. 2005. Towards a digital African
 Flora. Taxon 54:457-466.
- 994 Kleidon, A., J. Adams, R. Pavlick, and B. Reu. 2009. Simulated geographic variations
- 995 of plant species richness, evenness and abundance using climatic constraints on plant
- 996 functional diversity. Environmental Research Letters **4**:014007.
- 997 Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M.
- 998 Sonnenschein, P. Poschlod, J. M. van Groenendael, L. Klimes, J. Klimesova, S.
- 999 Klotz, G. M. Rusch, Hermy, M., D. Adriaens, G. Boedeltje, B. Bossuyt, A.
- 1000 Dannemann, P. Endels, L. Götzenberger, J. G. Hodgson, A.-K. Jackel, I. Kühn, D.
- 1001 Kunzmann, W. A. Ozinga, C. Römermann, M. Stadler, J. Schlegelmilch, H. J.
- 1002 Steendam, O. Tackenberg, B. Wilmann, J. H. C. Cornelissen, O. Eriksson, E. Garnier,
- and B. Peco. 2008. The LEDA Traitbase: a database of life-history traits of the
- 1004 Northwest European flora. Journal of Ecology 96:1266-1274.

- 1005 Klotz, S., I. Kühn, and W. Durka. 2002. BIOLFLOR Eine Datenbank zu biologisch-
- 1006 ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für
- 1007 Vegetationskunde 38. Bonn: Bundesamt für Naturschutz.
- 1008 Knorr, W. and J. Kattge. 2005. Inversion of terrestrial ecosystem model parameter
- 1009 values against eddy covariance measurements by Monte Carlo sampling. Global
- 1010 Change Biology **11**:1333-1351.
- 1011 Kohlmaier, G. H., F. W. Badeck, R. D. Otto, C. Hager, S. Donges, J. Kindermann, G.
- 1012 Wurth, T. Lang, U. Jakel, A. Nadler, P. Ramge, A. Klaudius, S. Habermehl, and M.
- 1013 K. B. Ludeke. 1997. The Frankfurt Biosphere Model: A global process-oriented
- 1014 model of seasonal and long-term CO2 exchange between terrestrial ecosystems and
- 1015 the atmosphere Global results for potential vegetation in an assumed equilibrium
- 1016 state. Climate Research 8:61-87.
- 1017 Kraft, N. J. B., R. Valencia, and D. D. Ackerly. 2008. Functional traits and niche-
- 1018 based tree community assembly in an amazonian forest. Science **322**:580-582.
- 1019 Kucharik, C. J., J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe, J. D. Lenters, C.
- 1020 Young-Molling, N. Ramankutty, J. M. Norman, and S. T. Gower. 2000. Testing the
- 1021 performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance,
- and vegetation structure. Global Biogeochemical Cycles 14:795-825.
- 1023 Kühn, I., W. Durka, and S. Klotz. 2004. BiolFlor a new plant-trait database as a tool
- 1024 for plant invasion ecology. Diversity and Distribution **10** 363-365.

- 1025 Kurokawa, H. and T. Nakashizuka. 2008. Leaf herbivory and decomposability in a
- 1026 Malaysian tropical rain forest. Ecology **89**:2645-2656.
- 1027 Lang, S. I., J. H. C. Cornelissen, T. Klahn, R. S. P. van Logtestijn, R. Broekman, W.
- 1028 Schweikert, and R. Aerts. 2009. An experimental comparison of chemical traits and
- 1029 litter decomposition rates in a diverse range of subarctic bryophyte, lichen and
- 1030 vascular plant species. Journal of Ecology **97**:886-900.
- 1031 Lasslop, G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy,
- and G. Wohlfahrt. 2010. Separation of net ecosystem exchange into assimilation and
- 1033 respiration using a light response curve approach: critical issues and global
- 1034 evaluation. Global Change Biology **16**:187-208.
- 1035 Laughlin, D. C., J. J. Leppert, M. M. Moore, and C. H. Sieg. 2010. A multi-trait test
- 1036 of the leaf-height-seed plant strategy scheme with 133 species from a pine forest
- 1037 flora. Functional Ecology **24**:493-501.
- 1038 Lavorel, S., S. Diaz, I. C. Prentice, and P. Leadley. 2008. Refining plant functional
- 1039 classifications for earth system modeling. Global Land Project (GLP) Newsletter

1040 3:38-40.

Lavorel, S. and E. Garnier. 2002. Predicting changes in community composition and
ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology
16:545-556.

1044 Lee, J. A. and M. Verleysen. 2007. Nonlinear Dimensionality Reduction. Springer,

1045 Heidelberg, Berlin, New York.

- 1046 Lens, F., J. Schönenberger, P. Baas, S. Jansen, and E. Smets. 2007. The role of wood
- anatomy in phylogeny reconstruction of Ericales. Cladistics 23:229-254.
- 1048 Louault, F., V. D. Pillar, J. Aufrere, E. Garnier, and J. F. Soussana. 2005. Plant traits
- and functional types in response to reduced disturbance in a semi-natural grassland.
- 1050 Journal of Vegetation Science **16**:151-160.
- 1051 Loveys, B. R., L. J. Atkinson, D. J. Sherlock, R. L. Roberts, A. H. Fitter, and O. K.
- 1052 Atkin. 2003. Thermal acclimation of leaf and root respiration: an investigation
- 1053 comparing inherently fast- and slow-growing plant species. Global Change Biology1054 9:895-910.
- 1055 Ludeke, M. K. B., F.-W. Badeck, R. D. Otto, C. Haeger, S. Doenges, J. Kindermann,
- 1056 G. Wuerth, T. Lang, U. Jaekel, A. Klaudius, P. Ramge, S. Habermehl, and G. H.
- 1057 Kohlmaier. 1994. The Frankfurt Biosphere Model: A global process-oriented model
- 1058 of seasonal and long-term CO-2 exchange between terrestrial ecosystems and the
- atmosphere: I. Model description and illustrative results for cold deciduous and boreal
- 1060 forests. Climate Research **4**:143-166.
- 1061 Madin, J. S., S. Bowers, M. P. Schildhauer, and M. B. Jones. 2008. Advancing
- 1062 ecological research with ontologies. Trends in Ecology & Evolution 23:159-168.

- 1063 Markesteijn, L., L. Poorter, and F. Bongers. 2007. Light-dependent leaf trait variation
- 1064 in 43 tropical dry forest tree species. American Journal of Botany 94:515-525.
- 1065 Markesteijn, L., L. Poorter, H. Paz, L. Sack, and F. Bongers. 2011. Ecological
- 1066 differentiation in xylem cavitation resistance is associated with stem and leaf
- 1067 structural traits. Plant, Cell and Environment **34**:137-148.
- 1068 Martin, R. E., G. P. Asner, and L. Sack. 2007. Genetic variation in leaf pigment,
- 1069 optical and photosynthetic function among diverse phenotypes of Metrosideros
- 1070 polymorpha grown in a common garden. Oecologia **151**:387-400.
- 1071 McDonald, P. G., C. R. Fonseca, J. M. Overton, and M. Westoby. 2003. Leaf-size
- 1072 divergence along rainfall and soil-nutrient gradients: is the method of size reduction
- 1073 common among clades? Functional Ecology **17**:50-57.
- 1074 McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding
- 1075 community ecology from functional traits. Trends in Ecology & Evolution 21:178-1076 185.
- 1077 McKenna, M. F. and B. Shipley. 1999. Interacting determinants of interspecific
- 1078 relative growth: Empirical patterns and a theoretical explanation. Ecoscience 6:286-1079 296.
- 1080 McMahon, S. M., S. P. Harrison, W. S. Armbruster, P. J. Bartlein, C. Beale, M. E.
- 1081 Edwards, J. Kattge, G. Midgley, X. Morin, and I. C. Prentice. In press. Improving

- 1082 assessment and modelling of climate change impacts on global terrestrial biodiversity.
- 1083 Trends in Ecology & Evolution.
- 1084 Medlyn, B. E., F.-W. Badeck, D. G. G. De Pury, C. V. M. Barton, M. Broadmeadow,
- 1085 R. Ceulemans, P. De Angelis, M. Forstreuter, M. E. Jach, S. Kellomäki, E. Laitat, M.
- 1086 Marek, S. Philippot, A. Rey, J. Strassemeyer, K. Laitinen, R. Liozon, B. Portier, P.
- 1087 Roberntz, K. Wang, and P. G. Jarvis. 1999. Effects of elevated CO₂ on photosynthesis
- 1088 in European forest species: a meta-analysis of model parameters. Plant, Cell and
- 1089 Environment **22**:1475-1495.
- 1090 Medlyn, B. E., C. V. M. Barton, M. S. J. Broadmeadow, R. Ceulemans, P. DeAngelis,
- 1091 M. Forstreuter, M. Freeman, S. B. Jackson, S. Kellomaeki, E. Laitat, A. Rey, P.
- 1092 Roberntz, B. D. Sigurdsson, J. Strassemeyer, K. Wang, P. S. Curtis, and P. G. Jarvis.
- 1093 2001. Stomatal Conductance of forest species after long-term exposure to elevated
- 1094 CO_2 concentration: a synthesis. New Phytologist **149**:247--264.
- 1095 Medlyn, B. E. and P. G. Jarvis. 1999. Design and use of a database of model
- 1096 parameters from elevated [CO2] experiments. Ecological Modelling **124**:69-83.
- 1097 Meng, T.-T., J. Ni, and S. Harrison. 2009. Plant morphometric traits and climate
- 1098 gradients in northern China: a meta-analysis using quadrat and flora data. Annals of
- 1099 Botany 104:1217-1229.
- 1100 Messier, J., B. J. McGill, and M. J. Lechowicz. 2010. How do traits vary across
- 1101 ecological scales? A case for trait-based ecology. Ecology Letters **13**:838-848.

- Mezard, M. 2007. Computer science Where are the exemplars? Science 315:949-951.
- 1104 Meziane, D. and B. Shipley. 1999a. Interacting components of interspecific relative
- 1105 growth rate: constancy and change under differing conditions of light and nutrient
- 1106 supply. Functional Ecology **13**:611-622.
- 1107 Meziane, D. and B. Shipley. 1999b. Interacting determinants of specific leaf area in
- 1108 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell and
- 1109 Environment **22**:447-459.
- 1110 Meziane, D. and B. Shipley. 2001. Direct and indirect relationships between specific
- 1111 leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient
- 1112 supply. Annals of Botany **88**:915-927.
- 1113 Mjolsness, E. and D. DeCoste. 2001. Machine learning for science: State of the art
- and future prospects. Science **293**:2051-2055.
- 1115 Moles, A. T., D. D. Ackerly, C. O. Webb, J. C. Tweddle, J. B. Dickie, A. J. Pitman,
- and M. Westoby. 2005a. Factors that shape seed mass evolution. Proceedings of the
- 1117 National Academy of Sciences of the United States of America **102**:10540-10544.
- 1118 Moles, A. T., D. D. Ackerly, C. O. Webb, J. C. Tweddle, J. B. Dickie, and M.
- 1119 Westoby. 2005b. A brief history of seed size. Science **307**:576-580.

- 1120 Moles, A. T., D. S. Falster, M. R. Leishman, and M. Westoby. 2004. Small-seeded
- species produce more seeds per square metre of canopy per year, but not per
- 1122 individual per lifetime. Journal of Ecology **92**:384-396.
- 1123 Moorcroft, P. R., G. C. Hurtt, and S. W. Pacala. 2001. A method for scaling
- 1124 vegetation dynamics: The ecosystem demography model (ED). Ecological
- 1125 Monographs **71**:557-585.
- 1126 Muller, S. C., G. E. Overbeck, J. Pfadenhauer, and V. D. Pillar. 2007. Plant functional
- 1127 types of woody species related to fire disturbance in forest-grassland ecotones. Plant
- 1128 Ecology **189**:1-14.
- 1129 Nakahashi, C. D., K. Frole, and L. Sack. 2005. Bacterial leaf nodule symbiosis in
- 1130 Ardisia (Myrsinaceae): Does it contribute to seedling growth capacity? Plant Biology

1131 7:495-500.

- 1132 Niinemets, U. 1999. Components of leaf dry mass per area thickness and density -
- alter leaf photosynthetic capacity in reverse directions in woody plants. New
- 1134 Phytologist **144**:35-47.
- 1135 Niinemets, U. 2001. Global-scale climatic controls of leaf dry mass per area, density,
- and thickness in trees and shrubs. Ecology **82**:453-469.
- Niinemets, U. and F. Valladares. 2006. Tolerance to shade, drought, and waterlogging
 of temperate Northern Hemisphere trees and shrubs. Ecological Monographs 76:521547.

- 1140 Ogaya, R. and J. Penuelas. 2003. Comparative field study of Quercus ilex and
- 1141 Phillyrea latifolia: photosynthetic response to experimental drought conditions.
- 1142 Environmental and Experimental Botany **50**:137-148.
- 1143 Ogaya, R. and J. Penuelas. 2006. Contrasting foliar responses to drought in Quercus
- ilex and Phillyrea latifolia. Biologia Plantarum **50**:373-382.
- 1145 Ogaya, R. and J. Penuelas. 2007. Tree growth, mortality, and above-ground biomass
- accumulation in a holm oak forest under a five-year experimental field drought. Plant
- 1147 Ecology **189**:291-299.
- 1148 Ogaya, R. and J. Penuelas. 2008. Changes in leaf delta C-13 and delta N-15 for three
- 1149 Mediterranean tree species in relation to soil water availability. Acta Oecologica-
- 1150 International Journal of Ecology **34**:331-338.
- 1151 Ollinger, S. V., A. D. Richardson, M. E. Martin, D. Y. Hollinger, S. E. Frolking, P. B.
- 1152 Reich, L. C. Plourde, G. G. Katul, J. W. Munger, R. Oren, M.-L. Smith, K. T. Paw, P.
- 1153 V. Bolstad, B. D. Cook, M. C. Day, T. A. Martin, R. K. Monson, and H. P. Schmid.
- 1154 2008. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal
- 1155 forests: Functional relations and potential climate feedbacks. Proceedings of the
- 1156 National Academy of Sciences **105**:19336 –19341.
- 1157 Onoda, Y., M. Westoby, P. B. Adler, A. M. F. Choong, F. J. Clissold, J. H. C.
- 1158 Cornelissen, S. Diaz, N. J. Dominy, A. Elgart, L. Enrico, P. V. A. Fine, J. J. Howard,
- 1159 A. Jalili, K. Kitajima, H. Kurokawa, C. McArthur, P. W. Lucas, L. Markesteijn, N.
- 1160 Perez-Harguindeguy, L. Poorter, L. Richards, L. S. Santiago, Jr. E. Sosinski, S. Van

- 1161 Bael, D. I. Warton, I. J. Wright, S. J. Wright, and N. Yamashita. 2011. Global patterns
- 1162 of leaf mechanical properties. Ecology Letters **14**:301-312.
- 1163 Ordoñez, J. C., P. M. van Bodegom, J.-P. M. Witte, I. J. Wright, P. B. Reich, and R.
- 1164 Aerts. 2009. A global study of relationships between leaf traits, climate and soil
- 1165 measures of nutrient fertility Global Ecology and Biogeography **18**:138-149.
- 1166 Ordonez, J. C., P. M. van Bodegom, J. P. M. Witte, R. P. Bartholomeus, H. F. van
- 1167 Dobben, and R. Aerts. 2010a. Leaf habit and woodiness regulate different leaf
- economy traits at a given nutrient supply. Ecology **91**:3218-3228.
- 1169 Ordonez, J. C., P. M. van Bodegom, J. P. M. Witte, R. P. Bartholomeus, J. R. van
- 1170 Hal, and R. Aerts. 2010b. Plant Strategies in Relation to Resource Supply in Mesic to
- 1171 Wet Environments: Does Theory Mirror Nature? American Naturalist **175**:225-239.
- 1172 Overbeck, G. E. 2005. Effect of fire on vegetation dynamics and plant types in
- 1173 subtropical grassland in southern Brazil. PhD Thesis. Department für Ökologie.
- 1174 Technische Universität München, Freising, 139 pages.
- 1175 Overbeck, G. E. and J. Pfadenhauer. 2007. Adaptive strategies in burned subtropical
- 1176 grassland in southern Brazil. Flora **202**:27-49.
- 1177 Ozinga, W. A., C. Römermann, R. M. Bekker, A. Prinzing, W. L. M. Tamis, J. H. J.
- 1178 Schaminée, S. M. Hennekens, K. Thompson, P. Poschlod, M. Kleyer, J. P. Bakker,
- and J. M. van Groenendael. 2009. Dispersal failure contributes to plant losses in NW
- 1180 Europe. Ecology Letters 12:66–74.

- 1181 Pakeman, R. J., E. Garnier, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O.
- 1182 Eriksson, H. Freitas, C. Golodets, J. Kigel, M. Kleyer, J. Leps, T. Meier, M.
- 1183 Papadimitriou, V. P. Papanastasis, H. Quested, F. Quetier, G. Rusch, M. Sternberg, J.
- 1184 P. Theau, A. Thebault, and D. Vile. 2008. Impact of abundance weighting on the
- response of seed traits to climate and land use. Journal of Ecology **96**:355-366.
- 1186 Pakeman, R. J., J. Leps, M. Kleyer, S. Lavorel, E. Garnier, and V. Consortium. 2009.
- 1187 Relative climatic, edaphic and management controls of plant functional trait
- signatures. Journal of Vegetation Science **20**:148-159.
- 1189 Patiño, S., J. Lloyd, R. Paiva, T. R. Baker, C. A. Quesada, L. M. Mercado, J.
- 1190 Schmerler, M. Schwarz, A. J. B. Santos, A. Aguilar, C. I. Czimczik, J. Gallo, V.
- 1191 Horna, E. J. Hoyos, E. M. Jimenez, W. Palomino, J. Peacock, A. Peña-Cruz, C.
- 1192 Sarmiento, A. Sota, J. D. Turriago, B. Villanueva, P. Vitzthum, E. Alvarez, L.
- 1193 Arroyo, C. Baraloto, D. Bonal, J. Chave, A. C. L. Costa, R. Herrera, N. Higuchi, T.
- 1194 Killeen, E. Leal, F. Luizão, P. Meir, A. Monteagudo, D. Neil, P. Núñez-Vargas, M. C.
- 1195 Peñuela, N. Pitman, N. Priante Filho, A. Prieto, S. N. Panfil, A. Rudas, R. Salomão,
- 1196 N. Silva, M. Silveira, S. Soares de Almeida, A. Torres-Lezama, R. Vásquez-Martínez,
- 1197 I. Vieira, Malhi, Y., , and O. L. Phillips. 2009. Branch xylem density variations across
- the Amazon Basin. Biogeosciences 6:545-568.
- 1199 Paula, S., M. Arianoutsou, D. Kazanis, Ç. Tavsanoglu, F. Lloret, C. Buhk, F. Ojeda,
- 1200 B. Luna, J. M. Moreno, A. Rodrigo, J. M. Espelta, S. Palacio, B. Fernández-Santos, P.
- 1201 M. Fernandes, and J. G. Pausas. 2009. Fire-related traits for plant species of the
- 1202 Mediterranean Basin. Ecology **90**:1420.

- 1203 Paula, S. and J. G. Pausas. 2008. Burning seeds: germinative response to heat
- treatments in relation to resprouting ability. Journal of Ecology **96**:543-552.
- 1205 Paula, S. and J. G. Pausas. 2009. BROT: a plant trait database for Mediterranean
- 1206 Basin species. Version 2009.01. URL: http://www.uv.es/jgpausas/brot.htm.
- 1207 Paula, S. and J. G. Pausas. 2011. Root traits explain different foraging strategies
- 1208 between resprouting life histories. Oecologia **165**:321–331.
- 1209 Pausas, J. G., R. A. Bradstock, D. A. Keith, and J. E. Keeley. 2004. Plant functional
- traits in relation to fire in crown-fire ecosystems. Ecology **85**:1085-1100.
- 1211 Peat, H. J. and A. H. Fitter. 1994. Comparative analyses of ecological characteristics
- 1212 of British angiosperms. Biological Reviews **69**:95-115.
- 1213 Penuelas, J., P. Prieto, C. Beier, C. Cesaraccio, P. De Angelis, G. De Dato, B.
- 1214 Emmett, M. Estiarte, J. Garadnai, A. Gorissen, E. Lange, G. Kröel-Dulay, L. Llorens,
- 1215 G. Pellizzaro, T. Riis-Nielsen, I. Schmidt, C. Sirca, A. Sowerby, D. Spano, and A.
- 1216 Tietema. 2007. Response of plant species richness and primary productivity in
- shrublands along a north-south gradient in Europe to seven years of experimental
- 1218 warming and drought: reductions in primary productivity in the heat and drought year
- 1219 of 2003. Global Change Biology **13**:2563-2581.
- 1220 Penuelas, J., J. Sardans, J. Llusia, S. Owen, J. Carnicer, T. W. Giambelluca, E. L.
- 1221 Rezende, M. Waite, and Ü. Niinemets. 2010a. Faster returns on "leaf economics" and
- 1222 different biogeochemical niche in invasive compared with native plant species. Global
- 1223 Change Biology **16**:2171-2185.

- 1224 Penuelas, J., J. Sardans, J. Llusia, S. Owen, J. Silva, and Ü. Niinemets. 2010b. Higher
- allocation to low cost chemical defenses in invasive species of Hawaii. Journal of
- 1226 Chemical Ecology **36**:1255-1270.
- 1227 Petchey, O. L. and K. J. Gaston. 2006. Functional diversity: back to basics and
- 1228 looking forward. Ecology Letters **9**:741-758.
- 1229 Pillar, V. D. and E. E. Sosinski. 2003. An improved method for searching plant
- 1230 functional types by numerical analysis. Journal of Vegetation Science 14:323-332.
- 1231 Poorter, H., Ü. Niinements, A. Walter, F. Fiorani, and U. Schurr. 2010. A method to
- 1232 construct dose–response curves for a wide range of environmental factors and plant
- traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany
- **61**:2043-2055.
- 1235 Poorter, H., U. Niinemets, L. Poorter, I. J. Wright, and R. Villar. 2009. Causes and
- 1236 consequences of variation in leaf mass per area (LMA): a meta-analysis. New
- 1237 Phytologist **182**:565-588.
- Poorter, L. 2009. Leaf traits show different relationships with shade tolerance in moist
 versus dry tropical forests. New Phytologist 181:890-900.
- 1240 Poorter, L. and F. Bongers. 2006. Leaf traits are good predictors of plant performance
- across 53 rain forest species. Ecology **87**:1733-1743.

- 1242 Poschlod, P., M. Kleyer, A. K. Jackel, A. Dannemann, and O. Tackenberg. 2003.
- 1243 BIOPOP a database of plant traits and Internet application for nature conservation.
- 1244 Folia Geobotanica **38**:263-271.
- 1245 Preston, K. A., W. K. Cornwell, and J. L. DeNoyer. 2006. Wood density and vessel
- traits as distinct correlates of ecological strategy in 51 California coast range
- angiosperms. New Phytologist **170**:807-818.
- 1248 Prieto, P., J. Penuelas, F. Lloret, L. Llorens, and M. Estiarte. 2009. Experimental
- 1249 drought and warming decrease diversity and slow down post-fire succession in a
- 1250 Mediterranean shrubland. Ecography **32**:623-636.
- 1251 Pyankov, V. I., A. V. Kondratchuk, and B. Shipley. 1999. Leaf structure and specific
- 1252 leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist
- **1253 143**:131-142.
- 1254 Quero, J. L., R. Villar, T. Maranon, R. Zamora, D. Vega, and L. Sack. 2008. Relating
- 1255 leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings
- 1256 of four Quercus species. Functional Plant Biology **35**:725-737.
- 1257 Quested, H. M., J. H. C. Cornelissen, M. C. Press, T. V. Callaghan, R. Aerts, F.
- 1258 Trosien, P. Riemann, D. Gwynn-Jones, A. Kondratchuk, and S. E. Jonasson. 2003.
- 1259 Decomposition of sub-arctic plants with differing nitrogen economies: A functional
- role for hemiparasites. Ecology **84**:3209-3221.

- 1261 R Development Core Team. 2009. R: A language and environment for statistical
- 1262 computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
- 1263 900051-07-0, URL http://www.R-project.org.
- 1264 Recknagel, F. 2006. Ecological Informatics. 2nd edition, Heidelberg, Berlin.
- Reich, P. B. 2005. Global biography of plant chemistry: filling in the blanks. NewPhytologist 168:263-266.
- 1267 Reich, P. B., J. Oleksyn, and I. J. Wright. 2009. Leaf phosphorus influences the
- 1268 photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia
- **1269 160**:207-212.
- 1270 Reich, P. B., M. G. Tjoelker, K. S. Pregitzer, I. J. Wright, J. Oleksyn, and J. L.
- 1271 Machado. 2008. Scaling of respiration to nitrogen in leaves, stems and roots of higher
- 1272 land plants. Ecology Letters **11**:793-801.
- 1273 Reich, P. B., C. Uhl, M. B. Walters, L. Prugh, and D. S. Ellsworth. 2004. Leaf
- 1274 demography and phenology in Amazonian rain forest: A census of 40 000 leaves of
- 1275 23 tree species. Ecological Monographs **74**:3-23.
- 1276 Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: Global
- 1277 convergence in plant functioning. Proceedings of the National Academy of Sciences
- 1278 of the United States of America **94**:13730-13734.

- 1279 Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T.
- 1280 Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert. 2007. Determinants of
- 1281 terrestrial ecosystem carbon balance inferred from European eddy covariance flux
- 1282 sites. Geophysical Research Letters **34** L01402.262.
- 1283 Römermann, C., M. Bernhardt-Römermann, M. Kleyer, and P. Poschlod. 2009.
- 1284 Substitutes for grazing in semi-natural grasslands do mowing or mulching represent
- 1285 valuable alternatives to maintain vegetation dynamics? Journal of Vegetation Science

1286 20:1086-1098.

- 1287 Royal Botanical Gardens KEW. 2008. Seed Information Database (SID). Version 7.1.
- 1288 Available from: http://data.kew.org/sid/ (May 2008).
- 1289 Royer, D. L., L. Sack, P. Wilf, C. H. Lusk, G. J. Jordan, U. Niinemets, I. J. Wright,
- 1290 M. Westoby, B. Cariglino, P. D. Coley, A. D. Cutter, K. R. Johnson, C. C.
- 1291 Labandeira, A. T. Moles, M. B. Palmer, and F. Valladares. 2007. Fossil leaf
- 1292 economics quantified: calibration, Eocene case study, and implications. Paleobiology1293 33:574-589.
- 1294 Sack, L. 2004. Responses of temperate woody seedlings to shade and drought: do
- trade-offs limit potential niche differentiation? Oikos **107**:110-127.
- 1296 Sack, L., W. K. Cornwell, L. S. Santiago, M. M. Barbour, B. Choat, J. R. Evans, R.
- 1297 Munns, and A. Nicotra. 2010. A unique web resource for physiology, ecology and the
- 1298 environmental sciences: PrometheusWiki. Functional Plant Biology 37:687-693.

- 1299 Sack, L., P. D. Cowan, N. Jaikumar, and N. M. Holbrook. 2003. The 'hydrology' of
- 1300 leaves: co-ordination of structure and function in temperate woody species. Plant Cell1301 and Environment 26:1343-1356.
- 1302 Sack, L. and K. Frole. 2006. Leaf structural diversity is related to hydraulic capacity
- in tropical rain forest trees. Ecology **87**:483-491.
- Sack, L., P. J. Melcher, W. H. Liu, E. Middleton, and T. Pardee. 2006. How strong is
 intracanopy leaf plasticity in temperate deciduous trees? American Journal of Botany

93:829-839.

- 1307Sack, L., M. T. Tyree, and N. M. Holbrook. 2005. Leaf hydraulic architecture
- 1308 correlates with regeneration irradiance in tropical rainforest trees. New Phytologist1309 167:403-413.
- 1310 Sardans, J., J. Penuelas, and R. Ogaya. 2008a. Drought-induced changes in C and N
- 1311 stoichiometry in a Quercus ilex Mediterranean forest. Forest Science **54**:513-522.
- 1312 Sardans, J., J. Penuelas, P. Prieto, and M. Estiarte. 2008b. Changes in Ca, Fe, Mg,
- 1313 Mo, Na, and S content in a Mediterranean shrubland under warming and drought.
- 1314 Journal of Geophysical Research **113**:doi:10.1029/2008JG000795.
- 1315 Sato, H., A. Itoh, and T. Kohyama. 2007. SEIB-DGVM: A new dynamic global
- 1316 vegetation model using a spatially explicit individual-based approach. Ecological
- 1317 Modelling **200**:279-307.

- 1318 Schleuter, D., M. Daufresne, F. Massol, and C. Argillier. 2010. A user's guide to
- 1319 functional diversity indices. Ecological Monographs **80**:469-484.
- 1320 Schurr, F. M., W. J. Bond, G. F. Midgley, and S. I. Higgins. 2005. A mechanistic
- model for secondary seed dispersal by wind and its experimental validation. Journal
- 1322 of Ecology **93**:1017-1028.
- 1323 Schymanski, S. J., M. Sivapalan, M. L. Roderick, L. B. Hutley, and J. Beringer. 2009.
- 1324 An optimality-based model of the dynamic feedbacks between natural vegetation and
- the water balance. Water Resources Research **45** W01412.
- 1326 Scoffoni, C., A. Pou, K. Aasamaa, and L. Sack. 2008. The rapid light response of leaf
- 1327 hydraulic conductance: new evidence from two experimental methods. Plant Cell and
- 1328 Environment **31**:1803-1812.
- 1329 Shan, H. and A. Banerjee. 2008. Bayesian Co-clustering.*in* IEEE International
- 1330 Conference on Data Mining (ICDM)
- 1331 Shekhar, S., P. Zhang, V. R. Raju, and H. Y. 2004. Trends in Spatial Data Mining.
- 1332 Data Mining: Next Generation Challenges and Future Directions. MIT Press.
- 1333 Shiodera, S., J. S. Rahajoe, and T. Kohyama. 2008. Variation in longevity and traits
- 1334 of leaves among co-occurring understorey plants in a tropical montane forest. Journal
- 1335 of Tropical Ecology **24**:121-133.

- 1336 Shipley, B. 1989. The Use of Above-Ground Maximum Relative Growth-Rate as an
- 1337 Accurate Predictor of Whole-Plant Maximum Relative Growth-Rate. Functional

1338 Ecology **3**:771-775.

- 1339 Shipley, B. 1995. Structured Interspecific Determinants of Specific Leaf-Area in 34
- 1340 Species of Herbaceous Angiosperms. Functional Ecology **9**:312-319.
- 1341 Shipley, B. 2007. Comparative plant ecology as a tool for integrating across scales:
- 1342 Preface. Annals of Botany **99**:965-966.
- 1343 Shipley, B. and M. J. Lechowicz. 2000. The functional co-ordination of leaf
- 1344 morphology, nitrogen concentration, and gas exchange in 40 wetland species.
- 1345 Ecoscience **7**:183-194.
- 1346 Shipley, B. and D. Meziane. 2002. The balanced-growth hypothesis and the allometry
- 1347 of leaf and root biomass allocation. Functional Ecology **16**:326-331.
- 1348 Shipley, B. and M. Parent. 1991. Germination Responses of 64 Wetland Species in
- 1349 Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative
- 1350 Growth-Rate. Functional Ecology **5**:111-118.
- 1351 Shipley, B., D. Vile, and E. Garnier. 2006. From plant traits to plant communities: A
- 1352 statistical mechanistic approach to biodiversity. Science **314**:812-814.
- 1353 Shipley, B. and T. T. Vu. 2002. Dry matter content as a measure of dry matter
- 1354 concentration in plants and their parts. New Phytologist **153**:359-364.

- 1355 Sitch, S., B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. O. Kaplan,
- 1356 S. Levis, W. Lucht, M. T. Sykes, K. Thonicke, and S. Venevsky. 2003. Evaluation of
- 1357 ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ
- 1358 dynamic global vegetation model. Global Change Biology **9**:161-185.
- 1359 Smith, B., I. C. Prentice, and M. T. Sykes. 2001. Representation of vegetation
- 1360 dynamics in the modelling of terrestrial ecosystems: comparing two contrasting
- 1361 approaches within European climate space. Global Ecology and Biogeography
- **1362 10**:621-637.
- 1363 Su, X. and T. M. Khoshgoftaar. 2009. A survey of collaborative filtering techniques.
- 1364 Advances in Artificial Intelligence.
- 1365 Swaine, E. K. 2007. Ecological and evolutionary drivers of plant community
- assembly in a Bornean rain forest. PhD Thesis, University of Aberdeen, Aberdeen.
- 1367 Swenson, N. G. and B. J. Enquist. 2007. Ecological and evolutionary determinants of
- 1368 a key plant functional trait: Wood density and its community-wide variation across
- 1369 latitude and elevation. American Journal of Botany **94**:451-459.
- 1370 Swenson, N. G. and M. D. Weiser. 2010. Plant geography upon the basis of functional
- traits: an example from eastern North American trees. Ecology **91**:2234-2241.
- 1372 Valladares, F., E. Gianoli, and J. M. Gomez. 2007. Ecological limits to plant
- 1373 phenotypic plasticity. New Phytologist **176**:749-763.

- 1374 van Bodegom, P. M., M. de Kanter, C. Bakker, and R. Aerts. 2005. Radial oxygen
- 1375 loss, a plastic property of dune slack plant species. Plant and Soil **271**:351-364.
- 1376 van Bodegom, P. M., B. K. Sorrell, A. Oosthoek, C. Bakke, and R. Aerts. 2008.
- 1377 Separating the effects of partial submergence and soil oxygen demand on plant
- 1378 physiology. Ecology **89**:193-204.
- 1379 Vile, D. 2005 Significations fonctionnelle et ecologique des traits des especes
- 1380 vegetales: exemple dans une succession post-cultural mediterraneenne et
- 1381 generalisations, PHD Thesis. CNRS Montpellier, France.
- 1382 Vile, D., B. Shipley, and E. Garnier. 2006. A structural equation model to integrate
- 1383 changes in functional strategies during old-field succession. Ecology **87**:504-517.
- 1384 Violle, C. and L. Jiang. 2009. Towards a trait-based quantification of species niche.
- 1385 Journal of Plant Ecology **2**:87-93.
- 1386 Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E.
- 1387 Garnier. 2007. Let the concept of trait be functional! Oikos **116**:882-892.
- 1388 Waite, M. and L. Sack. 2010. How does moss photosynthesis relate to leaf and
- 1389 canopy structure? Trait relationships for 10 Hawaiian species of contrasting light
- habitats. New Phytologist **185**:156-172.

- 1391 Watanabe, T., M. R. Broadley, S. Jansen, P. J. White, J. Takada, K. Satake, T.
- 1392 Takamatsu, S. J. Tuah, and M. Osaki. 2007. Evolutionary control of leaf element
- 1393 composition in plants. New Phytologist **174**:516-523.
- 1394 Weiher, E., A. van der Werf, K. Thompson, M. Roderick, E. Garnier, and O.
- 1395 Eriksson. 1999. Challenging Theophrastus: A common core list of plant traits for
- 1396 functional ecology. Journal of Vegetation Science **10**:609-620.
- 1397 Weinberg, R. 2010. Point: Hypotheses first. Nature 464:678.
- 1398 Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant
- 1399 and Soil **199**:213-227.
- 1400 Westoby, M., D. S. Falster, A. T. Moles, P. A. Vesk, and I. J. Wright. 2002. Plant
- 1401 ecological strategies: Some leading dimensions of variation between species. Annual
- 1402 Review of Ecology and Systematics **33**:125-159.
- 1403 Westoby, M. and I. J. Wright. 2006. Land-plant ecology on the basis of functional
- traits. Trends in Ecology & Evolution **21**:261-268.
- 1405 White, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani. 2000.
- 1406 Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem
- 1407 model: Net primary production controls. Earth Interactions **4**:1-85.
- 1408 Wiens, J. J. 2003. Missing data, incomplete taxa, and phylogenetic accuracy.
- 1409 Systematic Biology **52**:528-538.

- 1410 Wiens, J. J. 2005. Can incomplete taxa rescue phylogenetic analyses from long-
- 1411 branch attraction? Systematic Biology **54**:731-742.
- 1412 Wiens, J. J., D. D. Ackerly, A. P. Allen, B. L. Anacker, L. B. Buckley, H. V. Cornell,
- 1413 E. I. Damschen, T. J. Davies, J. A. Grytnes, S. P. Harrison, B. A. Hawkins, R. D.
- 1414 Holt, C. M. McCain, and P. R. Stephens. 2010. Niche conservatism as an emerging
- 1415 principle in ecology and conservation biology. Ecology Letters **13**:1310-1324.
- 1416 Willis, C. G., M. Halina, C. Lehman, P. B. Reich, A. Keen, S. McCarthy, and J.
- 1417 Cavender-Bares. 2010. Phylogenetic community structure in Minnesota oak savanna
- is influenced by spatial extent and environmental variation. Ecography **33**:565-577.
- 1419 Wilson, K. B., D. D. Baldocchi, and P. J. Hanson. 2000. Spatial and seasonal
- 1420 variability of photosynthetic parameters and their relationship to leaf nitrogen in a
- 1421 deciduous forest. Tree Physiology **20**:565-578.
- 1422 Wirth, C. 2005. Fire regime and tree diversity in boreal forests: Implications for the
- 1423 carbon cycle. Forest Diversity and Function: Temperate and Boreal Systems **176**:309-
- 1424
 344.
- 1425 Wirth, C. and J. W. Lichstein. 2009. The imprint of succession on old-growth forest
- 1426 carbon balances insights from a trait-based model of forest dynamics. Pages 81-113 in
- 1427 C. Wirth, G. Gleixner, and M. Heimann, editors. Old-growth forests: Function, fate
- 1428 and value. Springer, New York, Berlin, Heidelberg.

- 1429 Wohlfahrt, G., M. Bahn, E. Haubner, I. Horak, W. Michaeler, K. Rottmar, U.
- 1430 Tappeiner, and A. Cernusca. 1999. Inter-specific variation of the biochemical
- 1431 limitation to photosynthesis and related leaf traits of 30 species from mountain
- 1432 grassland ecosystems under different land use. Plant, Cell and Environment 22:1281-
- 1433 1296.
- 1434 Woodward, F. I. and W. Cramer. 1996. Plant functional types and climatic changes:
- 1435 Introduction. Journal of Vegetation Science **7**:306-308.
- 1436 Wright, I. J., D. D. Ackerly, F. Bongers, K. E. Harms, G. Ibarra-Manriquez, M.
- 1437 Martinez-Ramos, S. J. Mazer, H. C. Muller-Landau, H. Paz, N. C. A. Pitman, L.
- 1438 Poorter, M. R. Silman, C. F. Vriesendorp, C. O. Webb, M. Westoby, and S. J. Wright.
- 1439 2007. Relationships among ecologically important dimensions of plant trait variation
- in seven Neotropical forests. Annals of Botany 99:1003-1015.
- 1441 Wright, I. J., P. B. Reich, O. K. Atkin, C. H. Lusk, M. G. Tjoelker, and M. Westoby.
- 1442 2006. Irradiance, temperature and rainfall influence leaf dark respiration in woody
- 1443 plants: evidence from comparisons across 20 sites. New Phytologist **169**:309-319.
- 1444 Wright, I. J., P. B. Reich, J. H. C. Cornelissen, D. S. Falster, E. Garnier, K. Hikosaka,
- 1445 B. B. Lamont, W. Lee, J. Oleksyn, N. Osada, H. Poorter, R. Villar, D. I. Warton, and
- 1446 M. Westoby. 2005. Assessing the generality of global leaf trait relationships. New
- 1447 Phytologist **166**:485-496.
- 1448 Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J.
- 1449 Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P.

- 1450 K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J.
- 1451 Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L.
- 1452 Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and
- 1453 R. Villar. 2004. The worldwide leaf economics spectrum. Nature **428**:821-827.
- 1454 Wright, S. J., K. Kitajima, N. J. B. Kraft, P. B. Reich, I. J. Wright, D. E. Bunker, R.
- 1455 Condit, J. W. Dalling, S. J. Davies, S. Díaz, B. M. J. Engelbrecht, K. E. Harms, S. P.
- 1456 Hubbell, C. O. Marks, M. C. Ruiz-Jaen, C. M. Salvador, and A. E. Zanne. 2010.
- Functional traits and the growth-mortality tradeoff in tropical trees. Ecology 91:3664-3674.
- 1459 Xu, L. K. and D. D. Baldocchi. 2003. Seasonal trends in photosynthetic parameters
- 1460 and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer
- 1461 drought and high temperature. Tree Physiology **23**:865-877.
- 1462 Zaehle, S. and A. Friend. 2010. Carbon and nitrogen cycle dynamics in the O-CN
- 1463 land surface model: 1. Model description, site-scale evaluation, and sensitivity to
- 1464 parameter estimates Global Biochemical Cycles 24.
- 1465 Zanne, A. E., G. Lopez-Gonzalez, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B.
- 1466 Miller, N. G. Swenson, M. C. Wiemann, and J. Chave. 2009. Global wood density
- 1467 database. Dryad:Identifier: http://hdl.handle.net/10255/dryad.10235.
- 1468 Ziehn, T., J. Kattge, W. Knorr and M. Scholze. Accepted. Improving the
- 1469 predictability of global CO2 assimilation rates under climate change. Geophysical
- 1470 Research Letters.

1471 Tables

1472 **Table 1:** Databases currently contributing to the TRY database. Databases are 1473 separated whether they are at a final stage or still continuously developed, and 1474 whether they are or not public available as an electronic resource in the Internet. 1475 Databases that are already integrated databases, pooling a range of original databases 1476 (e.g. LEDA, GLOPNET) are highlighted by asterisks (*). Contributions are sorted 1477 alphabetically by principal contact person. A database can consist of several datasets 1478 (268 individual files have currently been imported to the TRY database). Most of the 1479 non-public databases contain unpublished besides published data. 1480 Table 2: Summary of data coverage in the TRY data repository (31.03.2011) for the 1481 52 groups of focus traits and one group lumping all other traits (53). Traits that 1482 address one plant characteristic but expressed differently are summarized in groups, 1483 e.g. the group "leaf nitrogen content" consists of the three traits: leaf nitrogen content 1484 per dry mass, leaf nitrogen content per area and nitrogen content per leaf. In the case 1485 of respiration the database contains 105 related traits: different organs, different 1486 reference values (e.g. dry mass, area, volume, nitrogen) or characterizing the 1487 temperature dependence of respiration (e.g. Q_{10}). Specific information for each trait 1488 is available on the TRY website (http://www.try-db.org). Data sets: number of 1489 contributed datasets; Species: number of species characterised by at least one trait 1490 entry; Entries: number of trait entries; Geo-referenced, Location, Soil: number of trait 1491 entries geo-referenced by coordinates, resp. with information about location or soil. *: 1492 qualitative traits assumed to have low variability within species. Bold: qualitative 1493 traits standardized and made publicly available on the TRY website. 1494

72

1494
Table 3: Statistical properties for the density distributions of 52 traits with substantial
 1495 coverage and a test for deviation from normality, on the original scale and after log-1496 transformation of trait values. Results based on dataset after excluding obvious errors, 1497 but before detection of outliers. Skewness: measure of the asymmetry of the density 1498 distribution (0 in case of normal distribution, <0: left-tailed distribution, >0 right 1499 tailed distribution); Kurtosis: measure of the "peakedness" of the density distribution 1500 (here presented as excess kurtosis: 0 in case of normal distribution, <0: wider peak 1501 around the mean, >0: a more acute peak around the mean); JB test: result of Jarque-1502 Bera test for departure from normality (0 for normal distribution; >0 for deviation 1503 from normal distribution); p-value: probability of obtaining a test statistic at least as 1504 extreme as the observed, assuming the null hypothesis, here the data are normal 1505 distributed, is true (on the original scale, resp. after log-transformation, >0.5 in case of 1506 normality accepted at 95% confidence); change of normality: difference between 1507 results of Jarque-Bera test on the original scale and after log-transformation of trait 1508 data (>0: improvement of normality by log-transformation, <0: deterioration of 1509 normality by log-transformation); RMSE: Root mean squared error; bold: traits for 1510 which we quantified the fraction of variance explained by species and PFT. 1511
Table 4: Mean values and ranges for 52 traits with substantial coverage, based on
 1512 individual trait entries, after exclusion of outliers and duplicates. Values for $Amax_N$ 1513 were calculated based on database entries for Amax and leaf N content per area resp. 1514 dry mass. Mean values have been calculated as arithmetic means on a logarithmic 1515 scale and retransformed to original scale. SD: standard deviation on log10-scale. 1516 Traits are sorted by decreasing SD. Bold: traits for which we quantified the fraction of

1517 variance explained by species and PFT (cf. Table 5, Fig. 5). *: Mean values for leaf

73
phenolics, tannins and carbon content were calculated on the original scale, the SD is,provided on log-scale, for comparability.

1520	Table 5: Variation within and between species and within and between plant
1521	functional types (PFT). Light grey: standard deviation within group; dark grey:
1522	standard deviation between groups; n: number of entries; nsp, n/sp and n/PFT:
1523	number of species vs. number of mean number of entries per species and PFT, mean
1524	values: calculated as arithmetic mean on log-scale and retransformed to original scale,
1525	sign. p: significance level for difference between means for PFTs and species. Traits:
1526	Seed mass (mg), Plant height: maximum plant height (m), LL: leaf lifespan (month);
1527	SLA: specific leaf area (mm ² /mg); N_m : leaf nitrogen content per dry mass (mg/g); P_m :
1528	leaf phosphorus content per dry mass (mg/g); N_a : leaf nitrogen content per area
1529	(g/m ²), <i>Amax_a</i> : light saturated photosynthetic rate per leaf area (μ mol /m ² /s), <i>Amax_m</i> :
1530	light saturated photosynthetic rate per dry mass (μ mol/g/s), Amax _N : light saturated
1531	photosynthetic rate per leaf nitrogen content (μ mol/g/s). SD is based on log10-
1532	transformed trait data, after exclusion of duplicates and outliers, including data
1533	derived under experimental growth conditions. Numbers in brackets along with names
1534	of plant functional types characterize the numbers of species attributed to the
1535	respective PFT. Plant species were selected to provide examples from different
1536	functional types and with entries for each of the ten traits.

1538 Figures

1539	Figure 1: The TRY process of data sharing. Researcher C contributes plant trait data
1540	to TRY (1) and becomes a member of the TRY consortium (2). The data are
1541	transferred to the Staging Area, where they are extracted and imported, dimensionally
1542	and taxonomically cleaned, checked for consistency against all other similar trait
1543	entries and complemented with covariates from external databases (3; Tax =
1544	taxonomic databases, IPNI/TROPICOS accessed via TaxonScrubber (Boyle 2006),
1545	Clim = climate databases, e.g. CRU, Geo = geographic databases). Cleaned and
1546	complemented data are transferred to the Data Repository (4). If researcher C wants
1547	to retain full ownership, the data are labelled accordingly. Otherwise they obtain the
1548	status 'freely available within TRY'. Researcher C can request her/his own data -
1549	now cleaned and complemented – at any time (5). If she/he has contributed a
1550	minimum amount of data (currently >500 entries), she/he automatically is entitled to
1551	request data other than her/his own from TRY. In order to receive data she/he has to
1552	submit a short proposal explaining the project rationale and the data requirements to
1553	the TRY steering committee (6). Upon acceptance (7) the proposal is published on the
1554	Intranet of the TRY website (title on the public domain) and the data management
1555	automatically identifies the potential data contributors affected by the request.
1556	Researcher C then contacts the contributors who have to grant permission to use the
1557	data and to indicate whether they request co-authorship in turn (8). All this is handled
1558	via standard e-mails and forms. The permitted data are then provided to researcher C
1559	(9), who is entitled to carry out and publish the data analysis (10). To make trait data
1560	also available to vegetation modellers (e.g. modeller E) – one of the pioneering
1561	motivations of the TRY initiative - modellers are also allowed to directly submit

1585 height for all data and three major plant growth forms (white: all database entries;

1586 light grey: herbs/grasses; dark grey: trees; black: shrubs). Rug-plots provide data

- 1587 ranges hidden by overlapping histograms. Lower panels: (c) Specific leaf area (SLA)
- 1588 and (d) leaf nitrogen content per dry mass (N_m , white: all database entries excluding
- 1589 outliers (including experimental conditions), light grey: database entries from natural
- 1590 environment (excluding experimental conditions); medium grey: growth form trees,
- 1591 dark grey: PFT needle-leaved evergreen, black: *Pinus sylvestris*).
- 1592 Figure 5: Fraction of variance explained by PFT or species for 10 relevant and well-
- 1593 covered traits. R²: fraction of explained variance. Traits: Seed mass: seed dry mass,
- 1594 Plant height: maximum plant height, LL: leaf longevity; SLA: specific leaf area; N_m :
- 1595 leaf nitrogen concentration per dry mass; P_m : leaf phosphorus concentration per dry
- 1596 mass; N_a: leaf nitrogen content per area, Amax_a: maximum photosynthesis rate per
- 1597 leaf area, *Amax_m*: maximum photosynthesis rate per leaf dry mass, *Amax_N*: maximum
- 1598 photosynthesis rate per leaf nitrogen content.
- **Figure 6:** Worldwide range in *SLA* along a latitudinal gradient for the main plant
- 1600 functional types. Grey: all data; black: data for the PFT under scrutiny.
- **Figure 7:** Frequency distributions of specific leaf area (*SLA*, mm²/mg) values (grey
- 1602 histograms) compiled in the TRY database and parameter values for SLA (red dashes)
- 1603 published in the context of the following global vegetation models: Frankfurt
- 1604 Biosphere Model (Ludeke et al. 1994, Kohlmaier et al. 1997), SCM (Friend and Cox
- 1605 1995), HRBM (Kaduk and Heimann 1996), IBIS (Foley et al. 1996, Kucharik et al.
- 1606 2000), Hybrid (Friend et al. 1997), BIOME-BGC (White et al. 2000), ED (Moorcroft
- 1607 et al. 2001), LPJ-GUESS (Smith et al. 2001), LPJ-DGVM (Sitch et al. 2003), LSM
- 1608 (Bonan et al. 2003), SEIB–DGVM (Sato et al. 2007). n: number of SLA data in the
- 1609 TRY database per PFT.

- 1610 **Figure 8:** Frequency distributions of leaf nitrogen content per dry mass for major
- 1611 plant functional types as compiled in the TRY database compared to frequency
- 1612 distributions of the respective state-variable calculated within the O-CN vegetation
- 1613 model (Zaehle and Friend 2010). n: number of entries in the TRY database (left) and
- 1614 number of grid-elements in O-CN with given PFT (right).

1615 Supplementary material:

1616 **S1: Detection of outliers**

We consider individual trait values as outliers if they are not contained within an"accepted range" of values, defined as:

1619
$$AcceptedRange = \overline{\ln(x_i)} \pm a * \left(SD(\ln(x_j)) + b * SD_{SD(\ln(x_j))} \right)$$

- 1620 i= individual grouping element (respective species, genus, family, PFT)
- 1621 j= grouping level (e.g. species, genus, family, PFT, or all data)
- 1622 a, b: factors scaling the sensitivity of outlier detection
- 1623 x: value of respective trait
- 1624 The accepted range of values is defined by the mean value of the given group (e.g. a

specific species) +/- the mean standard deviation of this grouping level. The mean

- 1626 standard deviation is modified to account for its uncertainty (see Figure S1). The
- 1627 distance of the trait entry under scrutiny from the group mean is calculated in terms of
- 1628 standard deviations. This information is added to the trait information. If the trait
- 1629 entry is out of range for one grouping level, it is marked as an outlier. The accepted
- 1630 range can be formulated with respect to different scaling of the data (e.g. on the
- 1631 original scale or logarithmic scale). Here the approach is formulated on a logarithmic
- scale, as according to the Jarque-Bera test (Bera and Jarque 1980) most traits were
- 1633 normally distributed on a logarithmic scale; Table 3.
- 1634 This outlier detection, based on the average standard deviation and its uncertainty,
- allows a robust detection of outliers also for individual groups with few data entries,
- 1636 e.g. species with only two data entries: both entries could be identified as outliers. In

the context of the analyses in this manuscript the scaling factors a and b were set to 2
and 1, respectively. This represents an average range of 2 SD plus the uncertainty of
SD. Accordingly about 5% of the data has been identified as outliers and excluded
from analyses. In the context of this manuscript we used this rather conservative
approach, as individual double- and cross-checking of data for measurement and data
errors is not possible for all the traits in the database.

1644 PFT and for all data, most outliers are detected on the species level in the centre of the

1645 distribution (e.g. Figure 1 S1 for *SLA*), only comparatively few entries on the high and

1646 low end of the distribution are identified as outliers.

1647

- **Figure 1 S1: '**Funnel graph' indicating the dependence of standard deviation on
- 1649 sampling size.
- 1650 Figure 2 S1: Outliers identified in case of SLA (2404 outliers out of 48140 entries,
- 1651 after exclusion of duplicates)

1652 S2: Reasoning and consequences of normal distribution on logarithmic scale

1653	Our results show that plant traits are typically normally distributed on a logarithmic
1654	scale (Table 3). This is most probably due to the fact that they often have a lower
1655	bound at zero but no upper bound relevant for the data distribution. Being log-normal
1656	distributed has several implications for data analysis and the presentation of results.
1657	(1) The standard deviation expressed on a logarithmic scale allows a direct
1658	comparison of variation between different traits independent of units and mean values
1659	(e.g. table 4 and 5). Providing mean value +/- standard deviation on a logarithmic
1660	scale corresponds to a multiplicative relation on the original scale, which corrects for
1661	the value of the mean, but also produces an asymmetric distribution, with a small
1662	range below and large range above the mean value: e.g. a standard deviation of 0.05
1663	on log-10 scale corresponds to -10.9% and +12.2% on the original scale, while a
1664	standard deviation of 1.0 on log-10 scale corresponds to -90% (/10) and +900% (*10)
1665	on the original scale. (2) It implies that on the original scale relationships are to be
1666	expected being multiplicative rather than additive (Kerkhoff and Enquist 2009). The
1667	increase of a trait value by 100% corresponds to a reduction by 50% and not to a
1668	reduction by 100%, e.g. a doubling of seed mass from 4mg to 8mg corresponds to a
1669	reduction from 4mg to 2mg and not to a reduction from 4mg to 0mg. (3) Log- or log-
1670	log scaled plots are not sophisticated techniques to hide huge variations, but the
1671	appropriate presentation of the observed distributions (Wright et al. 2004). On the
1672	original scale bivariate plots show a heteroscedastic distribution e.g. (Kattge et al.
1673	2009). (4) In the context of sensitivity analysis of model parameters and data-
1674	assimilation the trait related parameters and state-variables have to be assumed

1675	normally distributed	on a logarithmic	scale as well	(Knorr and	Kattge 2005)	(e.g. F
16/5	normally distributed	on a logarithmic	scale as well	(Knorr and	Kattge 2005)	(e.g. F

1676 7 and 8).

1677

1678 S3: Ranges of plant traits as a function of trait dimensionality

1680	S3: Ranges of	plant traits, pro	esented as sta	andard deviation	on log-scale, for 50
	0				U ,

- 1681 different traits with respect to dimension. Dimension 1: e.g. length; 2: e.g. area; 3: e.g.
- volume, mass (variable due to potential changes in three dimensions); all traits that
- 1683 are calculated as fractional values (e.g. mg/g, or g/m2) are attributed a dimension of
- 1684 zero.
- 1685

1685 S4: Reduction of number of species with complete data coverage with increasing
1686 number of traits

1687

1688	S4: Reduction of number of species with complete data coverage with increasing
1689	number of traits. n: number of species with full coverage; n _{max} : number of species in

- 1690 case of trait with highest coverage; f_{joint} : average fraction of species overlap of
- 1691 different traits; number of traits of interest in the multivariate analysis. First
- 1692 experiences show that in TRY f_{joint} is in a range of about 0.5 to 0.7, depending on the
- selected traits.

1694 S5: Latitudinal range of SLA

- 1696 **S5:** Worldwide range in *SLA* along a latitudinal gradient for the main plant functional
- 1697 types. Density distributions presented as box and whisker plots. The height of boxes
- 1698 indicates the number of respective data entries.

Foliage N [%]

Foliage N [%]

number of data per species

Outlier (black) identified on the basis of high sensitivity (approx. 5%)

Name of the Database	Contact Person(s)	Reference(s)
Databases public, maintained on the Internet		
1 *Seed Information Database (SID)	J. Dickie, K. Liu	Royal Botanic Gardens Kew Seed Information Database (SID). 2008
2 *Ecological Flora of the British Isles	A. Fitter, H. Ford	Fitter & Peat (1994)
3 VegClass CBM Global Database	A. Gillison	Gillison & Carpenter (1997) Groop (2009)
5 *The LEDA Traitbase	M. Klever	Klever et al. (2008)
6 *BiolFlor Database	I. Kühn, S. Klotz	Klotz et al. (2002), Kühn et al. (2004)
7 *BROT plant trait database	J. Pausas, S. Paula	Paula & Pausas (2009), Paula et al. (2009)
Databases public, fixed		
8 Tropical Respiration Database 9 *ArtDeco Database	J. Chambers W. Cornwell, H. Cornelissen	Chambers et al. (2004, 2009) Corpwell et al. (2008)
10 The Americas N&P database	B. Enquist, A. Kerkhoff	Kerkhoff et al. (2006)
11 ECOCRAFT	B. Medlyn	Medlyn et al. (1999 a,b, 2001)
12 * Leaf Biomechanics Database	Y. Onoda	Onoda et al. (2011)
14 *BIOPOP: Functional Traits for Nature Conservation	P. Poschlod	Poschlod et al. (2003)
15 *BIOME-BGC Parameterization Database	M. White, P. Thornton	White et al. (2000)
17 *Global Wood Density Database	A. Zanne, J. Chave	Chave et al. (2009), Zanne et al. (2009)
Databases not-public, fixed in the majority of cases		
18 Plant Traits in Pollution Gradients Database	M. Anand	Unpublished Data
19 Plant Physiology Database	O. Atkin	Atkin et al. (1997, 1999). Lovevs et al. (2003). Campbell et al. (2007)
20 European Mountain Meadows Plant Traits Database	M Babn	Babn et al. (1999). Wohlfahrt et al. (1999)
21 Photosynthesis Traits Database	D. Baldocchi	Wilson et al. (2000), Xu et al. (2003)
22 Photosynthesis and Leaf Characteristics Database	B. Blonder, B. Enquist	Unpublished Data
23 Wetland Dunes Plant Traits Database 24 Ekraine Wetlands Plant Traits Database	P. van Bodegom P. van Bodegom	Bakker et al. (2005, 2006), van Bodegom et al. (2005, 2008) Uppublished Data
25 Plants Categorical Traits Database	P. van Bodegom	Unpublished Data
26 South African Woody Plants Trait Database (ZLTP)	W. Bond, M. Waldram	Unpublished Data
27 *Australian Fire Ecology Database 28 Cedar Creek Plant Physiology Database	R. Bradstock	Unpublished Data
29 Floridian Leaf Traits Database	J. Cavender-Bares	Cavender-Bares, Keen & Miles (2006)
30 Tundra Plant Traits Databases	S. Chapin	Unpublished Data
31 ^Global Woody N&P Database	G. Esser, M. Clusener-Goat	M. Clusener-Goat (1989) Cornelissen (1996), Cornelissen, Diez & Hunt (1996), Cornelissen et al.
32 Abisko & Sheffield Database	H. Cornelissen	(1997, 1999, 2001, 2003, 2004), Castro-Diez et al. (1998, 2000),
		Quested et al. (2003) Communities al. (2004) Director et al. (2004) Advanty & Communit (2007)
33 Jasper Ridge Californian Woody Plants Database	W. Cornwell, D. Ackerly	Cornwell & Ackerly (2009)
34 Roots Of the World (ROW) Database	J. Craine	Craine et al. (2005)
35 Global 15N Database	J. Craine	Craine et al. (2009) Diaz et al. (2004)
37 *Sheffield-Iran-Spain Database	S. Diaz	Diaz et al. (2004)
38 Chinese Leaf Traits Database	J. Fang	Han et al. (2005), He et al. (2006, 2008)
39 Costa Rica Rainforest Trees Database	B. Finegan, B. Salgado	Unpublished Data
41 Subarctic Plant Species Trait Database	G. Freschet, H. Cornelissen	Freschet et al. (2010 a,b)
42 Climbing Plants Trait Database	R. Gallagher	Gallagher et al. (2011)
43 The VISTA Plant Trait Database	E. Garnier, S. Lavorel	Garnier et al. (2007), Pakeman et al. (2008, 2009), Fortunel et al. (2009)
44 VirtualForests Trait Database	A. Gutiérrez	Gutiérrez (2010)
45 Dispersal Traits Database	S. Higgins	Unpublished Data
46 Herbaceous Traits from the Oland Island Database 47 Global Wood Anatomy Database	S. Jansen, F. Lens	Unpublished Data
48 Gobal Leaf Element Composition Database	S. Jansen	Watanabe et al. (2007)
49 *Leaf Physiology Database	J. Kattge, C. Wirth	Kattge et al. (2009) Kirkum et al. (2005)
51 Photosynthesis Traits Database	K. Kramer	Unpublished Data
52 Traits of Bornean Trees Database	H. Kurokawa	Kurokawa & Nakashizuka (2008)
53 Ponderosa Pine Forest Database 54 New South Wales Plant Traits Database	D. Laughlin M. Leishman	Laughlin et al. (2010)
55 The RAINFOR Plant Trait Database	J. Lloyd, N. Fyllas	Baker et al. (2009), Fyllas et al. (2009), Patiño et al. (2009)
56 French Grassland Trait Database	F. Louault, JF. Soussana	Louault et al (2005)
57 The DIRECT Plant Trait Database	P. Manning T. Massad	Unpublished Data
59 Panama Leaf Traits Database	J. Messier	Messier et al. (2010)
60 *Global Seed Mass Database	A. Moles	Moles et al. (2004, 2005a,b)
62 Global Leaf Robustness and Physiology Database	Ü. Niinemets	Niinemets (1999, 2001)
63 The Netherlands Plant Traits Database	J. Ordonez, P. van Bodegom	Ordonez et al. (2010 a,b)
64 The Netherlands Plant Height Database	W. Ozinga	Unpublished Data
66 Catalonian Mediterranean Forest Trait Database	J. Penuelas, U. Nilnemets J. Penuelas, R. Ogava	Penuelas et al. (2010 a,b) Ogava & Peñuelas (2003, 2006, 2007, 2008), Sardans et al. (2008)
67 Catalonian Mediterranean Shrubland Trait Database	J. Penuelas, M. Estiarte	Peñuelas et al. (2007), Prieto et al. (2009)
68 ECOQUA South American Plant Traits Database	V. Pillar, S. Muller	Pillar et al. (2003), Overbeck (2005), Blanco et al. (2007), Duarte et al. (2007), Muller et al. (2007), Overbeck & Redenbauer (2007)
69 *The Tansley Review LMA Database	H. Poorter	Poorter et al. (2009)
70 Categorical Plant Traits Database	H. Poorter	Unpublished Data
71 Tropical Rainforest Traits Database 72 *Frost Hardiness Database	L. Poorter A Rammin	Poorter & Bongers (2006), Poorter (2009) Unnublished Data
73 Reich-Oleksyn Global Leaf N, P Database	P. B. Reich, J. Oleksyn	Reich, Oleksyn, Wright (2009)
74 Global A, N, P, SLA Database	P. B. Reich	Reich, Oleksyn, Wright (2009)
75 Global Respiration Database	Р. В. Reich P. B. Reich	willis et al. (2009) Reich et al. (2008)
· · · · · · · · · · · · · · · · · · ·		
Leaf and Whole-Plant Traits Database: Hydraulic and Gas		Sack et al. (2003, 2005, 2006), Sack (2004), Nakahashi et al. (2005), Sack & Erole (2006), Cavender-Bares et al. (2007), Chest et al. (2007)
77 Exchange Physiology, Anatomy, Venation Structure, Nutrient	L. Sack	Cornwell et al. (2007), Martin et al. (2007), Coomes et al. (2008), Hoof et
composition, Growth and Biomass Allocation		al. (2008), Quero et al. (2008), Scoffoni et al. (2008), Dunbar-Co et al.
78 Tropical Traits from West Java Database	S Shindera	(2009), Hao et al. (2010), Waite & Sack (2010), Markesteijn et al. (2011) Shiodera et al. (2008)
re replear mails from west sava Database	S. Shibucia	Shipley (1989, 1995, 2002), Shipley & Parent (1991), McKenna & Shipley
79 Leaf And Whole Plant Traits Database	B. Shipley	(1999), Meziane & Shipley (1999a,b, 2001), Pyyankov et al. (1999),
		Shipley α Lechowitz (2000), Shipley & Vu (2002), Vile D. (2005), Kazakou

Group of traits	Traits per group	Data sets	Species	Entries	Geo- referenced	Location	Soil
1 Plant growth form*	7	62	39715	130527	45683	48355	19630
2 Plant life form*	1	9	7870	64949	55476	58575	53008
3 Plant resprouting capacity*	4	7	3248	5219	410	319	2462
4 Plant height	15	63	18071	105422	43351	50154	34325
5 Plant longevity	4	23	8198	18844	3709	2336	5109
6 Plant age of reproductive maturity	3	3	1506	2024	0	24	0
7 Plant architectural relationships	72	43	10227	356188	340540	340390	332608
8 Plant crown size	4	8	276	4180	1450	846	33
9 Plant surface roughness	1	1	31	31	0	0	0
10 Plant tolerance to stress	40	14	8275	62362	877	1286	33799
11 Plant phenology	10	16	7630	26765	2900	8816	6868
12 Leaf type*	1	15	33519	49668	6261	4490	2511
13 Leaf compoundness*	1	15	34523	50502	13495	13558	230
14 Leaf photosynthetic pathway*	1	29	31641	40807	6305	4442	5495
15 Leaf phenology type*	1	35	15512	65536	36579	37888	24900
16 Leaf size	17	67	16877	205165	158066	138105	74424
17 Leaf longevity	4	18	1080	1953	1705	1515	551
18 Leaf angle	2	6	4693	41882	41848	41805	39820
19 Leaf number per unit shoot length	1	4	4135	10751	1340	2007	1265
20 Leaf anatomy	41	10	1076	26649	24014	23950	0
21 Leaf cell size	14	6	310	1196	339	462	0
22 Leaf mechanical resistance	7	17	4206	11645	5608	6295	227
23 Leaf absorbance	1	4	137	363	0	0	61
24 Specific leaf area (SLA)	13	89	8751	87064	63730	53830	18149
25 Leaf dry matter content	5	35	3098	33777	26125	19767	6919
26 Leaf carbon content	3	32	3028	18887	15295	11938	7857
27 Leaf nitrogen content	4	62	7122	58064	43417	41844	25857
28 Leaf phosphorus content	2	35	4870	26065	19022	21095	7390
29 Tissue carbon content (other plant organs)	19	18	659	4273	2726	2040	1093
30 Tissue nitrogen content (other plant organs)	55	40	4848	32438	24598	22317	21904
31 Tissue phosphorus content (other plant organs)	16	18	3763	17058	10115	12519	2445
32 Tissue chemical composition (apart from C.N.P)	136	28	5031	84743	26272	74076	25152
33 Photosynthesis	49	34	2049	19793	9446	9980	11127
34 Stomatal conductance	76	23	918	11811	4386	6409	4729
35 Respiration	105	18	633	14898	6423	12519	3621
36 Litter decomposability	2	8	972	2172	2013	1568	968
37 Pollination mode*	1	10	4211	16571	780	853	299
38 Dispersal mode*	6	19	9728	43502	5410	6357	341
39 Seed germination stimulation*	6	7	3407	7074	112	206	4437
40 Seed size	17	30	26839	158881	13225	6780	3755
41 Seed longevity	3	5	1862	11466	3	97	3
42 Seed morphology	5	9	2326	3811	567	1253	0
43 Stem bark thickness	1	3	52	183	183	183	0
44 Wood porosity*	1	1	5221	7059	100	0	0
45 Woodiness*	- 1	23	44385	74891	24957	26237	19609
46 Wood anatomy	- 77	13	8506	252072	126	24	965
					10422	24522	

	Number		Original	scale			Change of			
Trait	of entries	Skew- ness	Kurto-sis	JB test	p-value	Skew- ness	Kurto- sis	JB test	p-value	normality
Seed dry mass	53744	123.02	19457.16	8.E+11	<2.20E-16	0.53	0.42	2915	<2.20E-16	8.E+11
Leaf dry mass	26220	161.48	26118.88	7.E+11	<2.20E-16	-0.45	0.90	1748	<2.20E-16	7.E+11
Leaf area	76883	65.47	6990.13	2.E+11	<2.20E-16	-0.54	0.02	3798	<2.20E-16	2.E+11
Conduit (vessel and tracheid) density	5454	68.93	4968.04	6.E+09	<2.20E-16	-0.03	-0.43	43	<2.20E-16	6.E+09
Leaf Fe content per dry mass	3128	31.84	1084.72	2.E+08	<2.20E-16	1.51	8.78	11229	<2.20E-16	2.E+08
Releasing height	19668	13.86	292.85	7.E+07	<2.20E-16	0.70	2.33	6068	<2.20E-16	7.E+07
Leaf Mn content per dry mass	3273	12.04	222.70	6842757	<2.20E-16	-0.02	-0.51	35	2.41E-08	6842722
Seed length	9336	7.41	89.35	3191250	<2.20E-16	0.31	0.47	239	<2.20E-16	3191011
Whole leaf nitrogen content	1006	12.84	248.60	2618135	<2.20E-16	-0.53	0.08	48	4.06E-11	2618087
Leaf Na content per dry mass	3180	9.55	126.32	2162452	<2.20E-16	0.19	0.79	100	<2.20E-16	2162352
Specific leaf area (SLA)	48142	2.85	27.49	1581085	<2.20E-16	-0.54	1.06	4555	<2.20E-16	1576530
Leaf phosphorus content per dry mass (P _m)	17920	3.58	42.89	1412132	<2.20E-16	-0.38	0.98	1155	<2.20E-16	1410977
Leaf phosphorus content per area	5290	5.33	71.12	1139938	<2.20E-16	-0.04	0.75	125	<2.20E-16	1139813
Leaf Zn content per dry mass	3278	8.04	84.86	1018873	<2.20E-16	1.35	2.55	1880	<2.20E-16	1016993
Maximum plant longevity	2006	7.31	97.69	815546	<2.20E-16	-0.91	1.40	442	<2.20E-16	815104
Leaf lifespan (longevity)	1654	7.26	91.59	592617	<2.20E-16	0.31	-0.35	34	4.30E-08	592583
Whole leaf phosphorus content	444	10.23	141.53	378307	<2.20E-16	-0.27	-0.34	7	0.02529	378299
Leaf K content per dry mass	4144	4.09	33.47	204954	<2.20E-16	0.09	0.33	24	6.64E-06	204930
Leaf AI content per dry mass	3448	5.14	35.08	191974	<2.20E-16	1.13	1.01	876	<2.20E-16	191098
Leaf nitrogen/phosphorus (N/P) ratio	11612	3.03	17.65	168595	<2.20E-16	0.25	0.41	199	<2.20E-16	168396
Seed terminal velocity	1178	3.91	50.26	126989	<2.20E-16	-0.45	-0.77	69	9.99E-16	126920
Leaf mechanical resistance: tear resistance	758	6.53	59.82	118402	<2.20E-16	0.86	1.11	132	<2.20E-16	118270
Leaf thickness	2934	4.24	29.88	117951	<2.20E-16	0.77	0.71	351	<2.20E-16	117600
Maximum Plant height	28248	2.35	6.99	83464	<2.20E-16	0.11	-0.89	983	<2.20E-16	82481
Leaf respiration per dry mass	2234	4.28	24.65	63393	<2.20E-16	0.29	0.62	66	4.77E-15	63327
Wood phosphorus content per dry mass	1056	4.93	35.87	60888	<2.20E-16	0.71	0.31	94	<2.20E-16	60794
Leaf nitrogen content per area (N _a)	13528	1.73	8.25	45047	<2.20E-16	-0.27	0.34	224	<2.20E-16	44823
Leaf Mg content per dry mass	3485	2.55	15.68	39460	<2.20E-16	-0.14	0.13	14	0.001098	39446
Conduit (vessel and tracheid) area	3050	3.31	15.89	37636	<2.20E-16	-0.24	-0.09	31	2.15E-07	37605
Leaf S content per dry mass	1092	4.60	24.78	31788	<2.20E-16	1.45	4.21	1189	<2.20E-16	30600
Leaf Ca content per dry mass	3755	2.11	10.09	18721	<2.20E-16	-0.83	1.19	656	<2.20E-16	18065
Leaf nitrogen content per dry mass (N_m)	35862	1.21	2.33	16905	<2.20E-16	-0.22	-0.38	407	<2.20E-16	16498
Vessel diameter	3209	2.61	9.61	15977	<2.20E-16	0.27	-0.35	54	1.83E-12	15923
Conduit lumen area per sapwood area	2280	2.41	9.75	11243	<2.20E-16	-0.37	0.97	140	<2.20E-16	11102
Canopy height observed	40510	1.25	1.04	12416	<2.20E-16	-0.15	-1.22	2654	<2.20E-16	9762
Leaf dry matter content (LDMC)	17339	1.10	2.68	8693	<2.20E-16	-0.46	0.85	1141	<2.20E-16	7551
Leaf respiration per dry mass at 25 C	1448	2.70	9.24	6907	<2.20E-16	0.49	0.63	82	<2.20E-16	6825
Stomatal conductance per leaf area	1093	2.39	10.69	6250	<2.20E-16	-0.73	1.27	171	<2.20E-16	6079
Photosynthesis per leaf dry mass (Amax _m)	2549	2.09	6.01	5699	<2.20E-16	-0.36	0.13	58	2.85E-13	5642
Leaf Si content per dry mass	1057	2.35	9.82	5219	<2.20E-16	-0.54	0.84	82	<2.20E-16	5137
Vessel element length	3048	1.63	5.12	4668	<2.20E-16	-0.28	0.35	55	9.89E-13	4613
Wood nitrogen content per dry mass	1259	2.22	8.24	4591	<2.20E-16	0.33	0.15	24	5.93E-06	4567
Photosynthesis per leaf area (Amax _a)	3062	1.49	3.20	2436	<2.20E-16	-0.63	1.32	422	<2.20E-16	2014
Leaf K content per area	240	3.12	12.28	1898	<2.20E-16	0.37	0.55	9	0.01393	1890
Leaf carbon/nitrogen (C/N) ratio	2615	0.95	1.99	824	<2.20E-16	-0.12	-0.18	10	0.008102	815
Wood density	26414	0.44	-0.15	887	<2.20E-16	-0.17	-0.40	298	<2.20E-16	589
Leaf density	1463	1.01	2.59	655	<2.20E-16	-0.56	0.79	115	<2.20E-16	540
Root nitrogen content per dry mass	1263	1.33	1.35	466	<2.20E-16	-0.05	-0.54	16	0.0003217	450
Leaf respiration per area	1303	1.22	2.00	542	<2.20E-16	-0.79	1.80	312	<2.20E-16	230

Trait	Number of entries	Mean value	SD _{Ig}	2.5% Quantile	Median	97.5% Quantile	
Seed dry mass	49837	mg	2.38	1.08	0.02	1.95	526
Canopy height observed	37516	m	1.62	0.92	0.04	1.5	30
Whole leaf phosphorus content	426	mg	0.0685	0.83	0.0018	0.08	1.96
Leaf area	71929	mm ²	1404.0	0.81	25	2025	36400
Maximum plant height	26625	m	1.84	0.78	0.1	1.25	40
Leaf dry mass	24663	mg	38.9	0.78	0.96	43.5	1063.9
Whole leaf nitrogen content	961	mg	1.31	0.77	0.03	1.69	27.6
Conduit (vessel and tracheid) area	2974	mm ²	0.00349	0.63	0.00024	0.0032	0.04
Leaf Mn content per dry mass	3159	mg/g	0.189	0.58	0.01	0.19	2.13
Maximum plant longevity	1854	year	155.8	0.55	6.22	175	1200
Leaf AI content per dry mass	3203	mg/g	0.128	0.55	0.02	0.1	4.49
Leaf Na content per dry mass	3086	mg/g	0.200	0.55	0.01	0.2	3.24
Conduit (vessel and tracheid) density	5301	mm ⁻²	37.6	0.54	4	38	380
Seed terminal velocity	1108	m/s	1.08	0.42	0.17	1.4	4.69
Releasing height	18472	m	0.347	0.42	0.05	0.35	2
Leaf lifespan (longevity)	1540	month	9.40	0.41	2	8.5	60
Leaf tannins content per dry mass*	394	%	2.01	0.41	0.19	2.35	8.04
Wood phosphorus content per dry mass	1016	ma/a	0.0769	0.37	0.02	0.05	0.56
Leaf respiration per dry mass	2005	umol/a/s	0.0097	0.36	0.0025	0.0097	0.04
Seed length	8770	mm	1.80	0.34	0.4	1.8	9
Photosynthesis per leaf dry mass (Amax)	2384	umol/a/s	0.115	0.34	0.02	0.12	0.49
l eaf mechanical resistance: tear resistance	722	N/mm	0.814	0.34	0.19	0.76	5.11
Leaf Ca content per dry mass	3594	ma/a	9.05	0.34	1.57	9.83	34.7
Vessel diameter	3102	um	51.4	0.32	15	50	220
Stomatal conductance per leaf area	1032	mmol/m/s	241.0	0.31	52.4	243.7	895.7
Root nitrogen content per dry mass	1158	ma/a	9.67	0.31	26	9.3	36.1
Leaf Si content per dry mass	1027	mg/g	0 163	0.29	0.04	0.17	0.53
Leaf Zn content per dry mass	3080	mg/g	0.0226	0.28	0.04	0.02	0.00
Leaf respiration per dry mass at 25 C	1305	umol/a/s	0.00220	0.20	0.0000	0.02	0.1
Leaf K content per dry mass	3003	ma/a	8.44	0.20	2.56	8.3	28.2
Photosynthesis per leaf N content (Amax)	3074	umol/a/s	10.8	0.27	1 50	632	10.2
Leaf phenolics content per dry mass*	454	μποι/g/s %	12.0	0.26	2.43	11 0	25.1
Specific leaf area (SLA)	45733	mm²/ma	16.6	0.20	2. 4 5	17.4	47 7
Leaf K content per area	231	a/m ²	0.760	0.26	0.24	0.72	2.60
Leaf Mg content per dry mass	3360	g/III ma/a	2 61	0.20	0.24	2.64	2.00
Leaf Fe content per dry mass	3040	mg/g	0.077	0.20	0.00	0.07	0.0
Photosynthesis per leaf area (Amax)	2883	umol/m²/s	10.3	0.20	3 28	10.5	20
Leaf respiration per area	1201	umol/m ² /c	1 10	0.24	0.20	12	3.4
Leaf phosphorus content per dry mass (P)	1201	pinoi/in /s	1.19	0.24	0.30	1.2	3.4
Leaf thickness	2815	mm	0.211	0.24	0.40	0.10	0.7
Conduit lumen area per sanwood area	2015	mm^2/mm^2	0.211	0.24	0.00	0.13	0.7
	5092	n /m ²	0.157	0.23	0.04	0.14	0.37
Lear phosphorus content per area	2064	g/m	540.5	0.23	200	555	1250
Vessel element length	2904	μm α/α	10.0	0.21	200	10.6	1300
Leaf hitrogen/phosphorus (N/P) failo	11200	g/g	12.8	0.21	0.33	12.0	33.2
	12860	g/m⁻	1.59	0.19	0.64	1.63	3.0
voou nitrogen content per dry mass	1210	mg/g	1.20	0.19	0.55	1.21	2.95
Lear 5 content per dry mass	1023	mg/g	1.66	0.18	0.78	1.59	4.75
Lear nitrogen content per dry mass (N _m)	33880	mg/g	17.4	0.18	7.99	17.4	38.5
Lear dry matter content (LDMC)	16185	g/g	0.213	0.17	0.1	0.21	0.42
Leaf density	1372	g/cm°	0.426	0.15	0.2	0.43	0.77

Leaf carbon/nitrogen (C/N) ratio	2498	g/g	23.4	0.14	12.39	23.5	42.2
Wood density	26391	mg/mm ³	0.597	0.12	0.33	0.6	0.95
Leaf carbon content per dry mass*	7856	mg/g	476.1	0.03	404.5	476.3	540.8

		Seed mass		Plant height		LL			SLA		N _m		P _m			Na			Amax _a			Ame				
		n	mean	SD	n	mean	SD	n	mean	SD	n	mean	SD	n	mean	SD	n	mean	SD	nı	mean	SD	n	mean	SD	n mea
All data		49837	2.38	1.08	26624	1.84	0.78	1540	9.40	0.41	45733	16.60	0.26	33880	17.40	0.18	17056	1.23	0.24	12860	1.59	0.19	3145	10.11	0.25	2919 0.
	mean		5.27	0.79		2.67	0.43		11.42	0.25		15.08	0.20		17.46	0.16		1.24	0.21		1.53	0.17		10.22	0.22	0.
PET summary	SD		0.90			0.69			0.40			0.18			0.10			0.14			0.11			0.16		0.:
FTT Summary	n/PFT	2623			1401			91			2407			1783			898			677			208			198
	sign. p	***			***			***			***			***			***			***			***			***
	mean		2.12	0.13		3.06	0.18		9.09	0.03		18.84	0.09		18.37	0.08		1.22	0.11	_	1.48	0.10		10.13	0.14	0.
	SD		1.03			0.81			0.40			0.22			0.16			0.23			0.16			0.22		0.3
Species summary	nsp	2707			882			363			2423			1250			649			519			168			120
	n/sp	11			10			3			16			18			16			15			13			11
	sign. p	***			***			***			***			***			***			***			***			***
Plant Functional Types																							_			
Fern (218)		3	0.08	0.83	329	0.75	0.47	13	28.48	0.25	647	18.86	0.22	143	14.77	0.19	91	0.72	0.21	50	1.14	0.20	2	9.15	0.18	2 0.
Grass C3 (594)		3935	0.61	0.70	1242	0.44	0.31	81	3.85	0.22	5033	20.12	0.20	2669	17.84	0.16	1435	1.43	0.23	1075	1.14	0.17	341	13.25	0.21	232 0.
Grass C4 (248)		635	0.58	0.60	383	0.64	0.33	6	1.68	0.18	583	19.23	0.22	1128	14.14	0.15	150	1.36	0.23	232	0.93	0.16	97	19.78	0.20	70 0.
Herb C3 (3129)		15506	0.77	0.82	3404	0.38	0.38	215	3.49	0.25	18830	22.83	0.19	4893	23.31	0.16	1870	2.02	0.21	2/98	1.29	0.18	1015	12.81	0.25	663 U.
Climber per woody (222)		103	15.25	0.53	30	0.25	0.55	47	0.00	0.00	212	20.20	0.25	205	10.70	0.24	47	1.00	0.25	127	1.31	0.14	102	21.07	0.22	33 0.
Climber woody (233)		102	15.25	0.57	200	2.74	0.40	7	16 60	0.35	949	23.40	0.20	295	20.34	0.17	143	1.30	0.20	154	1.33	0.19	29 12	10.04	0.24	30 0.
Shrub broadleaved decidure	ue (506)	1573	6.67	0.43	1221	3.74	0.01	167	1 68	0.35	3838	14.73	0.19	2222	21.54	0.14	1200	1.02	0.23	42	1.52	0.20	233	0.07	0.21	242 0
Shrub broadleaved everge	on (116	1011	4.02	0.99	1694	1 61	0.49	284	15.88	0.15	3216	8 99	0.10	2623	13 73	0.14	1203	0.84	0.20	1033	1.40	0.10	200	8.96	0.17	242 0. 345 0
Shrub needleleaved (83)		256	2.55	1 28	1004	3.53	0.55	17	36.66	0.20	303	7 43	0.21	2023	10.75	0.10	123	0.74	0.20	89	1.83	0.13	10	8.03	0.23	19 0
Tree broadleaved deciduou	s (699)	1606	33.80	1.20	1471	20.82	0.00	240	5.83	0.17	3963	15 40	0.10	4343	21 32	0.13	2225	1 44	0.20	1723	1.57	0.16	539	9 34	0.18	520 0
Tree broadleaved evergree	n (2136)	1487	27.64	1.07	1973	16.56	0.36	360	16.83	0.29	3859	9.46	0.19	5921	16.89	0.16	3177	0.86	0.20	2723	1.87	0.15	652	7.79	0.23	484 0.
Tree needleleaved deciduo	us (16)	64	6.88	0.57	88	32.98	0.20	12	6.08	0.01	129	10.09	0.09	248	19.37	0.10	155	1.83	0.15	37	1.80	0.13	11	6.90	0.20	12 0.
Tree needleleaved evergree	en (134)	889	13.77	0.63	882	27.20	0.30	63	39.71	0.21	1517	5.00	0.13	5558	12.09	0.10	3622	1.23	0.16	984	2.62	0.14	196	9.45	0.24	121 0.
Plant Species (exemplary):									-												-				
Carex bigelowii		23	0.47	0.304	6	0.23	0.137	2	3.62	0.003	14	12.19	0.124	41	20.32	0.107	16	1.94 0	.186	7	1.65	0.059	3	15.16	0.107	3 0.
Dactylis glomerata		88	0.81	0.154	39	0.73	0.153	3	2.75	0.125	139	24.58	0.109	50	24.67	0.128	22	1.98 0	.183	11	1.32	0.098	7	13.45	0.160	7 0.
Poa pratensis		57	0.26	0.139	22	0.50	0.140	1	3.01		169	23.96	0.131	63	17.36	0.172	11	2.28 0	.178	6	1.19	0.184	8	13.75	0.200	6 0.
Trifolium pratense		61	1.53	0.117	45	0.39	0.277				141	22.85	0.084	34	38.65	0.086	14	2.07 0	.123	7	1.65	0.090	5	16.94	0.061	4 0.
Prunus spinosa		22	165.01	0.244	14	2.92	0.216	3	5.60	0.024	86	14.54	0.091	16	28.05	0.114	13	2.15 0	.099	11	1.87	0.081	3	11.17 (0.048	3 0.
Acacia doratoxylon		3	15.40	0.000	7	6.09	0.268	3	19.80	0.003	3	4.57	0.000	7	20.37	0.012	6	0.83 0	.003	3	4.38	0.001	2	14.51 (0.002	2 0.0
Phyllota phylicoides		6	2.83	0.026	6	0.67	0.345	2	22.43	0.001	6	7.44	0.059	5	12.94	0.025				2	1.49	0.002	2	8.35 (0.003	2 0.0
Pultenaea daphnoides		5	3.98	0.141	3	2.86	0.036	2	9.36	0.002	3	13.76	0.192	6	19.40	0.004	5	0.35 0	.013	3	1.83	0.003	2	9.58	0.002	2 0.
Lepechinia calycina		4	12.35	0.186	2	2.79	0.174	2	4.39	0.003	5	11.23	0.075	5	18.38	0.139	3	1.20 0	.000	3	1.48	0.153	2	12.56	0.001	2 0.
Leptospermum polygalifoliu	ım	4	0.18	0.056	3	4.00	0.000	2	7.38	0.003	2	10.93	0.002	6	13.35	0.014	5	0.49 0	.048	3	1.20	0.001	3	8.56	0.002	2 0.
Banksia marginata		7	8.51	0.073	3	5.45	0.326	3	36.36	0.001	11	5.72	0.072	11	8.30	0.050	4	0.34 0	.051	8	1.41	0.032	2	19.52	0.001	2 0.
Grevillea buxitolia			46.39	0.114	6	1.35	0.271	2	15.07	0.003	4	8.18	0.094	6	7.16	0.006	2	0.29 0	.000	3	0.78	0.001	2	8.68	0.002	2 0.0
Persoonia levis		3	206.27	0.068	6	3.60	0.130	2	45.59	0.002	6	5.68	0.068	6	5.87	0.004	2	0.30 0	.000	3	1.08	0.001	2	8.16	0.002	2 0.0
Dodonaea viscosa		28	6.89	0.189	26	2.63	0.320	6	9.29	0.054	18	6.61	0.107	19	19.23	0.058	16	1.20 0	.099	9	2.61	0.071	6	11.64	J.051	1 0.0
		5	2.85	0.114	6	1.19	0.134	2	12.64	0.002	202	13.76	0.121	6	14.39	0.022	207	0.50 0	1.034	3	0.85	0.003	3	7.91	J.002	2 0.
			2241.03	0.000	14	17.41	0.200	1	6.01	0.001	203	0.24	0.109	449	14.00	0.070	297	1 79 0	151	30	1.09	0.129	20	7.24	0.101	18 0.
Eagus sylvatica		16	10/ 02	0.100	23	20.40	0.233	2	6.01	0.001	273	14.07	0.090	227	23.33	0.097	1/190	1.70 0	108	205	1.07	0.155	6	5 18 0	160	10 01
Simarouba amara		5	221 00	0.120	23	34.28	0.109	2	11 63	0.001	2/3	8 40	0.101	200	20.08	0.070	140	0.73 0	001	203	2 30	0.149	1	13.84 0	0.100	1 0.1
Svnoum alandulosum		6	197 77	0 126	10	3.80	0.307	2	11 75	0.001	10	11 68	0.065	6	16 22	0.014	5	0.87	022	3	1 46	0.002	2	6 46 1	000	2 01
Eucalyptus socialis		4	0.81	0.031	7	6.94	0.186	2	28 78	0.001	6	3 49	0.012	15	10.83	0.059	14	0.54 0	096	9	3.67	0.024	2	16 23	000	2 01
Brachychiton populneus		6	108 17	0.217	8	7.76	0.221	3	13.21	0.001	8	8,70	0.070	11	16.99	0.045	10	0.91 0	.040	6	2.13	0.046	4	8.49	0.070	4 01
Larix decidua		9	6.42	0.099	20	37.65	0.184	5	6.01	0.001	90	9,73	0.063	89	19.81	0.072	76	1.79 0	.156	12	2.10	0.112	5	5.42	0.161	5 0.0
Picea abies		23	6.37	0.078	24	40.02	0.246	3	88.85	0.109	146	4.45	0.134	954	12.40	0.081	812	1.42 0	.134	109	3.07	0.116	5	7.67	0.071	5 0.0
Pinus sylvestris		29	7.32	0.133	31	25.38	0.244	5	27.71	0.016	430	4.92	0.103	1422	13.06	0.088	1245	1.30 0	.117	359	2.80	0.121	6	10.97	0.031	6 0.0
Pseudotsuga menziesii		25	11.36	0.054	29	61.79	0.184	2	64.68	0.001	10	6.30	0.153	105	12.29	0.079	82	1.69 0	.138	5	1.58	0.135	35	9.12	0.158	4 0.0