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Dr. Alejandro Corichi Rodŕıguez Gil
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Y para que aśı conste, en cumplimiento de la legislación vigente, firma el
presente Certificado en Valencia a 30 de junio de 2009.
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INTRODUCCIÓN GENERAL Y RESUMEN

Hoy d́ıa es un hecho bien aceptado que un agujero negro posee una entroṕıa y
que ésta viene dada por la fórmula de Bekenstein-Hawking [1]. Dicha entroṕıa
depende del área del horizonte de sucesos (A) a través de la famosa fórmula:

SBH =
A

4`2P
, (0.1)

donde `2P es el área de Planck.

Hagamos un breve repaso de los conceptos que llevaron a la idea de asignar
una entroṕıa a un agujero negro. Inicialmente Hawking a principios de la
década de los 70 demostró el conocido teorema del área [2]. Según este resultado
el área de un agujero negro no puede disminuir mediante ningún proceso f́ısico.
Esto implica que el área de un agujero negro únicamente puede mantenerse
constante o crecer, de forma análoga al comportamiento de la entroṕıa de
un sistema en equilibrio en la termodinámica usual. Esta idea fué propuesta
inicialmente por Jacob Bekenstein [1], asignando al agujero negro una entroṕıa
proporcional a su área.

Este trabajo de Bekenstein fué controvertido dado que asignar una entroṕıa
a los agujeros negros implica que dichos sistemas poseen temperatura. Sin
embargo, cualquier sistema con temperatura emite radiación lo que va en contra
de las caracteŕısticas clásicas de un agujero negro dado que, en principio, estos
objetos no emiten nada. La cuestión dio un giro sorprendente tras el famoso
trabajo de Stephen Hawking [1] donde mostraba que, al incorporar campos
cuánticos en un espaciotiempo que contiene un agujero negro, éste emite
radiación exactamente térmica. Este resultado mostraba que la temperatura
de un agujero negro (sin carga ni rotación) es inversamente proporcional a su
masa. Sorprendentemente, esta temperatura es compatible con una entroṕıa
dada por la fórmula (0.1).

En 1973 se describieron las leyes de la mecánica de los agujeros negros
que son formalmente análogas a las leyes de la termodinámica. Estas leyes
establecen:

• Ley Cero: En un agujero estacionario la gravedad superficial κ es
constante en el horizonte.
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• Primera Ley: Existe una relación entre las variaciones de la masa,
el momento angular y el área del horizonte (para agujeros sin carga
eléctrica), dada por (en unidades G = c = ~ = κB = 1):

δM =
1

8π
κδA+ ΩδJ, (0.2)

donde A es el área del horizonte del agujero negro, Ω su velocidad angular
y J su momento angular.

• Segunda ley: La entroṕıa de un agujero negro viene dada por S =
1
4
A.

• Tercera ley: No es posible reducir la gravedad superficial de un agujero
negro a cero en un número finito de pasos. Esta ley, que correspondeŕıa
a la tercera ley de la termodinámica (que establece que la entroṕıa de
un sistema tiende a cero cuando hacemos tender a cero su temperatura),
ha sido desbancada de su estatus ya que es bien conocido que existen
violaciones a la misma en diversos sistemas. La existencia de agujeros
negros extremales, con gravedad superficial nula pero con area de
horizonte finita, es una muestra de ello.

Es curioso señalar que, utilizando argumentos dimensionales simples, resulta
necesario incorporar la constante de Planck a dichas leyes para que la
correspondencia sea consistente (ver [3] y las referencias alĺı citadas). La
necesidad de incorporar la constante de Planck es una indicación de que para
entender la termodinámica de los agujeros negros hemos de recurrir a una teoŕıa
de la gravedad a nivel cuántico.

No insistiremos en el hecho de que actualmente disponemos de dos magńıfi-
cas teoŕıas F́ısicas para describir la gravitación y el mundo microscópico, la
Relatividad General y la Mecánica Cuántica. Dichas teoŕıas han sido compro-
badas experimentalmente durante los últimos 100 años y han demostrado tener
una gran potencia predictiva. Sin embargo, dichas teoŕıas no han podido ser
unificadas en el sentido conceptual. La búsqueda de una teoŕıa cuántica de la
gravitación ha sido, y en la actualidad sigue siendo, un motor de nuevas ideas
dentro de la F́ısica. Aunque por el momento no podemos decir que tengamos
un esquema coherente sobre dicha teoŕıa, las propuestas puestas encima de la
mesa son interesantes y en algunos casos prometedoras.

Como criterio general, cualquier propuesta de teoŕıa de gravedad cuántica
ha de ser capaz de explicar la entroṕıa de un agujero negro identificando los
microestados que dan lugar a (0.1) a través de la definición de Boltzmann
S = kB lnN , donde N es el número de estados responsables de dicha entroṕıa
y kB la constante de Boltzmann. Esta tesis doctoral versa sobre el cálculo de
la entroṕıa de agujeros negros dentro del esquema que proporciona la gravedad
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cuántica de lazos (loop quantum gravity, LQG) [3-10].

LQG es una propuesta de cuantización canónica de la Relatividad General
(GR) que respeta la invariancia bajo difeomorfismos presente en la teoŕıa
clásica. En otras palabras, LQG es una propuesta de cuantización de
la gravedad en la que no se fija fondo métrico alguno. Otra forma de
expresar este hecho es diciendo que LQG es una teoŕıa de la geometŕıa
cuántica. Introduciremos brevemente las bases de LQG en el siguiente caṕıtulo.
Desgraciadamente, a d́ıa de hoy no ha sido posible resolver la dinámica de
la teoŕıa. Esto hace que no dispongamos más que de un espacio de Hilbert
cinemático matemáticamente bien definido, pero no conozcamos los verdaderos
estados f́ısicos. Este hecho nos obliga a tomar un camino “efectivo” para
calcular la entroṕıa de un agujero negro. En la práctica, esto significa que
en el modelo que vamos a presentar en esta tesis partimos de un espaciotiempo
clásico que contiene una frontera interna. Dicha frontera es considerada como
el horizonte del agujero negro y se modeliza a través de un horizonte aislado
[12, 13].

La elección de los horizontes aislados viene motivada fundamentalmente
por su naturaleza local, lo que significa que, al contrario de lo que ocurre con
los horizontes de sucesos (que son conceptos teleológicos cuya identificación
requiere del conocimiento completo de la historia del espaciotiempo que
contiene a un agujero negro), para identificarlos no es necesario conocer la
historia completa del espaciotiempo. La definición de estos horizontes y su
cuantización será descrita el el caṕıtulo 3 de esta tesis. Es importante señalar
que la presencia de un frontera interna induce la aparición de un término
de frontera en la acción gravitatoria que se emplea en LQG que tiene la
estructura de una acción de una teoŕıa de Chern-Simons. Como veremos, la
geometŕıa cuántica induce defectos topológicos sobre la sección bidimensional
del horizonte que hacen que esta teoŕıa no sea trivial. Por lo tanto, a nivel
cuántico encontramos que sobre el horizonte tendremos nuevos grados de
libertad que serán los responsables de la entroṕıa del agujero negro [14].

Originalmente, dentro de esta teoŕıa, el cálculo de la entroṕıa de agujeros
negros se inició por los trabajos de Rovelli y Krasnov [15, 16]. Sin embargo,
nada en estos trabajos haćıa referencia a que el cálculo estuviera comprometido
con un horizonte. Por este motivo en el trabajo seminal de Ashtekar, Baez,
Corichi y Krasnov [14] se incorporó el concepto de horizonte aislado y se
cuantizó un espaciotiempo con dicho horizonte como frontera interna. Es en
este esquema en el que se basan los cálculos presentados en esta tesis.

Los puntos esenciales a destacar en esta tesis son los siguientes:

1. Dado que trabajaremos usando la descomposición 3 + 1 de la relatividad
general, en esta memoria llamaremos usualmente a horizonte a la
superficie (esférica) bidimensional que es la intersección de la 3-superficie
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de Cauchy con el horizonte aislado. Sobre este horizonte tendremos
definida una teoŕıa de Chern-Simons que, como veremos, tiene U(1) como
grupo gauge. Uno de los principales puntos de esta tesis es el intento de
relacionar el cálculo de la entroṕıa de horizontes aislados en LQG con
una teoŕıa de campos cuánticos invariantes conformes (CFT) siguiendo
la analoǵıa de Witten [17]. Expondremos este resultado en el caṕıtulo 4.

2. Mostraremos cómo el esquema geométrico que lleva a la identificación de
los estados responsables de la entroṕıa del agujero negro se puede traducir
a un problema combinatorio. Los estados quedan definidos por unas listas
de etiquetas semienteras que han de verificar ciertas condiciones. Esto
será explicado en el caṕıtulo 5 de esta tesis.

3. En la literatura aparecen dos identificaciones distintas de los estados
de superficie que vaŕıan en las etiquetas asignadas, las propuestas de
Domagala, Lewandowski y Meissner (DLM) [18] y la de Ghosh y Mitra
(GM) [19]. En esta tesis mostraremos los resultados para los dos casos sin
entrar en el problema de juzgar cuál de las dos definiciones es correcta.
Sin embargo, śı que expondremos las diferencias y similitudes entre ambos
recuentos.

4. Explicaremos brevemente ambos conteos y mostraremos las hipótesis
y los resultados que dan sobre la entroṕıa del agujero negro. Ambos
reproducen una entroṕıa proporcional al área y una corrección logaŕıtmica
de coeficiente (−1/2). Ahora bien, en la definición de los operadores
geométricos en LQG depende de un parámetro indeterminado, conocido
como parámetro γ de Barbero-Immirzi (BI) [28]. Para recuperar el
resultado A/4 (en las unidades correspondientes) se ha de fijar el valor de
dicho parámetro. El problema es que los conteos expuestos dan un valor
distinto para γ.

5. Originalmente estos conteos se efectuaron en el ĺımite asintótico de
grandes áreas. En esta tesis mostraremos un conteo detallado de los
estados mediante un algoritmo computacional de conteo expĺıcito de
estados. Este algoritmo, que sólo alcanza agujeros negros de varios
cientos de areas de Planck debido al crecimiento exponencial del número
de estados a contar, sirve para verificar los resultados previos para ambos
conteos.

6. Adicionalmente encontraremos una oscilación en la entroṕıa que, en cada
conteo, tiene un periodo constante. Como sabemos, para calcular la
entroṕıa en un colectivo microcanónico fijamos la variable macroscópica
de interés, en este caso el área del agujero negro A0 y contamos los estados
que caen dentro del intervalo [A0 − δ, A0 + δ]. Mostraremos que para un
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valor concreto de δ se obtiene una entroṕıa discretizada, es decir que
aumenta con el área como una función de tipo escalera. Estudiaremos
cuidadosamente esta estructura en la tesis.

7. El estudio del origen de esta escalera nos llevará a identificar una curiosa
estructura en bandas en la degeneración de estados de superficie. La
distancia entre los picos de estas bandas es justamente el valor del
periodo de las oscilaciones encontradas en el algoritmo de conteo o en
la anchura de los escalones de la entroṕıa. De hecho, la distancia entre
picos es numéricamente similar a ∆A = 8 ln 3γ, donde γ será el valor
del parámetro de Barbero-Immirzi en cada conteo expuesto. Una de las
cuestiones abiertas es si ciertamente este ∆A es proporcional a 8 ln 3.
(Ver [20] para una perspectiva diferente).

8. Posteriormente se describirá por qué en los conteos DLM y GM no hay
señales de este comportamiento escalonado de la entroṕıa con el área y
se mostrará que efectivamente se puede argumentar que dichos conteos
contienen dicha información. De hecho, encontramos cotas a la desviación
de ∆A con respecto al valor 8γ ln 3. Desgraciadamente aún estamos lejos
de encontrar este valor de forma anaĺıtica.

9. Para finalizar, mostraremos cómo podemos modificar el conteo para
incorporar técnicas procedentes de teoŕıa de números. La principal
motivación en ese punto está relacionada con el deseo de resolver el
problema combinatorio de una forma anaĺıtica. En concreto nuestro
objetivo es llegar a una expresión manejable que nos permita obtener
un desarrollo asintótico para determinar si efectivamente esta estructura
en escalera de la entroṕıa se mantiene para agujeros negros de grandes
áreas. Este tratamiento es interesante por varios motivos, el primero es
que permite una reexpresión del espectro del operador área, que como
mostraremos es muy conveniente y efectiva. Por otro lado, permite
dar una solución completa al problema combinatorio, siendo capaces
de aislar todas las fuentes de degeneración tal y como explicaremos en
la sección 4.6. Es importante comentar que la solución del problema
combinatorio, escrita en estos términos, conduce a expresiones que habrán
sido mostradas en el tratamiento del problema con técnicas de CFTs, lo
cual parece indicar la robustez de ambos métodos. Además estas técnicas
permiten reexpresar el problema en términos de funciones generatrices
[21] que hacen que la implementación computacional del problema y su
estudio asintótico sean más manejables. Finalmente, aunque aún no hay
resultados definitivos, estamos trabajando para confirmar o descartar la
persistencia del fenómeno de la discretización de la entroṕıa a escalas
macroscópicas.
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Nos gustaŕıa insistir en que los resultados expuestos en esta tesis tienen
validez única y exclusivamente dentro del contexto de la cuantización de
horizontes aislados dentro del esquema propuesto por ABCK en LQG. Durante
la tesis indicaremos cuáles son los posibles problemas de este esquema. Por
supuesto, lo deseable seŕıa poder identificar procesos de colapso y formación
de agujeros negros dentro de la teoŕıa completa y no tener que recurrir a una
cuantización de un espaciotiempo clásico con una frontera desde el inicio. Sin
embargo, el formalismo ABCK es un magńıfico punto de partida para estudios
más ambiciosos y ha mostrado con creces su potencia y versatilidad. Dados los
últimos avances, de los cuales esta tesis forma una pequeña parte, se abren ante
nosotros nuevas posibilidades que nos permitiran y mejorando este modelo. En
concreto, las nuevas ĺıneas de investigación que esperamos afrontar en un futuro
próximo dentro de este tema serán:

• Aclarar el papel jugado por la teoŕıa de Chern-Simons y su conexión con
teoŕıa de campos con invariancia conforme. Esta cuestión se enfocará
en dos vertientes. Por un lado es necesario reformular este problema
empelando una teoŕıa de Chern-Simons SU(2) y estudiar de qué forma
se induce la restricción al U(1) que aparece en el contexto de los horizontes
aislados como frontera interna. Además, es de sumo interés identificar
que CFT es la análoga a esta Chern-Simons U(1). Esta ĺınea es de gran
relevancia principalmente por dos motivos: el primero es que mejoraŕıa
nuestro entendimiento del problema y podŕıa dilucidar cuales son las
etiquetas correctas de los estados de superficie, diferenciando entonces
entre el conteo DLM y el GM. En segundo lugar, esta perspectiva es
muy cercana al esṕıritu del cálculo de la entroṕıa en teoŕıa de cuerdas
pudiendose encontrar puntos en común entre ambas formulaciones.

• Son muy sugerentes las similitudes formales que aparecen entre este
esquema y los modelos teóricos del efecto Hall cuántico. El efecto Hall
cuántico se basa en f́ısica bidimensional donde los electrones en una placa
metálica sometida a un campo magnético se pueden considerar sometidos
a una teoŕıa de tipo Chern-Simons abeliana siendo los electrones consid-
erados defectos topológicos de la superficie. Un estudio detallado de este
punto podŕıa abrir la puerta a poder reformular el problema empleando
las técnicas usadas en teoŕıa de materia condensada. Aunque parece
que la similitud no es directa, creemos que es un punto abierto que es
importante estudiar.

• Una comprensión más profunda de la degeneración de estados en
un agujero negro podŕıa abrir las puertas para un estudio sobre la
espectroscoṕıa de los agujeros negros en este contexto. Tenemos
resultados preliminares [22] que necesitan de una mayor formalización.
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Dentro de la cuantización canónica no perturbativa de la relatividad general
hay otras propuestas para calcular la entroṕıa de agujeros negros [23]. En esta
tesis no tratamos sobre estos temas, sin embargo seŕıa interesante ver cuales
son los puntos comunes con el formalismo presentado aqúı y si estos resultados
ser extrapolados a otros esquemas.

Durante la redacción final de esta tesis han aparecido dos art́ıculos [24, 25]
que plantean situaciones interesantes en el tema de la entroṕıa de agujeros
negros en LQG, dentro del esquema de horizontes aislados, que se apartan
en cierto modo del formalismo original dado por [14], en el cual se basa este
trabajo. En [24] se da una explicación a un problema que expondremos en este
trabajo relacionado con el nivel de la teoŕıa de Chern-Simons. Como veremos,
dicho nivel está relacionado en este contexto con el área del horizonte de un
agujero negro, sin embargo esta cantidad ha de ser un número natural para
poder acometer el proceso de cuantización. Indicaremos qué solución se dió en
ABCK y en qué se contrapone con el art́ıculo indicado.

Por otro lado, los resultados presentados en [25] parecen indicar que el
formalismo puede acomodarse para incorporar una teoŕıa de Chern-Simons con
grupo gauge SU(2) en el horizonte. Como expondremos, en ABCK los grados
de libertad en el horizonte vienen dados por una teoŕıa abeliana. En nuestra
opinión esta caracteŕıstica es inherente al formalismo de horizonte aislados,
por lo que un estudio de este art́ıculo será muy interesante. Sin embargo,
las técnicas de conteo que vamos a presentar en esta tesis pueden resolver el
problema del cálculo de la entroṕıa dentro del esquema presentado en [25] como
ha sido puesto de manifiesto en [26].
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1. INTRODUCTION TO LQG

En este caṕıtulo introduciremos brevemente la teoŕıa de gravedad
cuántica de lazos (loop quantum gravity, LQG). Identificaremos
los estados descritos por redes de esṕın (spin networks) que confor-
man el espacio de Hilbert cinemático de la teoŕıa y mostraremos la
construcción del operador área que es el relevante en este trabajo.

Loop quantum gravity (LQG) is an attempt to make a consistent canonical
quantization of general relativity (GR) [27]. This means that the main
motivation for LQG is to enforce the diffeomorphism invariance of GR, for
which one has to consider the geometry of the spacetime as a dynamical
object at the same level as the other usual fields (matter fields). This kind
of considerations leads to the neccesity of formulating the quantum theory of
gravity in a background-free way. The aim of LQG is perhaps modest, its
basic building blocks are GR and quantum mechanics (QM), but the principal
task is the understanding of a background free quantum theory. As we will
briefly sketch in this chapter the usual canonical quantization method requires
important modifications in order to accomodate this point of view.

1.1 Preliminary ideas

LQG is constructed on the basis of the Ashtekar variables [6, 7, 11], that
are gauge connections. The standard way of reaching LQG is to rewrite the
Einstein-Hilbert action in term of these fields. In this setting, GR is recast, in
some sense, as a Yang-Mills theory plus the proper constraints of the theory. In
this section we present the basic steps to reach this formulation at the classical
level.

The quantum theory is based on the Hamiltonian formalism, for which
we consider that the four dimensional spacetime manifold M is topologicaly
M = M ×R, where M is a 3-dimensional manifold and, through this chapter,
we will take it to be a closed manifold (compact and whithout boundary). In
terms of metric qab (the labels a, b stand for spatial indices) on M the phase
space variables consist in the pairs (qab, π̃ab), where the canonical momenta π̃ab
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are constructed from the extrinsic curvature Kab of M and its trace K,

π̃ab =
√
q (Kab − 1

2
qabK). (1.1)

The only nonvanishing Poisson bracket is:

{π̃ab(x), qcd(y)} = 2κ δa(c δ
b
d) δ

3(x, y), (1.2)

where x, y ∈M and κ = 8π`2P
~ .

The (3 + 1) decomposition of the Einstein-Hilbert action [27] shows, after the
appropriate canonical transformations, that the full Hamiltonian of the theory
vanishes on shell. This indicates that GR is a fully constrained system, with
constraints:

Vb = Da (π̃ab) ≈ 0 and S =
√
q
[
R(3) + q−1( 1

2 π̃
2 − π̃abπ̃ab)

]
≈ 0,

(1.3)
where ≈means equality on shell. Da is the covariant derivative compatible with
the spatial metric qab and R(3) is the scalar curvature of the three dimensional
manifold M .
Vb is called the vector constraint, which generates spatial diffeomorphisms

on the 3-manifold, and S is the scalar constraint, which generates time
evolution.

At this point it is important to translate this framework into the language
of triads. This is a intermediate step in order to arrive at the connection
formulation based on the Ashtekar variables. One can define the co-triads eia
through this relation:

qab = eia e
j
b δij , (1.4)

where δij is the metric in the internal space of the frames and i, j = 1, 2, 3
labels that frames.

It is worth noting that we are enlarging the phase space because the co-
triads eia have 9 degrees of freedom in contrast with the metrics qab that just
have 6. But, in this case, we have a new symmetry in the theory because
(1.4)is clearly invariant under rotations. For this reason we have an additional
constraint in the theory.

Now we are going to introduce an important object, the densitized triad:

Ẽai = 1
2 εijkε

abc ejb e
k
c , (1.5)
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where εabc is the naturally defined density one Levi-Civita, antisymmetric
object. The interest of this densitized triad is that it containts all the
information about the spatial metric and its determinant.

Ẽai Ẽ
b
jδ
ij = q qab. (1.6)

This property will be very useful in order to construct geometrical quantities
like areas o volumes. Moreover, Ẽ could be considered as the canonical
conjugate momentum of the Ashtekar connection as we will be see in the
following section.

1.2 Ashtekar variables

One can introduce the Ashtekar variables as follows:

γAia := Γia + γ Ki
a, (1.7)

where Γia is the spin connection compatible with the triad,

∂[ae
i
b] + εijk Γja e

k
b = 0,

and Ki
a can be constructed from the densitized triad and the extrinsic curvature

of the spatial manifold. It is important to note that since Aia is the combination
of a connection with a vector, it is a connection itself.

It is important to note that γEai = Eai /γ is the conjugate variable associated
with γAia. The presence of the real parameter γ, the Barbero-Immirzi (BI)
[28] parameter, labels a one-parameter family of classicaly (but not quantum
mechanically) equivalent theories for each value of γ. In order to simplify the
notation we will omit this label through the rest of the text. So, the canonical
Poisson brackets in terms of this new conjugate pair are:

{γAia(x), γẼbj (y)} = κ δba δ
i
j δ

3(x, y) , (1.8)

and,
{γAia(x), γAjb(y)} = {γẼai (x), γẼbj (y)} = 0. (1.9)

A final comment. In the literature is usual to find that Aia is an su(2)
connection, the reason is that this algebra is isomorphic to so(3) and SO(3) is
the original group introduce as the freedom inherent to the choosing the triads.
However, we take SU(2) instead of SO(3) as the gauge group because SU(2) is
the preferred choice if one would incorporate fermions in the theory. So, we can
say that the phase space of LQG is analogous to a SU(2) Yang-Mills theory
with the characteristic constraints of GR.
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1.2.1 Constraints in terms of Ashtekar’s variables

At this point we need rewriting the constraints in terms of the new variables
(A,E) in which we want to describe GR. First of all the constraint associated
with the invariance of the spatial metric through the SU(2) transformations
acting on the triads takes a very simple, and well known, form:

Gi = Da Ẽai ≈ 0, (1.10)

where D refers to the covariant derivative defined by the Aai , that is, DaẼai =
∂aẼ

a
i + εij

kAjaẼ
a
k . It is easy to recognize the aparience of the Gauβ’s law as is

usual in Yang-Mills theor. This is the reason why Ẽai is called electric field.
On the other hand, for the vector and scalar constraints we have,

Va = F iab Ẽ
b
i − (1 + γ2)Ki

aGi ≈ 0 (1.11)

where F iab is the curvature of the connection. Finally, the scalar constraint
takes the form

S =
Ẽai Ẽ

b
j√

det(Ẽ)

[
εijk F

k
ab − 2(1 + γ2)Ki

[aK
j
b]

]
≈ 0. (1.12)

1.3 Classical algebra of observables

In this section we will look for the phase space functionals that allow us
to make a non-perturbative quantization consistent with the diffeomorphism
invariance of GR. To this end we need constructing functionals which do not
make reference to any fixed metric background. In order to accoplish this
objective we have to study functionals of the connection and of the electric
field.

We have to be consistent with the constraints of GR, so we will follow the
Dirac point of view in the quantization procedure. This means that we will
quantize the classical phase space obtaining as first step a kinematical Hilbert
space, Hkin, and them we will impose those constraints as operators on it.
As will be manifest, this procedure is cumbersome because of the difficulty to
define these operators. LQG provides us with a rigourous definition of Hkin

and we can define some geometrical operators on it, such as areas and volumes.
The first attempts to choose the classical algebra of observables were based

on the connection representation, but this leads to serious difficulties to define
the theory. In order to respect the background independence that we are asking
for the theory we can select the holonomy defined by the connection. An
holonomy, hα(A), is computed as the path ordered exponential of the integral
of the connection around a loop α (a path in the manifold M), and we can
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think in this holonomy as an element of the corresponding gauge group, SU(2)
in our case:

hα(A) = P exp
(∮

α

Aa dsa
)

(1.13)

The advantage of this object is that it serves as a basis for the construction of
gauge invariant functions and that the holonomy is background independent.

The simplest example of a gauge invariant function is the Wilson loop,
which is computed as the trace of the holonomy. The consideration of Wilson
loops along all the possible loops defined on M define the so called holonomy
algebra HA [11].

Nowadays, the theory is constructed employing graphs Υ. These graphs
are a set of n oriented edges eI , I = 1, . . . , n, and V vertices vµ. Usually one
works with closed graphs which are graphs where every edge ends and begins
in a vertex. The graphs can be obtained as a combination of loops based on
each vertex. In this case, the connection can be understood as a map from
the graph to n-copies of the gauge group G, one for each edge. Moreover, the
behavior of the holonomies under spatial diffeomorphism is quite simple,

φ∗ · h(eI) = h(φ−1 · eI) , (1.14)
where φ : M → M , is a spatial diffeomorphism and h(eI) = heI (A) stands
for the holonomy computed on an edge of a given graph. This means that the
holonomy transforms convariantly under diffeomorphisms because the effect of
transform is simply to move the edge in a natural way.

Following these ideas, we define the configuration space AΥ as the space
constructed by assigning a holonomy to each edge to a graph. This space can
be shown to be homeomorphic to Gn = G× · · · ×G. This construction is very
symilar to the configuration space used in floating lattice gauge theory over the
graph Υ.

The next step is to define the cylindrical functions:

CΥ := c(h(e1), h(e2), . . . , h(eN )) (1.15)
that are functions of the connection through the holonomy along the edges of
an embedded graph. The name of cylindrical functions comes from the fact
that we are just exploring the connection along the direccions defined in the
corresponding edges eI .

Let us present at this point the functions based on the canonicaly conjugate
of the connection. Following the previous scheme the natural option is looking
for a smeared version of the Ẽai . In this case, we can go to a dual Lie-algebra
valued two form from the Ẽai ,

Σab i := 1
2 ˜
ηabc Ẽ

c
i , (1.16)
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where
˜
ηabc is the naturally defined Levi-Civita symbol. This object should be

smeared over a smooth bidimensional surface,

E[S, f ] :=
∫
S

Σab i f i dSab . (1.17)

where f i is a su(2) Lie-algebra valued smearing function on the 2-surface
S. This object can be seen as the ‘electric flux’, which, as is evident from
its construction, is a background independent object. The holonomies and
fluxes define the Holonomy-Flux algebra HF [6, 7, 11]. Classically we have
the following Poisson bracket bewteen the cylindrical functions and the electric
flux:

{Cγ , E[S, f ]} =
κ

2

∑
p

∑
Ip

ι(Ip) f i(p)Xi
Ip · c, (1.18)

where the sum is over the points p where the edges eI of the given graph
intersect the surface S, the Ip take into account the edges incoming or outgoing
from p and Xi

Ip
· c is the action of the i-th left/right invariant vector field on

the Ip-th copy of the group if the Ip-th edge is pointing away /towards (resp.)
the surface S. It is worth noting that the r.h.s. is non-vanishing only at those
points where the graph Υ, the support for CΥ, intersects the surface.

Finally, we have defined the classical observables which will be the basis for
quantization, namely, the holonomies of the connection over edges of a given
graph h(eI) and the smeared triad over a surface S, E[S, f ].

1.4 Quantization: The Hilbert space.

The purpose of this section is to provide a sketch of the quantization and the
resulting kinematical Hilbert space of LQG. The details of this construction
can be found in [11]. As usual, we have to define functions of the connection
(analogous to choosing the configuration representation of wave functions in
quantum mechanics) and a measure on this space to construct a well-defined
inner product in the final Hilbert space.

Let us briefly describe now the essential ingredients of the construction of
the kinematical Hilbert space of LQG.

1.4.1 Quantum configuration space and measure

We would like to define the kinematical Hilbert space as a L2-space over the
configuration spaceHkin = L2(A,dµ). So, we need indentifying the appropriate
‘quantum’ configuration space, the space A consists of generalized connections
[11]. In this case we do not require continuity of the connections. These
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generalized connections act on the edges of a given graph and assing a group
element to it. Moreover, the following composition rule holds for them:

h(e1 ◦ e2) = h(e1) · h(e2) ; ∀ eI .
Another way to characterize the quantum configuration space is based on

the projective limit procedure over graphs. To be concrete, for any given graph
Υ with n edges we have a configuration space AΥ = SU(2)n. We can employ
the natural invariant Haar measure (µH) on the SU(2) group. In this case we
can endow AΥ with a measure by simply taking the Haar measure on all copies
of the group in the given graph. This allows us to consider square integrable
funcitions in this setting. So, we can work out the following Hilbert space:

HΥ = L2(AΥ,dµΥ). (1.19)

The key point for LQG is that we must to consider all the possible graphs
on M and their associated configuration spaces {AΥ}Υ. This leads to a family
of Hilbert spaces {HΥ}Υ, but these spaces must to be consistent with a partial
ordering relation in the set of graphs. For a given pair of graphs, Υ and Υ′, we
say that Υ is larger than Υ′ if the former contains the later, Υ ≥ Υ′. We can
introduce a projection PΥΥ′ : Υ→ Υ′, which induces a projection operator in
the configuration spaces and an inclusion operator for Hilbert spaces, namely:
P : AΥ → AΥ′ , ι : HΥ′ → HΥ. We need to be sure that a function defined
on a graph is well defined on larger graphs, an important condition being that
the inner product, between cylindrical functions, must be independent of the
graph choosen to work on.

Following those arguments we can think of A as the configuration space for
the ‘largest graph’, so the Hkin is the largest space containing all the {HΥ}
in the projective set [7, 11]. In this picture we can define a measure µAL,
known as the Ashtekar-Lewandowski measure, whose projection on an AΥ is
the corresponding Haar measure µΥ. Eventualy, the Hkin = L2(A, dµAL) is
the resulting Hilbert space, and it can be shown that the cylindrical functions
introduced in the previous section belong to it.

1.4.2 Spin Networks: The Hilbert space basis

In the last subsection we have introduced the kinematical Hilbert space of
LQG. We can understand it as the Hilbert space which contains the individual
Hilbert spaces over all possible graphs Υ’s in the spatial manifold, so we will
denote it as:

Hkin = ⊗ΥHΥ.
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This Hilbert space is non-separable, but we can easily define a basis for each
HΥ. For this purpose, let us consider a single edge ei of a given graph and
decompose any function f on the group SU(2), this decomposition reads:

f(g) =
∑
j

√
j(j + 1) fmm

′

j

j

Πmm′ (g), (1.20)

where, we can employ the Peter-Weyl decomposition for SU(2) and find the
coefficients of this decomposition:

fmm
′

j =
√
j(j + 1)

∫
G

j

Πmm′ (g−1) f(g)dµH(g), (1.21)

in this case the functions
j

Πmm′ (g) are unitary representations of the group
labeled by j (for the irreps), so they are the analogues of the Fourier basis in
the decomposition.

Given a cylindrical function ΨΥ[A] = ψ(h(e1), h(e2), . . . , h(eN )), we can
then write an expansion for it as

ΨΥ[A] = ψ(h(e1), h(e2), . . . , h(eN ))

=
∑
j1···jN

fm1···mN ,n1···nN
j1···jN φj1m1n1

(h(e1)) · · ·φjNmNnN (h(eN )),(1.22)

where φjmn(g) =
√
j(j + 1)

j

Πmn (g) is the normalized function satisfying∫
G

dµH(g)φjmn(g) φj
′

m′n′(g) = δj,j′δm,m′δn,n′ .

The expansion coefficients can be obtained by projecting the state |ΨΥ〉,

fm1···mN ,n1···nN
j1···jN = 〈φj1m1n1

· · ·φjNmNnN | ΨΥ〉 (1.23)

which implies that we have a complete orthonormal basis for Hkin, so we can
write

HΥ = ⊗jHΥ,j ; (1.24)

where in the case of a single loop α we have Hα,j , a (2j + 1) dimensional
Hilbert space [6, 7]. On the other hand, for a graph we have extra labels,
the intertwiners, associated with the vertices, and the finite dimension of HΥ,j

precisely acounts for this extra degrees of freedom. For this reason we can
introduce an additional label for the graph, and obtain the resulting Hilbert
space as

HΥ = ⊗jHΥ,j = ⊗j,lHΥ,j,l (1.25)
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where each HΥ,j,l is one-dimensional, [6, 11].
An important issue is the gauge invariance of the states previously defined.

In order to guarantee that invariance under finite gauge transformations of the
connection we need to be consistent with a restriccion on the vertices of the
defining graph of the cylindrical functions, namely∑

v

∑
ev

Xi
ev · N [Υj,l, A] = 0. (1.26)

As this expresion indicates we have a sum over vertices v of the graph and
a sum over the edges ev for each vertex. The spin networks for which this
condition holds are the ‘gauge invariant spin networks’. This implies that the
graph must be closed, in other words, without open edges. In the contex of
spacetimes with inner boundaries we will see that there are some edges that
‘end’ at the boundary, so the gauge invariance restriccion takes the form of
a boundary condition. This is a pivotal point in the geometrical framework
which leads to the entropy counting.

1.5 Area Operator

Until this point we have introduced the basic elements for the construction
of the kinematical Hilbert space. Now we are interested in the definition of
the area operator acting on this space that plays a central role in the black
hole entropy computation. Of course, there exist operators for volume and
length, but in this thesis we are just concernied with the area. For an extensive
treatment of the geometrical operators see [11, 29].

Classically the area associated to a surface S can be computed as

A[S] =
∫
S

d2x
√
h.

The simplest operator that can be constructed representing the geometrical
quantities of interest is the area operator associated to a surface S. The reason
behind this is again the fact that the densitized triad is dual to a two form
that can be naturally integrated along a surface. The difference between the
classical expression for the area and the flux variable is the fact that the area
is a gauge-invariant quantity. Let us first recall what the classical expression
for the area function is, and then we will outline the regularization procedure
to arrive at a well defined operator on the Hilbert space. The area A[S] of
a surface S is given by A[S] =

∫
S

d2x
√
h, where h is the determinant of the

induced metric hab on S. When the surface S can be parametrized by setting,
say, x3 = 0, then the expression for the area in terms of the densitized triad
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takes a simple form:

A[S] = γ

∫
S

d2x
√
Ẽ3
i Ẽ

3
j k

ij (1.27)

where kij = δij is the Killing-Cartan metric on the Lie algebra, (recall that
the canonical conjugate to γAia is γẼai = Ẽai /γ). Note that the functions are
again smeared in two dimensions and that the quantity inside the square root is
basically the square of the (local) flux. One expects, from the experience with
the flux operator, that the resulting operator will be a sum over the intersection
points p, so one should focus the attention on the vertex operator

∆S,Υ,p = −
[
(Ĵpi(u) − Ĵpi(d))(Ĵ

p
j(u) − Ĵpj(d))

]
kij .

With this, the area operator takes the form,

Â[S] = γ `2P
∑
p

√̂
∆S,Υ,p. (1.28)

We can now combine both the form of the vertex operator with Gauβ’ law
(Ĵpi(u) + Ĵpi(d)) ·Ψ = 0 to arrive at,

|(Ĵpi(u) − Ĵpi(d))|2 = |2(Ĵpi(u))|2, (1.29)

where we are assuming that there are no tangential edges. The operator Ĵpi(u) is
an angular momentum operator, and therefore its square has eigenvalues equal
to ju(ju + 1) where ju is the label for the total ‘up’ angular momentum. We
can then write the form of the operator

Â[S] · N (Υ,~j) = γ `2P
∑
v∈V

√
|Ĵpi(u)|2 · N (Υ,~j). (1.30)

With these conventions, in the case of simple intersections between the graph
Υ and the surface S, the area operator takes the well known form

Â[S] · N (Υ,~j) = γ `2P
∑
v∈V

√
jv(jv + 1) · N (Υ,~j),

when acting on a spin network N (γ,~j) defined over Υ and with labels ~j on the
edges (we have not used an extra label for the intertwiners).

Let us now interpret these results in view of the new geometry that the
loop quantization gives us. The one-dimensional excitations of the geometry
carry a flux of area: whenever the graph pierces a surface it endows S with a
quantum of area depending on the value of j. Furthermore, the eigenvalues of
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the operator are discrete, giving a precise meaning to the statement that the
geometry is quantized: there a minimum (non-zero) value for the area given
by taking j = 1/2 in the previous formula. Thus the area gap ao is given by

ao = γ `2P

√
3

2
. (1.31)

If the value of γ is of order of unity, then we see that the minimum area is of
the order of the Planck area. In order to get a macroscopic value for the area
we would need a very large number of intersections. The BI-parameter has to
be fixed to select the physical sector of the theory. The current viewpoint is
that the black hole entropy calculation can be used for that purpose.

There are operators corresponding to other geometrical objects such as
volume, length, angles, etc. The main feature that area operator exhibits is
that its spectrum is always discrete.
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2. A BRIEF INTRODUCTION TO ISOLATED HORIZONS

En este caṕıtulo introduciremos el concepto de horizonte aislado.
Dichos horizontes tienen una definición geométrica cuasilocal, en
contraposición con la definición global de los horizontes de sucesos.
Describiremos la cuantización de un espaciotiempo que contiene a
uno de dichos horizontes como frontera interna e identificaremos
los estados responsables de la entroṕıa del agujero negro.

The isolated horizon concept arises from the neccesity to generalize the
event horizon definition. The event horizons are teleological in nature: to
indentificate such an object one has to know the whole history of a given
spacetime initial data. On the other hand, in many applications it is desirable
a more local definition, and this is the main motivation for the introduction
of isolated horizons. This kind of horizons have been fruitfully employed in
different branches fo GR such as numerical relativity and mathematical physics
[13].

The interest in isolated horizons is based in the following properties:

1. Their definition just implies local spacetime structures. Moreover, the
horizon is stationary and the spacetime containing they are not required
admit any Killing field.

2. The laws of the black hole mechanics are satisfied by these horizons. So,
thermodynamical considerations make sense for them.

Let us recall the mathematical definition of isolated horizons:

A subset ∆ of the boundary ∂M of a spacetime (M, g) is called an isolated
horizon, provided that:

1. ∆ ≡ R× S2 is a null hypersurface and has zero shear and expansion and
let la be its null normal.

2. The field equations and matter energy conditions hold at ∆.

3. The induced metric on ∆ is Lie draged by the null generator la of ∆.
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Notice that all these geometrical conditions are imposed locally at ∆.
In this thesis we will interested in an undistorted, non-rotating isolated

horizon [12, 13] that is an inner boundary placed in an asymptotically flat 4-
dimensional spacetime. Moreover, these null surfaces are foliated by a family
or marginally trapped 2-spheres such that the expansion of the inward pointing
null normal to the foliation is constant and negative on each leaf. This foliation
is unique and allows us to consider it as the definition of an isolated horizon.

To define the Hamiltonian framework we take a partial Cauchy surface M
in this spacetime, so we find that the intersection of M with the horizon is a
2-sphere S. Due to the character of inner boundary of the isolated horizon one
has to introduce boundary conditions in order to have a well-defined Hamilton
framework in this context. The effects of the definition of isolated horizon and
the boundary conditions are [14]:

1. The classical phase space defined for M is the usual one described in the
previous chapter, (A,E).

2. Through the boundary conditions on the surface horizon the connection
on the bulk is restricted to a U(1) connection, W .

3. The gravitational action, and the symplectic structure, acquire a surface
term in a natural way which describes a U(1) Chern-Simons theory on
the boundary S.

Let us remark that, as pointed out in [14], the U(1) Chern-Simons theory
appears in this framework in a natural way and that at the classical level
the degrees of freedom at the horizon are determined by the bulk degrees of
freedom by continuity. However, at the quantum level, once we introduce the
generalized connections the surface states are independent of the bulk ones. On
the other side, since the symplectic form splits in two parts, is natural to asume
that the total quantum Hilbert space will be contained in the tensor product
of a volume (or bulk) Hilbert space and a surface Hilbert space, HV ⊗HS .

Let us be more specific. The horizon boundary conditions can be
understood as follows:

1. Only those 2-forms Σ for which the horizon area has the fixed value A0

are admissible.

2. The pullback of A to the surface horizon is completely determined by a
U(1) connection W on the surface S and by the area A0.

3. Finally, the pullback of Σ to S is completely determined by the curvature
of W .
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We can specify these conditions explicitly, let us fix a bijecction of the 2-
sphere on itself, r : S2 → S2. This r is fixed by a U(1) subgroup of SU(2).
Then, the connection W can be defined as:

Wa := − 1√
2

Γiari, (2.1)

with curvature:

Fab = −2πγ
A0

Σiabri. (2.2)

The quantities with the underbar indicate the pullbacks from the bulk to the
horizon surface.

Taking all of this into account, we arrive at a phase space consisting
pairs (A,Σ) of asymptotically flat, smooth fields on M satisfying the internal
boundary conditions that define an isolated horizon. In this phase space we
can find the following symplectic structure [14],

Ωgrav((δA, δΣ), (δA′, δΣ′)) =
1

8πG

∫
M

Tr(δA ∧ δΣ′ − δA′ ∧ δΣ)

+
A0

8π2γG

∮
S

δW ∧ δW ′, (2.3)

for arbitrary tangent vectors (δA, δΣ) and (δA′, δΣ′). It is worth noting
that this symplectic structure has a surface term that corresponds to the one
corresponding a Chern-Simons theory. We can say that the internal boundaries
in spacetime gives rise to a Chern-Simons theory on them [11].

2.1 Quantization procedure

We have seen that on the surface we have an U(1) Chern-Simons theory. Let
us consider the action for this theory in its 2 + 1 spliting

SCS =
∫

R
dt

∫
S

d2xεαβ(ẆαWβ + 2Wt∂αWβ). (2.4)

We can see that this action leads to a trivial equation of motion, namely F = 0,
where F is the curvature of the connection W . In the context of isolated horizon
in LQG this equation will be modified.
We remark that we are not adding new degrees of freedom to the classical
phase space, as reflected by the fact that we are not requiring that W to be
closed. But, at the quantum level we promote these degrees of freedom to new
dynamical ones, so we need to remove them imposing the boundary conditions
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at this level. This means that we need implementing the constraint (2.2) as
the kernel of an operator defined in HV ⊗HS , namely:

(1⊗ exp(iF̂ ))Ψ = (exp(−2πγ
A0

Σ̂ · r)⊗ 1)Ψ (2.5)

where we make use of the exponentiated version of F̂ to be consistent with the
Chern-Simons theory [14]. This condition leads to the identification of a basis
of the form ψV ⊗ ψS such that we can express:

ψV ⊗ exp (iF̂ )ψS = exp (−i2πγ
A0

Σ̂ · r)ψV ⊗ ψS . (2.6)

Fortunately, we know the eigenstates of Σ̂ · r from LQG [29]

(Σ̂ · r)ψV = 8π`2P
n∑
i=1

miδ
2(x, pi)ηψV , (2.7)

where we find that this operator takes values in a finite set of points on the
surface S, called punctures, P = {p1, . . . , pn}, and mi are half-integers known
as spins. The δ2(·, ·) is the delta distribution on S and η is the Levi-Civita
density on the horizon surface.

We can see here an interesting behavior because if the graph underlying
the spin network (or linear combination of them) ψv does not intersect S,
the right-hand side vanishes and so must the left-hand side. We can take an
abritrarily small neighborhood D around a puncture, so that if P ∩D = ∅ the
same later argument holds. This means that the quantum curvature of W is
flat except at the punctures, in this sense the flatness condition comming from
the Chern-Simons theory does not follow from the analysis, and we must make
the quantization of a Chern-Simons theory with punctures.

Surface Hilbert Space

Firstly we have to indetify the classical phase space related to the surface S.
On one hand, we have a U(1) connection W which is completely determined
by the pullback of the connection A to the sphere S. This implies that the
surface states will be funcitions of generalized U(1) connections on S. So, by
(2.7) we can work with generalized U(1) connections that are flat everywhere
except at P, which are the points where the edges of the spin networks in the
bulk pierce the surface S.

From the classical picture we can described the situation as follows. First,
we have a SU(2) principal bundle P on the bulk, and the restricction of this
bundle to the sphere P |S has a U(1) sub-bundle Q. Then, we can define a
generalized connection on S as the map W which assign to each path η in
S a holonomy W (η) which can be considered as an element of SU(2) taking
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into account that we have a trivialization of P |S over each point of S. As it
is shown in [14] the generalized connections defined in this way take values
in the trivialization of the bundle Q, so we can understand this scheme as a
symmetry breaking procedure (at least at the classical level). This will be very
important later in the search of the relationship between this framework and
the conformal field theory techniques. So, we are focussing in a sphere S with
a finite set of points P = {p1, . . . , pn}, in this context we say that a generalized
U(1) connection W is flat except at the punctures when it assigns the same
holonomies to paths as a connection W0 on Q with the following properties:

1. W0 is flat on S − P.

2. For some neighborhood Ui of each puncture pi, there exists some smooth
trivialization of Q over Ui, and some analytic coordinate system (x, y) on
Ui for which pi has the coordinates (a, b), W0 has the following form:

W0 = W1 + c
(x− a)dy − (y − b)dx

(x− a)2 + (y − b)2
(2.8)

on Ui−{pi}, where c ∈ R andW1 is a bounded smooth 1-form on Ui−{pi}.

These conditions means that W is flat away from the punctures and at each
puncture these is a singularity similar to the singularity produced by a magnetic
flux line intersecting S transversely at a point in Maxwell theory. Moreover
it is easy to show that W0 assigns a well-defined holonomy to a path defined
on S [14, 11]. For all these reasons we can work with the space of generalized
U(1) connections that are flat except at the punctures, a space that will be
denoted AP . We have the group of U(1) gauge transformations (not necessarily
continuous) of Q that equal the identity at the punctures, we denote this group
by GP and the set DiffP(S2) of semianalytic diffeomorphisms which fix the
points P.

We take our phase space, denoted by XP , as the quotient

XP = AP/(GP oDiffP).

The reason for this is that the above semidirect product is a subgroup of the
group of all automorphisms of the bundle Q and acts on A because of this
space is defined in a gauge and diffeomorphism covariant way.

This phase space is compact and diffeomorphic to a 2(n − 1)-dimensional
torus [14, 11]. This means that XP is topologically U(1)n−1 × U(1)n−1. In
order to quantize it, we have to employ a geometric quantization procedure.
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2.1.1 Coordinatizating AP

We need to find suitable functions of the U(1) connection W . The proper choice
is to take the holonomies along arbitrary paths in S because these holonomies
separate the points of the space of all connections, in the classical sector.

• We choose holonomies along closed loops in S and any open paths
that connect the points of P, these holonomies are invariant under GP
transformations. We consider only holonomies along closed paths which
enclose a puncture, otherwise the holonomy is trivial.

• It is worth noting that we are only interested in the homotopy type of
paths with the same endpoints. The reason for this is that DiffP does
not change the homotopy type of a path because it preserves P. So one
cannot detach an open path from a puncture and one cannot drag a loop
across any of them.

• For a set of n punctures we only need to fix n− 1 mutually disjoint loops
αi and (n − 1) open paths βi. The αi encloses the puncture pi and the
βi connect the puncture pi with the puncture p0. All the βi arrive at p0

in a C∞ way.

• It is clear that a α0 around the p0 is the same that a path α encircling the
(n−1) punctures, because a path around all the punctures is contractible
in S.

With this construction it is evident that the holonomies W (αi) and W (βi)
take values in U(1), so, the phase space is topologically a 2(n− 1) torus.

2.1.2 Induced symplectic structure

We are going to give now the induced symplectic structure in terms of the
W (αi) and W (βi) defined above.

• {W (βi),W (αj)} = κδijW (βi)W (αj) is the only non vanishing Poisson
bracket.

• We can consider the phase space R2(n−1) with canonical bracket {yi, xj} =
δijκ. We recover the torus taking the quotient of R2(n−1) by the discrete
translation group Λn = (2πZ)2(n−1).

• This allows us to identify W (αi) with exp(iyi) and W (βi) with exp(ixi).

• It is direct now to consider the symplectic structure which leads to these
brackets: Ω = 1

κ′

∑n−1
i=1 dy

i ∧ dxi
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A very important point, in order to accomplish the geometric quantization
procedure of this space is given by the prequantization step. This means that
the Weil’s integrality criterion must be satisfied [11]. If we take a closed two-
surface on the torus, T 2

ij warping around the xi, yj directions and the non-trivial
restriction from choosing i = jthem:∫

T 2
ii

Ω
2π~

=
(2π)2

2π~κ′
= 2

A(S)
8πγ`2P

=: k, (2.9)

where the integral above must be an integer number. This is the level of the
Chern-Simons theory, the combination which appear in the surface part of the
symplectic form, which at the light of the previous result must be integer.

2.1.3 States

Now we are going to give the states of the surface Hilbert space. Let us
set z = x + iy which defines the polarization on R2(n−1), this is the positive
Kahler polarisation, this makes that we can work within a complex XP which
is a Kahler manifold. So, HPS will be the space of holomorphic sections of a
holomorphic complex bundle L over XP with a connection∇ whose curvature is
iΩ. In this setting, the Hilbert space HPS has a basis given by states ψa, which
are theta functions [14, 11], as we let a range over vectors with congruents
ai = Zk\{0} for all i.

Of course, given theta functions f(z) and g(z) we have a inner product
defined on this space:

〈f, g〉 =
∫

[0,2π]2(n−1)
e−

k
2π y·yf(z)g(z)dn−1xdn−1y, (2.10)

and the action of exp(−iF̂ ) on these states is given by:

exp(−iF̂ )ψai = e
2πiai
k ψai . (2.11)

Sumarising, the Hilbert space HP has a basis given by the states ψa, where
a = (a1, . . . , an) with ai ∈ Zk\{0} for all i. On the other hand, it is useful
regard the ai as elements of Zk, thus we need to require that:

a1 + · · ·+ an = 0 ∈ Zk; (2.12)

we will explain the meaning of this expresion in the next section.
Finally, we can define the surface Hilbert space HS as follows:

HS =
⊕
P,a
HP,aS
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where the set of punctures is allowed to vary and the a ranges over the elements
of Znk compatible with 2.12. We need to add a restriction over the possible
values of the ai to be nonvanishing, because a state with ai = 0 already is
included in HP−{pi}S .

2.1.4 The projection constraint

We have introduced the corresponding Hilbert spaces asociated to the bulk and
the surface. Now we want to impose the constraint 2.5, called the projection
constraint, onHV ⊗HS . The key point is that the eigenvalues of exp(−i 2πγ

A0
Σ̂·r)

on ψV must be equal to the eigenvalue of exp(iF̂ ) on ψS . Actually, at the pi
puncture, the eigenvalues of exp(−i 2πγ

A0
Σ̂ · r) are:

exp(−i2πγ
A0

(8π`2Pmi)),

where mi is an half-integer. On the other hand the holonomies given by exp(iF̂ )
are of the form:

exp(i
2πai
k

),

where, as we have seen, the ai ∈ Zk. This means that ai = −2mi mod(k).
Moreover, a path encircling all the punctures is a contractible one over the

sphere, this means that the holonomy (or curvature) of this path gives a trivial
contribution to the curvature. This translates in the following condition:

a1 + · · ·+ an = 0. (2.13)

We can rewritte this condition, which wil be called ‘projection constraint’, in
terms of m-labels.

2.1.5 Surface diffeomorphism transformations

The diffeomorphisms can move the punctures over S but it is not possible to
interchange pi and pj , because to do this one has to cross the paths defined
to coordinatize the phase space. For this reason, we consider the punctures as
distinguishable, so we cannot permute them. As we shall see in chapter 5, this
point becames fundamental in the entropy counting problem.
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Dado que sobre la superficie del horizonte aparece definida de
forma natural una teoŕıa de Chern-Simons es razonable explotar la
relación puesta de manifiesto en los trabajos clásicos de E. Witten
entre esta teoŕıa y las teoŕıas cuánticas de campos con invariancia
conforme. Este caṕıtulo presenta los primeros pasos para con-
seguir entender esta relación y se expondrán, desde la perspectiva
de la teoŕıa cuántica de campos conformes, algunos resultados que
serán recuperados, por otros medios, en los sucesivos caṕıtulos de
esta tesis.

3.1 Introduction

Nowdays, There are several approaches to the identification of the microscopic
degrees of freedom responsible for the entropy of a black hole on the basis of
the observation, which are mainly based on conformal field techniques at some
stage. In particular, Carlip has suggested that conformal symmetry could play
a fundamental role in this scenario (see [30] and references therein).

As we have explained before, in the isolated horizon framework, a black
hole is introduced as an inner boundary of the spacetime manifold. Over
this boundary, constraints implementing the isolated horizon properties are
imposed. Naively, they reduce, already at the classical level, the SU(2) gauge
symmetry of the theory to a U(1) gauge symmetry on the horizon. These U(1)
degrees of freedom, that at the quantum level fluctuate independently from
the ones of the bulk, are described by a Chern-Simons (CS) theory and are
responsible for the horizon entropy.

On the other hand, E. Witten proposed in [17] a correspondence between
the Hilbert space of generally covariant theories and the space of conformal
blocks of a conformally invariant theory. This idea was applied in [31] to the
computation of the entropy for a horizon described by a SU(2)-CS theory, by
putting its Hilbert space in correspondence with the space of conformal blocks
of a SU(2)-Wess-Zumino-Witten (WZW) model.

The purpose of the present chapter is to use Witten’s correspondence for
the U(1)-CS theory describing the black hole horizon in LQG, looking for some
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hints o the role of CFT techniques in this framework. Taking into account of
that this U(1) group arises as a result of the geometric symmetry breaking
from the SU(2) symmetry in the bulk, one can still make use of the well
established correspondence between SU(2) Chern-Simons and Wess-Zumino-
Witten theories. However, in this case it will be necessary to impose restrictions
on the SU(2)-WZW model in order to implement the symmetry reduction.
Through this procedure we expect to eventually reproduce the counting of
dimensions of the U(1)-CS Hilbert space.

3.2 Summarizing the black hole entropy counting

Let us summarize the main features and results of the LQG black hole entropy
counting in the isolated horizon framework [14] (we will return to this topic in
the next chapter). On a space-like sliceM , the geometry of the bulk is described
by a spin network. Some of the spin network edges end at the horizon surface
S (the intersection of M and the isolated horizon), endowing it with an area
given by

A = 8πγ`2P
N∑
I=1

√
jI(jI + 1) , (3.1)

where jI ∈ N/2 label the SU(2) irreducible representations corresponding to
the N edges piercing the horizon. These edges carry an additional label mI ∈
{−jI ,−jI + 1, ..., jI} (the corresponding spin projection) characterizing their
intersection with the horizon (punctures).

On the other hand, the horizon geometry is described by a U(1) Chern-
Simons theory defined over a sphere with N distinguishable topological defects
(corresponding with the punctures).The states of this theory are characterized
by labels aI ∈ Zκ (κ being, in this chapter, the level of the CS theory, earlier
denoted k) quantifying the deficit angles that give rise to the distributional
curvature of the horizon concentrated at each puncture. The spherical topology
of the horizon implies that these aI labels must satisfy the so called projection
constraint

∑
I aI = 0. The matching of both (bulk and horizon) geometries

through the boundary conditions gives rise to a relation between the aI and
mI labels that reads

2mI = −aI mod κ . (3.2)

For a given value A of area, the entropy can be computed as

S(A) = kB ln n(A),

being kB the Boltzman constant and n(A) the number of independent Chern-
Simons states compatible with the above constraints, taking into account the
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distinguishable character of the punctures. This is to say, n(A) is the number
of different aI -labeled horizon states (satisfying the projection constraint) such
that, for each of them, there exists (at least) one (jI ,mI)-labeled piercing from
the bulk compatible with it and with the value A0 of the horizon area. The
relation between mI and aI labels allows us then to reformulate the entropy
counting as a well defined combinatorial problem in terms only of the mI

labels as in [18]. Then, n(A) can be rewritten as: n(A) = 1 +
∑
A′≤A d(A′),

where d(A) is the number of all the finite, arbitrarily long, ordered sequences
~m = (m1, ...,mN ) of non-zero half-integers, such that

N∑
I=1

mI = 0 ,
N∑
I=1

√
|mI |(|mI |+ 1) =

A

8πγ`2P
. (3.3)

Explicit expressions for the solution of this combinatorial problem were
obtained in [46, 21]. If we define kI = 2|mI | and the occupancy numbers
nk as the number of punctures carrying a label value m such that k = 2|m|,
then a set of numbers {nk : k = 1, 2, ...} characterizes a ~m sequence up to
reorderings and sign assignments for mI = ± 1

2kI . Thus, d(A) can be expressed
in terms of the set C of all the {nk} sets compatible with a given area A by
associating two sources of degeneracy to each of these sets {nk}. The first is
the number R({nk}) of different ways of reordering the kI labels in order to
obtain all the corresponding ordered sequences ~k = (k1, ..., kN ). The second
source of degeneracy is the number P ({nk}) of different sign assignments for
the associated mI numbers, in such a way that the projection constraint is
satisfied. With this

d(A) =
∑
{nk}∈C

R({nk}) · P ({nk}), (3.4)

where the sum is extended over all the sets {nk} in C.
The set C of all {nk} configurations compatible with a given area eigenvalue can
be computed analytically [46] using number-theory related techniques, through
an exact characterization of the horizon area spectrum of LQG. The factor
R({nk}) has its origin in the distinguishable character of punctures (acquired
in the process of quantization of geometry) and can be obtained from basic
combinatorics as R({nk}) = (

∑
k nk)!/

∏
k nk!, where the sum and product are

extended to all values of k (note that, in practice, for a finite value A of area all
the sums and products are always finite). Finally, the factor P ({nk}) accounts
for the dimensionality of the Hilbert space of the U(1)-CS theory once the
boundary conditions have been fixed and was obtained in [46, 21] to be:

P ({nk}) =
1

2π

∫ 2π

0

dθ
∏
k

nk2 cos (kθ) . (3.5)
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3.3 Implementing the analogy

Let us begin by recalling the classical (non-quantum) scenario and how the
symmetry reduction takes place at this level. The geometry of the bulk is
described by a SU(2) connection, whose restriction to the horizon S gives
rise to a SU(2) connection over this surface. As a consequence of imposing
the isolated horizon boundary conditions this connection is reduced to a U(1)
connection. In [14] this reduction is carried out, at the classical level, just by
fixing a unit vector r at each point of the horizon. By defining a smooth function
r : S → su(2) we can choose a U(1) sub-bundle from the SU(2) bundle. This
kind of reduction can be described in more general terms as follows (see, for
instance, [32]). Let P (SU(2), S) be a SU(2) principal bundle over the horizon
S, and ω the corresponding connection over it. A homomorphism λ between
the closed subgroup U(1) ⊂ SU(2) and SU(2) induces a bundle reduction
from P (SU(2), S) to Q(U(1), S), being Q the resulting U(1) principal bundle
with reduced U(1) connection ω′. This ω′ is obtained, in this case, from the
restriction of ω to U(1).
All the conjugacy classes of homomorphisms λ : U(1)→ SU(2) are represented
in the set Hom(U(1), T (SU(2))), where T (SU(2)) is the maximal torus of
SU(2),

T (SU(2)) = {diag(z, z−1)|z = eiθ ∈ U(1)}.
The inequivalent homomorphisms in the Hom(U(1), T (SU(2))) can be

labeled by an integer p ∈ Z

λp : z 7→ diag(zp, z−p) . (3.6)

However the generator of the Weyl group of SU(2) acts on T (SU(2)) by
diag(z, z−1) 7→ diag(z−1, z). If we divide out by the action of the Weyl group
we are just left with those maps λp with p a non-negative integer, p ∈ N0,
as representatives of all conjugacy classes. These λp characterize then all the
possible ways to carry out the symmetry breaking from the SU(2) to the U(1)
connection that will be quantized later.

However, one can follow the alternative approach of first quantizing the
SU(2) connection on S and imposing the boundary conditions later on, at the
quantum level. This would give rise to a SU(2)-CS theory on the horizon to
which the boundary conditions have to be imposed. The correspondence with
conformal field theories can be used at this point to compute the dimension
of the Hilbert space of the SU(2)-CS as the number of conformal blocks of
the SU(2)-WZW model, as it was done in [31]. It is necessary to require,
then, additional restrictions to the SU(2)-WZW model that account for the
symmetry breaking, and consider only the degrees of freedom corresponding to
a U(1) subgroup.
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Let us briefly review the computation in the SU(2) case, to introduce later
the symmetry reduction. The number of conformal blocks of the SU(2)-WZW
model1, given a set of representations P = {j1, j2, ..., jN}, can be computed in
terms of the so-called fusion numbers Nr

il [33] as

NP =
∑
ri

Nr1
j1j2

Nr2
r1j3

...N jN
rN−2jN−1

. (3.7)

These Nr
il are the number of independent couplings between three primary

fields, i.e. the multiplicity of the r-irreducible representation in the decom-
position of the tensor product of the j1 and j2 representations [j1] ⊗ [j2] =⊕

j N
j
j1j2

[j]. This expression is known as a fusion rule.
In order to clarify, Fusion rule algebras are some kind of associtive algebras

over the complex numbers which describe the possible couplings among three
objects out of some given class. This construction emerges in several branches
of mathematical physics, but for our porposes we can recall that NP is
the multiplicity of the SU(2) gauge invariant representation (j = 0) in the
decomposition of the tensor product

⊗N
i=1[ji] of the representations in P. The

usual way of computing NP is by using the Verlinde formula [33] to obtain the
fusion numbers. But alternatively one can use the fact that the characters of
the SU(2) irreducible representations, χj = sin [(2j + 1)θ]/ sin θ where θ is the
usual angle of the sphere on SU(2), satisfy the fusion rules χiχj =

∑
rN

r
ijχr.

Taking into account that the characters form an orthonormal set with respect
to the SU(2) scalar product,

〈χi|χj〉SU(2) =
∫ 2π

0

dθ

π
sin2 θχi(θ)χj(θ) = δij ,

one can obtain the number of conformal blocks just by projecting the product
of characters over the gauge invariant representation

NP = 〈χj1 ...χjN |χ0〉SU(2) =
∫ 2π

0

dθ

π
sin2 θ

N∏
I=1

sin [(2jI + 1)θ]
sin θ

. (3.8)

This expression is equivalent to the one obtained in [31] using the Verlinde
formula; it gives rise to the same result for every set of punctures P.

To implement, now, the symmetry breaking we have to restrict the
representations in P to a set of U(1) representations. This corresponds in
the case of Chern-Simons theory to performing a symmetry reduction locally
at each puncture. It is known that each SU(2) irreducible representation j

1 Notice that, though we are omitting the κ subindex (in this case it corresponds with
the CS level), the group of the WZW theory is in fact the quantum group SU(2)κ. The κ
dependence is implicit in the allowed sets of representations P.
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contains the direct sum of (2j+1) U(1) representations eijθ⊕ei(j−1)θ⊕...⊕e−ijθ.
One can make an explicit symmetry reduction by just choosing one of the
possible restrictions of SU(2) to U(1) which, as we saw above, are given by the
homomorphisms λp. This corresponds here to pick out a U(1) representation
of the form eipθ ⊕ e−ipθ with some p ≤ j. The fact that we will be using these
reducible representations, consisting of SU(2) elements as U(1) representatives,
can be seen as a reminiscence from the fact that the U(1) freedom has its origin
in the reduction from SU(2).

Having implemented the symmetry reduction, let us compute the number of
independent couplings in this U(1)-reduced case. Of course, we are considering
now U(1) invariant couplings, so we have to compute the multiplicity of the
m = 0 irreducible U(1) representation in the direct sum decomposition of the
tensor product of the representations involved. As in the previous case, this can
be done by using the characters of the representations and the fusion rules they
satisfy. These characters can be expressed as η̃pI = eipIθ + e−ipIθ = 2 cos pIθ.
Again, we can make use of the fact that the characters ηi of the U(1) irreducible
representations are orthonormal with respect to the standard scalar product in
the circle. Then, the number we are looking for is given by

NPU(1) = 〈η̃p1 ...η̃pN |η0〉U(1) =
1

2π

∫ 2π

0

dθ

N∏
I

2 cos pIθ , (3.9)

where η0 = 1 is the character of the U(1) gauge invariant irreducible
representation. Notice than (3.9) coincides with the value of P ({nk}) given
by (3.5).

3.4 Remarks and Conclusions

Let us put this result in context with the entropy counting. As we will explain
in detail in the following chapters, there are several contributions involved in
computing the entropy of a black hole within LQG. Some of them are related
with the LQG framework, like the computation of the set C introduced in
section 4.2 by characterizing the black hole area spectrum, or the number
or reorderings of labels over the set P due to the distinguishability of the
punctures originated in the quantization process. On the other hand, there are
other objects, like P ({nk}), that are related with the CS theory on the horizon.
Once one has introduced all the conditions imposed by the LQG framework,
what is left is the counting of states of a CS theory subject to some external
inputs. If there is any connection between this CS theory and a Conformal Field
Theory, one should expect this CFT to reproduce precisely this term P ({nk}),
subject to the same external inputs. This is exactly what we observe in the
previous sections by identifying the pI and kI labels. We are, thus, proposing
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a precise implementation of Witten’s analogy through this symmetry reduced
counting that yields the expected result.

From the physical point of view, the main change we are introducing,
besides using the CS-CFT analogy, is to impose the isolated horizon boundary
conditions at the quantum level, instead of doing it prior to the quantization
process. Notice that this is a necesary preliminary step in the direction of
introducing a quantum definition of isolated horizons.
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4. THE COUNTING PROBLEM

En este caṕıtulo exponemos los principales resultados, relaciona-
dos con el conteo de estados responsables de la entroṕıa presentes
en la literatura y los analizaremos a la luz de las nuevas técnicas
presentadas en esta tesis.

This chapter has as purpose to present the actual status of the state counting
which leads to the entropy within the Ashtekar-Baez-Corichi-Krasnov (ABCK)
framework [14]. Following the geometrical setting explained in the previous
chapters we can stablish the problem of computing the entropy as follows.

• We have to perform a counting of the horizon states, tracing out the
bulk degrees of freedom (see [11] for details). At this point, we take a
microcanonical point of view, we fix a value of the horizon area A0 and
we count the states within an interval [A0−δ, A0 +δ], where the tolerance
δ is of the order of the Plank area.

• We have to translate this geometrical setting into a combinatorial
problem. We must to count the U(1)-CS lists of labels ai of the surface
states that satisfy the projection constraint. These lists of labels will
be related with lists of spin components mi. Finally, the m-lists will be
permissible if we can associate to it with a list of spins ji whose area
8πγ`2P

∑
i

√
ji(ji + 1) belongs to the interval [A0 − δ, A0 + δ] around A0.

• Finally, we need to count all the combination of labels over a ordered set
of punctures. This becomes a very complicated combinatorial problem.

It is worth noting that in the literature we can find two different ways
to define the suitable labels for the surface states [18, 19]. We will describe
these two countings in the following sections. Both proposals lead to a linear
dependence of the entropy with the area of the horizon surface, at the leading
order, and a logarithmic correction with a −1/2 precoefficient. The difference
relies in the different value of the BI parameter which accounts for the 1/4
factor of the Hawking-Bekenstein entropy,

S(A) =
γc
γ

A

4`2P
− 1

2
ln
A

`2P
+O(1), (4.1)
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where γc is a number which appears in the counting procedure as we will see
in the following.

4.0.1 The Chern-Simons level problem

In this framework appear a problem related with the level k of the Chern-
Simons theory defined over the surface S. It is clear that this level must be a
positive integer. This fact induces a prequantized area for the horizon surface,

A0 = 4πγ`2Pk, (4.2)

where A0 stands for the area which results from k =
A0

4πγ`2P
. This is precisely

the level which apears in the action for the Chern-Simons theory defined on
the horizon. The problem here is that these values does not belong to the
spectrum of the usual LQG area operator employed in this framework due to
the presence of the terms

√
j(j + 1).

The solution to this mismatch given in the ABCK framework is to define the
entropy in terms of the number of states within a small area interval around
A0. This thesis deals related with the computation of states following this
approach. Other solution could be given for example with the introduction of
a new area operator which could be used in the isolated horizon framework
properly. This is out of the scope of this work but, in particular, it is a very
interesting topic to be studied, see [24].

4.1 Domagla-Lewandowski-Meissner counting

The DLM counting follows the ABCK framework and is based in the following
points:

1. The classical area is quantized in the following way:

A0 = 4πγ`2Pk,

where k is a natural number (the Chern-Simons level).

2. DLM propousal counts states labelled by finite sequences (a1, . . . , an)
given by ai ∈ Zk which are consistent with the projection constraint
for an arbitrary number of punctures. (In this sense this counting is
analogous to the propoused by ABCK).

3. The area operator eigenvalues satisfies the following inequality:

A = 8πγ`2P
n∑
i=1

√
ji(ji + 1) ≤ A0 (4.3)
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Taken into account these points, the counting problem was established in
[18] as follows:

‘The entropy S of a quantum horizon of the classical area A0 according
to quantum geometry and the ABCK framework is S = lnN(A0), where the
number N(A0) is 1 plus the number of all the finite sequences (m1, . . . ,mn)
of nonzero elements of 1

2Z, such that the following equality and inequality are
satisfied:

n∑
i=1

mi = 0,
n∑
i=1

√
|mi|(|mi|+ 1) ≤ A0

8πγ`2P
, (4.4)

where γ is the Barbero-Immirzi parameter of quantum geometry’.

This makes sense because there exist a sequence (j1, . . . , jn) of nonzero
elements of 1

2N consistent with 4.3 for which exists a sequence (m1, . . . ,mn)
such that ai = −2mi mod k and mi ∈ {−ji,−ji + 1, . . . , ji}. So, we can make
the counting just looking for sequences of m labels.

4.1.1 Interval vs inequality

As we can see, in this context we use the inequality

n∑
i=1

√
|mi|(|mi|+ 1) ≤ A0

8πγ`2P
,

instead of the interval [A0 − δ, A0 + δ] originaly proposed in the ABCK
framework. The reason for that is that we are interested in counting only
surface states that do not containt information about the actual area of the
horizon (we can relate only the m labels with the a labels coming from the
Chern-Simons theory, through the projection constraint). The use of the
inequality is well suited because for each m-sequence we always can find a j-
sequence of spins whose asociated area is within a given interval1. The trivial
choice is to take ji = |mi| for each mi.

Moreover, as the relation between a and m is mod k, and the a must satisfy
the projection constraint

∑n
i=1 ai = 0 we have that

n∑
i=1

mi = c
k

2
, (4.5)

1 The proper relation between the interval and the inequality holds for the interval [A0 −
δ, A0], where δ is easyly computed and his minimum value is 4πγ`2P(

√
15 −

√
3). With this

choice the relation between m and a is one-to-one and we can use the inequality instead of
the interval.
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where c is an integer number.
This allows us to make the following chain of inequalities:

A0 = 4πγ`2Pk ≥ 8πγ`2P
n∑
i=1

√
|mi|(|mi|+ 1) > (4.6)

> 8πγ`2P
n∑
i=1

|mi| ≥ 8πγ`2P|
n∑
i=1

mi| = (4.7)

= 4πγ`2Pk|c|. (4.8)

So, we can stablish
∑n
i=1mi = 0 exactly and

∑n
i=1 |mi| ≤ k

2 . This implies that
the relation between m and a is one-to-one, and we can make the counting just
taking into account m-sequences spin components, as we said previosly.

4.1.2 Solution to the combinatorial problem

In a very nice paper Meissner solved the combinatorial problem established by
Domagala and Lewandowski [18]. His solution, in the simplified case where the
projection constraint

∑
imi = 0 is not imposed, relies in the following points:

1. First, he counts the number of arbitrary length m-sequences such that
the area inequality holds. This number is given by:

N(a) = θ(a−
√

3/2)
(

2N(a−
√

3/2) + 2N(a−
√

2) + · · ·
+2N(a−

√
|mi|(|mi|+ 1) + · · ·

+2
[√

4a2 + 1− 1
])

(4.9)

where the a is given by a =
A0

8πγ`2P
, and [· · · ] denotes the integer part.

2. Then he performs a Laplace transform of this expresion obtaining:

P (s) =
2
∑∞
k=1 exp(−s√k(k + 2)/4))

s(1− 2
∑∞
k=1 exp(−s√k(k + 2)/4))

(4.10)

where P (s) is the Laplace transform of N(a) and, in this section, k is
symply 2m for each puncture, in order to work with integer numbers.
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3. Then, by assuming that all the poles of the Laplace transform are distinct
and of finite order, Meissner performs an analytical continuation to the
complex half-plane Re(s) > 0. So, the growth of N(a) is determined by:

N(a) =
∑

si,Re(si)>0

esiares(P (s), si) + subleading (4.11)

4. Finally, the leading term for large areas is determined by the pole sM =
2πγM with zero imaginary part: N(a) = Ce2πγMa,

γM = 0.2375 . . .

The asymptotic value of the entropy given by Meissner is:

S(A0) =
γM
γ

A0

4`2P
+O(lnA). (4.12)

Taking γ = γM we recover the Bekenstein-Hawking entropy.
If one imposes the projection constraint

∑
imi = 0 the asymptotic solution

is quite similar and the final result shows that this constraint has only the effect
of adding a logarithmic correction to the above formula wihtout changing the
value of the BI-parameter:

S =
γM
γ

A0

4`2P
− 1

2
ln(

A0

`2P
) +O(1). (4.13)

4.2 Ghosh-Mitra Counting

In this section we describe an alternative proposal for the identification of the
surface quantum states. For Ghosh and Mitra (GM) [19], these states are
labelled not only by m but also by j labels. This means that these states also
contain information about the actual area of the horizon surface. This option,
of course, does not follow the original ABCK framework. However, we will
treat this option in this thesis because the tools presented here can be used
to perform not only the computation of the black hole entropy for the DLM
but also for the GM proposal. The discusion about the correctnes of this GM
proposal is out of the scope of this work.

Let us present the basis for this option:

1. The states are labelled by pairs (j,m). We have to count configurations of
punctures such that, the j labels give us an area A = 2

∑n
i=1

√
ji(ji + 1)

within the interval [A0−δ, A0+δ]. And the m labels satisfy the projection
constraint (in this section we are going to use units where 4πγ`2P = 1).
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2. We have a number of punctures given by s. We call sj to the number of
punctures which have a given j. So, s =

∑
j sj .

3. Ignoring the projection constraint, the number of states is given by

N =
(
∑
j sj)!∏
j sj !

∏
j

(2j + 1)sj . (4.14)

4. Then, this expresion is maximizing with respect to sj (GM treat these
variables as continuous ones). One can use Stirling’s formula to obtain
finally:

sj = (2j + 1) exp[−λ
√
j(j + 1)]

∑
k

sk (4.15)

5. Summing over j, we obtain a normalization condition,

∑
j

(2j + 1) exp[−λ
√
j(j + 1)] = 1, (4.16)

where λ = γGM/(2π). We can solve this equation, so, in this case,

γGM = 0.274 . . .

The entropy in this approach is given by S = lnN(A0), and the result is,

S =
γGM
γ

A0

4`2P
. (4.17)

As before, in this context one can introduce the projection constraint
and the treatment is similar to the previous one, and again the effect of the
projection constraint is the introduction of a logarithmic correction with the
same coefficient:

S =
γGM
γ

A0

4`2P
− 1

2
ln(

A0

`2P
) +O(1). (4.18)

4.3 Explicit Counting

As we have explained there is an important issue regarding this formalism.
Loop quantum gravity possesses a one parameter family of inequivalent
representations of the classical theory labelled by γ, the BI-parameter (it is the
analogue of the θ ambiguity in QCD [28]). It turns out that the BH entropy
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calculation provides a linear relation between entropy and area for very large
black holes (in Planck units) as,

S = λA(γ),

where the parameter λ is independent of γ and depends only on the counting.
We have put the γ dependence in the area, since the parameter appears
explicitly in the area spectrum. The strategy that has been followed within
the LQG community is to regard the Bekenstein-Hawking entropy S = A/4
as a requirement that large black holes should satisfy. This fixes uniquely
the value of γ = γ0 once and for all, by looking at the asymptotic behavior,
provided that one has the ‘correct counting’ that provides the right value for
γ0. Whenever we have independent tests that call for a specific value of γ, one
should rather find that the value γ0 ‘works’, or else LQG would be in trouble.

The parameter λ above depends on the calculation of the entropy, that
is, on the counting of states compatible with whatever requirements we have
imposed. The matter has not been free from some controversy. In the original
calculations [14] (once isolated horizons were understood to be vital) , the
number of states was underestimated; the entropy appeared to arise from a
special set of states where the contribution to the area from each puncture was
the same and corresponded to that of the minimum spin possible. Later on, it
was realized that this calculation had failed to consider many states [18], and
a corrected analytical estimation of entropy, and value of the Barbero-Immirzi
parameter, was proposed in [18]. Furthermore, a still different calculation
appeared soon afterward [19] which gave yet another value for γ. This situation
suggests that a clear understanding of the black hole formalism and entropy
counting within LQG is needed.

The simplest such test would be just to count states. The purpose of this
section is to present precisely this. We count states, by means of a simple
algorithm, of a quantum black hole within the existing formalism in LQG
[14], compatible with the restrictions that this framework imposes. To be
more precise, we restrict attention to spherical horizons (for which area is
the only free parameter classically) of a fixed horizon area A0 and compute
the number of allowed quantum states, within an interval [A0 − δA,A0 + δA]
that satisfy the following: i) The quantum area expectation value satisfies:
〈Â〉 ∈ [A0 − δA,A0 + δA], and ii) for which a restriction on the quantum
states of the horizon,

∑
imi = 0, is imposed. This last ‘projection constraint’

comes from the consistency conditions for having a quantum horizon that has,
furthermore, the topology of a two-sphere (it is the quantum analogue of the
Gauβ-Bonnet theorem). In the analytical treatments, it has been shown in
detail that, for large black holes (in Planck units), the entropy behaves as:

S =
A

4
− 1

2
lnA,
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provided the BI-parameter γ is chosen to coincide with the value γDLM , that
has to satisfy [18]:

1 =
∑
i

2 exp
(
−2πγDLM

√
ji(ji + 1)

)
. (4.19)

The solution to this transcendental equation is approximately γDLM =
0.2375 . . . [18]. For the GM counting, the condition is [19]:

1 =
∑
i

(2j + 1) exp
(
−2πγGM

√
ji(ji + 1)

)
. (4.20)

whose solution is approximately γGM = 0.273908 . . . [19].
Thus, there are two kind of tests one can make. The first one involves

the linear relation between entropy and area that dominates in the large area
regime. This provides a test for the value of the BI parameter. The second test
has to do with the coefficient of the logarithmic correction (−1/2), a subject
that has had its own share of controversy. The analytical results show that
this coefficient is independent of the linear coefficient and arises in the counting
whenever the

∑
imi = 0 constraint is imposed.

In order to test the validity of the logarithmic correction and its relation
to the constraint, we fix the value of the parameter γ = γ0 and compute
the number of states, both with and without the projection constraint. We
subtract this functions and compare the difference with logarithmic functions.
We look for the coefficient that provides the best fit. Once the logarithmic
coefficient is found and the independence of the asymptotic linear coefficient
is established, we perform a variety of countings for different values of γ, both
with and without the projection constraint, and consider the slope c of the
resulting relation S = cA, as a function of γ. For the function c(γ) we look for
the value γ̃ for which c(γ̃) = 1/4.

Another separate issue that one would like to consider is the applicability
of the formalism for ‘small’ black holes. The isolated horizons boundary
conditions are imposed classically in the variational principle, which means
that the horizon is assumed to exist as a classical object. A natural question
is whether the resulting picture can be trusted for small black holes, not far
from the Planck regime where strong quantum gravity effects can be expected
to appear. Another related question one might try to answer is the ‘scale’
at which the quantum horizon entropy approaches the expected form derived
from semi-classical/large horizon area approximation. As we shall see, even
when the limited computing power at our disposal, we shall be able to answer
partially some of these questions.

The remainder of this section is as follows. In subsec. 4.3.1 we shall describe
the algorithm that implements the counting of states. Subsec. 1.3 is devoted
to describing the results found. We end this section with a discussion in
subsec. 4.3.3.
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4.3.1 The Counting

In this subsection we will focus only on the GM counting for simplicity; for
a complete description for the DLM case see [39]. In the next section of this
chapter we will compare both countings.

Counting configurations for large values of the area (or mass) is extremely
difficult for the simple reason that the number of states scales exponentially.
Thus, for the computing power at our disposal, we have been able to compute
states up to a value of area of about A = 550 `2P (recall that the minimum
area gap for a spin 1/2 edge is about a0 ≈ 6 `2P, so the number of punctures
on the horizon is below 100). At this point the number of states exceeds
2.8 × 1058. In terms of Planck masses, the largest value we have calculated
is M = 3.3MP . When the projection constraint is introduced, the upper
mass we can calculate is much smaller, given the computational complexity of
implementing the condition. In this case, the maximum mass is about 1.7MP .

It is convenient to describe briefly what the program for counting does.
What we are using is what it is known, within combinatorial problems, as a
brute force algorithm. This is, we are simply asking the computer to perform
all possible combinations of the labels we need to consider, attending to the
distinguishability -indistinguishability criteria that are relevant [14], and to
select (count) only those that satisfy the conditions needed to be considered
as permissible combinations, i.e., the area condition and the spin projection
constraint. An algorithm of this kind has an important disadvantage: it
is obviously not the most optimized way of counting and the running time
increases rapidly as we go to little higher areas. This is currently the main
limitation of our algorithm. But, on the other hand, this algorithm presents
an equally important advantage, and this is the reason why we are using it: its
explicit counting guarantees us that, if the labels considered are correct, the
result must be the right one, as no additional assumption or approximation
is being made. It is also important to have a clear understanding that the
algorithm does not rely on any particular analytical counting available. That
is, the program counts states as specified in the original ABK formalism [14].
The computer program has three inputs: i) the classical mass M (or area
A0 = 16πM2), ii) the value of γ, and iii) the size of the interval δA.

Once these values are given, the algorithm computes the level of the horizon
Chern Simons theory k = [A0/4πγ] and the maximum number of punctures
possible nmax =

[
A0/4πγ

√
3
]

(where [·], indicates the principal integer value).
At first sight we see that the two conditions we have to impose to permissible
combinations act on different labels. The area condition acts over j’s and
the spin projection constraint over m’s. This allows us to first perform
combinations of j’s and select those satisfying the area condition. After that,
we can perform combinations of m’s only for those combinations of j’s with
the correct area, avoiding some unnecessary work. We could also be allowed
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Fig. 4.1: The entropy as a function of area is shown, where the projection constraint
has not been imposed. The BI is taken as γ = 0.274 and the area in Planck
units.
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Fig. 4.2: Entropy vs Area (in Planck units) with and without the projection
constraint. Whe have choosen δA = 0.5.

to perform the counting without imposing the spin projection constraint, by
simply counting combinations of j’s and including a multiplicity factor of∏
i(2ji + 1) for each one, accounting for all the possible combinations of m’s

compatible with each combination of j’s. This would reduce considerably the
running time of the program, as no counting over m’s has to be done, and will
allow us to separate the effects of the spin projection constraint (that, as we will
see, is the responsible of a logarithmic correction). It is very important to notice
at this point that this separation of the counting is completely compatible with
the distinguishability criteria.

The next step of the algorithm is to consider, in increasing order, all the
possible number of punctures (from 1 to nmax) and in each case it considers
all possible values of ji. Given a configuration (j1, j2, . . . , jn) (n ≤ nmax), we
ask whether the quantum area eigenvalue A =

∑
i 8πγ

√
ji (ji + 1) lies within

[A0 − δA,A0 + δA]. If it is not, then we go to the next configuration. If the
answer is positive, then the labels m’s are considered as described before. That
is, for each of them it is checked whether

∑
mi = 0 is satisfied.
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Fig. 4.3: Entropy vs Area with and without the projection constraint for an area
interval δA = 2.

4.3.2 Results

Let us now present the results found. We shall separate this section in two
parts. In the first one, we shall focus on the logarithmic correction, that is,
in the results obtained when considering the spin projection constraint. In
the second part, we shall report on the asymptotic linear relation that yields
information about the BI-parameter.

Logarithmic Correction

In figure 4.1, we have plotted the entropy, as S = ln(# states) vs the area A0,
where we have counted all possible states without imposing the

∑
imi = 0

constraint, and have chosen a δA = 0.5. As it can be seen, the relation is
amazingly linear, even for such small values of the area. When we fix the
BI parameter to be γ = γ0 = 0.274, and approximate the curve by a linear
function, we find that the best fit is for a slope equal to 0.2502.

When we include the projection constraint, the computation becomes more
involved and we are forced to consider a smaller range of values for the area
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of the black holes. In Figure 4.2, we plot both the entropy without and with
the projection constraint, keeping the same δA. The first thing to note is that
for the computation with the constraint implemented, there are some large
oscillations in the number of states. Fitting a straight line gives a slope of
0.237. In order to reduce the oscillations, we increased the size of δA to δA = 2.
The result is plotted in Figure 4.3. As can be seen the oscillations are much
smaller, and the result of implementing the constraint is to shift the curve down
(the slope is now 0.241). In order to compare it with the expected behavior
of S = A/4− (1/2) lnA, we subtracted both curves of Figure 4.3, in the range
A = [50, 160], and compared the difference with a logarithmic function. The
coefficient that gave the best fit is equal to −0.4831 (See Figure 4.4). What can
we conclude from this? While it is true that the rapidly oscillating function is
far from the analytic curve, it is quite interesting that the oscillatory function
follows a logarithmic curve with the “right” coefficient. It is still a challenge
to understand the meaning of the oscillatory phase. Even when not conclusive
by any means, we can say that the counting of states is consistent with a (n
asymptotic) logarithmic correction with a coefficient equal to (−1/2).

Barbero-Immirzi parameter

Let us now assume that the logarithmic correction is indeed there and that,
as the analytical calculations suggest [18, 19], the projection constraint does
not have any affect on the coefficient of the linear term, that is, on the BI-
parameter. With this in mind, we have performed a variety of countings for
different values of γ, without the projection constraint, and considered the
slope c of the resulting relation S = cA, as a function of γ. For the resulting
function c(λ) we looked for the value γ̃ for which c(γ̃) = 1/4. This is shown in
Figure 4.5.

In order to find this value, we have interpolated the curve and found the
value γ̃ = 0.2743691 for which the slope is equal to 1/4. It is hard not to note
that the value of γ̃ is amazingly close to the value γ0 found analytically.

When we repeat this procedure including the
∑
imi = 0 constraint, just to

have a rough idea, we have computed for a limited range of mass (in steps of
0.1) and for a variety of γ in [0.18, 0.4], in steps of 0.01 and have plotted the
results in Figure 4.6. The value γ′ where the curve crosses 1/4 is γ′ = 0.2552,
which is still far from the GM value (which one expects to get for larger BH),
What is amazing is that, even when considering only these Plank size horizons,
one can confidently say that there is an asymptotic linear relation between
entropy and area and that the relevant coefficient is consistent only with the
value of the BI parameter γ0 = 0.27398, as found in [19].
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Fig. 4.4: The curves of Fig. 4.3 are subtracted and the difference, an oscillatory
function, shown in the upper figure. The curve is approximated by a
logarithm curve in the lower figure.
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Fig. 4.5: The slope of the entropy area line is plotted as function of the BI-parameter
without the projection constraint.
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Fig. 4.6: The slope of the entropy area curve is plotted as function of the Barbero-
Immirzi parameter with the projection constraint implemented.
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4.3.3 Discussion and Outlook

Within loop quantum gravity, the issue of which states should be counted when
computing the black hole entropy is a pressing one. The formalism for treating
boundary conditions and the quantum horizon geometry established in [14]
provides a clear and precise framework. This includes an unambiguous answer
as to which states are to be distinguished and which are to be considered
undistinguishable. In this section, we have followed a direct application of the
formalism and have counted, using a simple algorithm, the states that satisfy
the conditions and that yield an area close to a specified value A0. What we
have learned can be summarized as follows:

i) When we do not impose the projection constraint we find that, very
rapidly, the entropy area relation becomes linear.
ii) The BI parameter that yields the desired agreement with S = A/4 is given
by the value γ0 = 0.27398 . . ., for the GM counting, and 0.2375... for the DLM.
iii) When the projection constraint is incorporated, which analytically gives
the logarithmic correction, the curve gets shifted down and exhibits some
oscillations, but follows on average the expected curve with the predicted
coefficient −1/2 for both countings.
iv) For the rather small value of the BH area computed, and for γ = γ0, the
total entropy seems to approach a linear relation with a ratio S/A approaching
1/4 from below, which is what one expects due to the logarithmic correction.

It is important to emphasize that the procedure followed here, in the
algorithm implemented, is not assuming any of the analytical estimations
available, but rather performing a direct counting by brute force of the
microstates consistent with the macroscopic requirements and thus, responsible
for the Black Hole entropy. Moreover, we can perform this procedure for the
DLM setting and one find the correct value for the BI-parameter within this
framework.

Even when the results presented here shed light on the relation between
entropy and area, and the BI-parameter, one still needs more work to have
completely conclusive results. In particular, more computing capacity to go
further in the range of values analyzed is required.

Furthermore, the oscillations found in the entropy area relation will be
explained in the next section. For instance, it is important to determine
whether there there is some area scale set by the oscillations found in the
entropy area relation. To this effect, we have found the frequency that best
approximates the oscillations, and the frequency in areas gives an area scale of
δAosc = 2.407 `2P. It remains a challenge to find an explanation for this scale.

It could also happen, for instance, that the thermodynamic quantities such
as temperature (that is usually associated with T = ∂M/∂S), and the specific
heat get modified as one approaches the Planck scale. The usual, classical
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relation between mass and entropy (using the relation S = A/4) implies that a
Schwarzschild black hole has negative specific heat; as the energy of the Black
Hole decreases, the temperature increases, making the system unstable. One
could imagine, for instance, that the oscillations here found (that are seen to
decrease for larger black holes), make the specific heat positive as one decreases
the area for some (small) value and, thus, would ‘stabilize’ the black hole.
Another intriguing possibility would be to learn something from this formalism
(tailored for large equilibrium systems), about the evaporation process of small
black holes and the issue of information loss.

4.4 Black hole entropy discretization

It has long been argued by Bekenstein that the proportionality between entropy
and area, for large, classical black holes, can be justified from the adiabatic
invariance properties of horizon area when subject to different scenarios (see [35]
for a review). Further heuristic quantization arguments lead to the suggestion
that area, when quantized, should have a discrete, equidistant spectrum in the
large horizon limit,

An = α `2P n , (4.21)

with α a parameter and n integer. The relation between area and entropy that
one expects to encounter in the large horizon radius is then extrapolated to
the full spectrum. This would imply that entropy too would have a discrete
spectrum, a property that might also be expected if entropy is to be associated
with (the logarithm of) the number of microstates compatible with a given
macrostate. When this condition is imposed, then the area is expected to have
an spectrum of the form,

An = 4 `2P ln(k)n , (4.22)

with k and n integers [35]. Even when appealing and physically well motivated,
these arguments remain somewhat heuristic and have no detailed microscopic
quantum gravity formalism to support them, (see however [24])

There is however an obvious inconsistency between loop quantum gravity
and Bekenstein’s considerations: the area spectrum in LQG is not evenly
spaced. On the contrary, the LQG area spectrum is given by,

A =
∑
i

8πγ `2P
√
ji (ji + 1) , (4.23)

where ji are semi-integers and the sum is taken over all the punctures i at
the horizon. The spectrum (4.23) is not only not equidistant, but it can be
expected that the eigenvalues accumulate for values of A large in Planck units,
given they do for the general area spectrum [29].
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The inconsistency between loop quantum gravity and Bekenstein’s heuristic
arguments seemed to become less relevant when Dreyer noted [36] that LQG
might also be consistent with the constraints imposed by asymptotically
damped quasi-normal modes, as Hod had previously conjectured [37] within
the Bekenstein’s formalism. The idea is that the asymptotic frequency of these
classical modes would correspond to the energy of horizon quanta through the
standard relation E = ~ω. This requirement would then imply that, in the
Bekenstein approach, black holes have an equidistant spectrum given by

A = 4 `2P ln (3)n ,

whereas, in the LQG approach, a minimum area gap, associated to the quantum
transition, would be given by a0 = 4 `2P ln (3) (this requirement implies a
particular choice of γ involving ln (3)). Even when not fully consistent (area
spectrum continues to be different), the appearance of a ln (3) factor seemed
to be more than just a coincidence. This initial expectation was however
lowered when it was shown that the entropy calculation in LQG gave a different
proportionality factor between entropy and area that called for a different value
of the BI-parameter that was no longer compatible with Hod’s considerations
[18, 19]. For a new an interesting propousal see [24]

The purpose of this section is to show that there is indeed a deep relation
between entropy within the LQG formalism and Bekenstein’s heuristic picture
(supplemented by Hod’s conjectures), even when the relation is much more
subtle than it was originally conceived. To be precise, we shall show that
a detailed analysis of the number of states compatible with the macroscopic
conditions imposed on small, Planck size black holes within the LQG approach
yields, when appropriately interpreted, a functional form of the entropy as
function of horizon area that realizes in a precise manner Bekenstein’s picture.
The coincidence turns out to be not only qualitative, but it also incorporates
two numbers that are important for both formalisms, namely ln (3) and the
value γ0 of the BI-parameter (that recovers the Bekenstein-Hawking relation
S = A/4 for large black holes).

We have computed the number of states compatible with a horizon of area
A0 using the formalism developed in [14], that specifies which states have to be
counted. We performed the counting using a simple algorithm described briefly
in the previous section. In the entropy computation within the micro-canonical
ensemble, one resorts to the usual prescription of counting states whose area
eigenvalues A = 〈Â〉 lie in an interval [A0 − δA,A0 + δA], and where a total
projection constraint

∑
imi = 0 is imposed such that the horizon geometry

is the quantum version of an isolated horizon [14]. The parameter δA that
fixes the interval is normally assumed to be of the order of Planck area. As
we have explained the entropy, as function of area A has some oscillatory
behavior, whose amplitude depends on δA but with a constant periodicity
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Fig. 4.7: The (ln of the) number of states as a function of area is shown. The
Barbero-Immirzi parameter is taken as γ = 0.274 from [19] and [38]. The

interval [A0 − δ̃A,A0 + δ̃A] is taken to be rather small (δ̃A = 0.005 `2P) so
that one is effectively counting the number of states as function of area. The
area is shown in Planck units. Note that this does not represent the entropy,
given that the interval is very small in Planck units.
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that is independent of δA. Here we have taken further the analysis of this
behavior in order to unravel the structure of these oscillations. As a first step
we have taken a rather small interval δ̃A = 0.005 (in Planck units) with a
point separation of 0.01, in order to isolate the ‘spectrum’ of the quantum
black hole. Note that with this choice, one is covering the full set of values of
area, without the intervals overlapping, and what one is doing is to separate
the total number of black hole states in different ranges of area, as is done when
drawing a histogram. The resulting number is not then employed to determine
the entropy (for which a much langer δA is employed). The results are plotted
in Fig. 4.7 and Fig. 4.8. The oscillatory behavior found in the entropy, as
well as the patterns shown in these figures have a period of ∆A0 = 2.41 `2P
approximately.

The next step was to compute the entropy by counting the number of states
within a given interval of area, with the choice that the size of the interval
coincide with the periodicity of the oscillations, namely 2 δA = ∆A0. The
resulting entropy is plotted in Figures 4.3 and 4.4 where more details can be
appreciated.

Let us now discuss the results. From Figures 4.1 and 4.2 it is clear that
the spectrum of the quantum black hole has some new and non-trivial features.
Specially noteworthy is the periodic structure that arises when looking at this
rather small scale (recall that each Planck area is covered by 100 intervals
and thus corresponds to 100 points in the graph). The appearance of these
‘mountain like’ structures, that are also periodic with the same period as
the oscillations could not have been inferred from the oscillations in the
entropy function. Thus, the periodicity of the entropy area relation has to
be associated with these new structures in the spectrum and not with other
features such as the change in the number of punctures, a simple transition
involving creation/annihilation of edges puncturing the horizon, or any other
‘naive’ explanation of that sort. It is certainly intriguing that this new length
scale appears, that as we would like to emphasize, is not related to any other
scale previously found in LQG.

Motivated by these considerations, it was natural to explore the entropy
counting with an area interval δA given by this new scale 2δA = ∆A0. The
results, shown in Figures 4.3 and 4.4 are quite unexpected. The oscillations
that are found for all other values of δA disappear and instead, one is left with
a ‘ladder’ in the entropy vs area graph.

The first conclusion from this graph, is that if one interprets the (ln of the)
number of states as physical entropy then there are regions where the area
changes but the entropy remains constant. Any quantum transition between
those states would then correspond, in a precise sense, to an adiabatic process.
Furthermore, we see that entropy (and not area) has effectively only a discrete
number of possible values it can take. This is precisely the conclusion that
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Fig. 4.8: The same as Fig. 4.1 but more detail is shown.
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Fig. 4.9: The entropy as a function of area is shown, where the projection constraint
has been imposed, the Barbero-Immirzi parameter is taken as γ = 0.274
and δA is taken to coincide with 1/2 of the period of the oscillations in the
number of states ∆A0.
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one can draw from Bekenstein’s argument, namely that entropy should be
equidistant for large black holes. Even when it can not be fully appreciated
from the figures, what we observe is that the ladder is not completely regular
for small black holes; the height of the ladder seems to increase, as the black
holes grow, approaching a constant value for larger black holes. Thus, what
we see that there is an emergent picture for small black holes within LQG
that is consistent with Bekenstein’s model. Furthermore, the manner in which
the discrete equidistant values emerge is much more subtle than just assuming
an equidistant area spectrum. From our perspective, it is a rather non-trivial
result that loop quantum gravity does accommodate Bekenstein’s picture for
quantum black holes in such a subtle way.

In order to study the dependence of the period of both area and entropy on
the value of γ, we performed a series of runs of the code with different values
of the parameter γ. For the area, we found that the period is indeed linearly
dependent with γ as has the following (conjectured) dependence:

∆A ≈ 8 γ`2P ln (3) . (4.24)

The plot in Figures 4.3 and 4.4 were drawn for the value γ0 ≈ 0.274 . . . of
the parameter that reproduces the Bekenstein-Hawking relation S = A/4 in
the large area limit (see [19] for details). The fact that the periodicity in area
depends on the value of the Barbero-Immirzi parameter is not surprising since
the operator and therefore its eigenvalues depend on it.

For the entropy, we have made the same estimations and the result is
somewhat intriguing: the asymptotic size of the steps found in the entropy
do not seem to depend on the value of the Barbero-Immirzi parameter γ. That
is, if the conjectured numerical value of the area scale (4.24) is true, then what
we find is an universal value in which the entropy is quantized, namely

∆S ≈ 2 γ0 ln (3) . (4.25)

It is certainly remarkable that, as black holes become large, entropy seems to be
quantized in integer units of a quantity that contains both ‘key’ numbers: for
the heuristic Bekenstein model, ln (3), and for loop quantum gravity, the value
γ0 of the BI parameter. The precise form of the entropy spectrum is slightly
different from Eq. (4.22) (where ∆S = ln (3)), but one should also be aware
that the relation (4.22) was arrived at by means of plausibility arguments rather
than a hard core derivation. The conjectured entropy quantization condition
derived from (4.25).

The main features we have found here about the quantum horizon system,
namely the existence of a pattern in the black hole spectrum with a periodicity
that permeates to the entropy area relation, and the appearance of a new scale
associated with this period, could in principle be ‘generic’. That is, one might
imagine that these features are common to many quantum systems with a
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Fig. 4.10: Same as Fig. 4.3 but more detail is shown
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finite number of degrees of freedom. In order to rule out this possibility we
have repeated the analysis for a quantum horizon in which the area spectrum
is equidistant and given by A′ = 8πγ `2P

∑
i ji (an operator that has been

suggested within LQG as well, see [16]). This would also correspond to the case
(modulo a constant) of N decoupled harmonic oscillators in the micro-canonical
ensemble. Perhaps not unexpectedly, we have seen that the black hole spectrum
is in this case equidistant with an area separation of ∆A′ = 8π γ `2P, which
corresponds to the increase in area when one adds a couple of punctures (the
projection constraint

∑
imi = 0 prevents one from having an odd number of

punctures that have the minimum allowed spin, namely 1/2). There is no non-
trivial periodic patterns in the spectrum and the entropy has discrete jumps
that are directly associated to the fact that the area spectrum is equidistant.

Another possibility is that this behavior is a consequence of the particular
counting procedure used, and that a different one [18] might not have the
same properties. We have performed the counting using that procedure and
have found the results to be robust: the entropy has discrete jumps and the
relations 4.36 and 4.25 continue to be valid. Details will be discussed in the
next section.

We will show there that the non-triviality of the loop quantum gravity
area spectrum 4.23 is what brings the new and unexpected features to the
entropy vs area relation that we have reported in this discussion, and is therefore
responsible for black hole entropy quantization. Needless to say, these results
can only be a hint of a deeper structure involving gravity, thermodynamics and
the quantum that remains to be unravelled.

4.5 Toward understanding the band structure

As previously stated, two inequivalent proposals [18, 19] for characterizing
the black hole degrees of freedom have received most of the attention. It is
interesting that, within both of them, the problem of computing the black hole
entropy can be reduced to a well defined combinatorial problem.

To exactly solve this combinatorial problem is, however, a rather non
trivial task and, in order to obtain analytical solutions, some approximations
have to be made. In particular the large area approximation permits to
perform an analytic counting of the black hole microstates [18, 19]. Using this
approximation the theory reproduces the semiclassical proportionality relation
between entropy and area and gives an additional logarithmic term with a −1/2
coefficient,

S(A) =
γc
γ

A

4`2P
− 1

2
ln
A

`2P
+O(1) , (4.26)

where γc is a numerical constant obtained from the counting. Fixing γ to be
equal to γc ensures consistency with the Bekenstein-Hawking entropy law for
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large areas. An important fact is that both definitions for the horizon states
to be considered agree with (4.26), the only difference being the value of γc.

Alternatively, the complexity of the combinatorial problem can be overcome
by telling a computer to make an exact counting by explicitly enumerating
all states. Though the exponentially growing number of states limits the
counting to modest black hole sizes (a few hundred Planck areas), the results
in this regime agree with the analytical computations in the large area limit.
Even more, this direct computation reveals a richer behavior shown by the
spectrum when avoiding any approximation. The most degenerate quantum
configurations accumulate around certain evenly spaced values of area, with a
much lower degeneracy in the regions between those values, thus giving rise
to an effective “quasidiscrete” equidistant area spectrum, despite the fact that
the area spectrum in LQG is not equidistant. Furthermore, this phenomenon
is independent on the particular choice for the characterization of the horizon
degrees of freedom. This result provides a contact point between LQG and the
Bekenstein’s conjecture [35] and has important consequences for the physical
properties of black holes, such as the entropy, which displays an effective
discretization [43], or Hawking radiation, that could carry some quantum
imprints coming from the horizon structure at the Planck scale [22].

This “band structure” arising in the black hole area spectrum of LQG calls
for a more intuitive explanation, unraveling the origin of this phenomenon
from the theory. This is the main goal of the present section. A recent
work in this direction has been done by Sahlmann in [20], where he gives
some quantitative information about the black hole area spectrum. In this
section we will follow a rather different approach. Despite the complexity of
the combinatorial problem, which makes a meticulous analysis unfeasible, the
states can be properly handled by attending to a few properties that allow us
to obtain the most relevant qualitative and quantitative information about the
area spectrum, shedding some light on its behavior. In particular, this approach
will help us to understand qualitatively the origin of the “band structure” and
will also allow us to compute analytically the value of area corresponding to
each “peak” of degeneracy.

We have organized the rest of the section as follows. In sections 4.5.1 to 4.5.4
we review the previous works, paying special attention to the aspects related
with our arguments, and establishing the notation we are going to use, while
sections 4.5.5 and 4.5.8 contain the main body of the present work. Section
4.5.1 is devoted to set up the combinatorial problem. In section 4.5.2 some
previous analytical results are presented. Section 4.5.4 contains a summary
of the computational results that showed the behavior that we are going to
analyze. We present our qualitative picture and our quantitative analytical
computations in section 4.5.5. The main results are analyzed in section 4.5.8.
We finally conclude with an outlook in section 4.5.9.
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4.5.1 Counting and labeling choices

Let us sumarize the issue we are discussing. As we have stablished before
in the isolated horizon (IH) framework in LQG black holes are treated in an
effective way, since they are introduced from the outset as an inner boundary
of the spacetime manifold before the quantization procedure is carried out (see
[14, 11] for details). Isolated Horizon boundary conditions are then imposed,
which translate into quantum boundary conditions after the quantization
procedure. The horizon states are described by a U(1) quantum Chern-
Simons gauge theory, while gravitational degrees of freedom of the bulk are
represented by spin networks, a set of edges with spin-like quantum numbers
(j,m) (j ∈ Z/2,m ∈ {−j,−j+1, ..., j}) that intersect to each other at vertices.
When an edge of the spin network pierces the horizon creating a puncture, it
endows it with a “quantum” of area given by

a(j) = 8πγ`2P
√
j(j + 1) , (4.27)

where j is the corresponding label of the edge, and with a quantum of curvature
given by the label m (since the Isolated Horizon boundary conditions relate this
label with the U(1) Chern-Simons states on the horizon surface). Then, the
quantum states of a black hole with area A must satisfy that the sum of the
contribution to the area from each puncture equals the total horizon area,

A = 8πγ`2P

p∑
i=1

√
ji(ji + 1) , (4.28)

where p is the number of punctures on the horizon. Also a condition coming
from the fact that the horizon is spherical must be imposed. This is∑

i

mi = 0 , (4.29)

which is called “projection constraint”. The problem of counting the black hole
microstates that account for its entropy is now reduced to a mathematically
well defined combinatorial problem which can be stated as:

How many different configurations of labels distributed over a set of
distinguishable2 punctures are there, for all possible finite numbers of punctures,
such that the constraints (4.28) and (4.29) are satisfied?

There exists a certain ambiguity at this point, since there are two proposals
concerning which labels have to be considered to account for all microscopic

2 The fact that punctures are distinguishable has its origin in some subtleties related with
the action of diffeomorphisms during the quantization procedure, and plays a key role in the
combinatorial problem.
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Tab. 4.1: Comparison between the DLM and GM countings

DLM GM
Labels mi (ji,mi)
Area 8πγ`2P

∑
i

√|mi|(|mi|+ 1) 8πγ`2P
∑
i

√
ji(ji + 1)

Projection constraint
∑
imi = 0

∑
imi = 0

Entropy S(A) = γDLM
γ

A
4 − 1

2 lnA S(A) = γGM
γ

A
4 − 1

2 lnA
BI parameter γ = γDLM = 0.23753 γ = γGM = 0.27407

configurations. The issue of which is the proper counting is, however, beyond
the scope of this thesis, as the behavior that we want to analyze is obtained
within both of them.

The first of the two proposals was done by Domagala and Lewandowski in
[18] and was complemented by Meissner in [18]. There, it is claimed that the
horizon states are given by punctures carrying only the mi labels (as these are
the labels related to the horizon states through the IH boundary conditions).
The constraint (4.28) is then reinterpreted in terms of |mi|.

The second proposal is due to Ghosh and Mitra [19], and it considers that
both labels, ji and mi, characterize the horizon quantum states. In this case,
both constraints (4.28) and (4.29) can be imposed as written above. The
structure, results and main differences between both models can be seen in
Table 4.1.

For the purpose of this section, we need to deal with the labels related to
area, so we will call this labels generically si, in such a way that the si will
correspond to |mi| in the first case and to ji in the second one. Furthermore,
for the sake of simplicity, we will deal only with integer numbers, so that we
will take si = 2|mi| or si = 2ji in each case. Then, in the DLM case, there will
be two possible values of mi for each si, namely {− si2 , si2 }, while in the GM one
the possible values of mi will be {− si2 ,− si2 + 1, ..., si2 }, so there will be si + 1
values of mi for each si. This will be the only difference that we will have to
introduce in our arguments in order to account for both counting models.

4.5.2 Previous analytical results

In this section we review briefly the previous analytical results on the counting
of black hole microstates [14, 18, 19] present in the literature. When addressing
the combinatorial problem described in the previous section, a key point is to
consider that punctures are distinguishable, as shown in [14]. With this in
mind, one should consider all possible orderings of labels over punctures. But
given a certain configuration of si labels, all possible reorderings give rise to
states with exactly the same area. One can then characterize a configuration
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just by fixing the number ns of punctures that take each particular value of s
and introducing all possible orderings as a certain degeneracy associated with
this configuration. Thus, in the remainder of the section, a given set of numbers
{ns}smaxs=1 (where smax is the maximum value of s) will be called configuration.
A configuration will be permissible if it satisfies the constraint (4.28), which in
terms of ns reads

4πγ`2P
k∑
s=1

ns
√
s(s+ 2) = A . (4.30)

Then, in order to consider all quantum states contained in a given configuration,
one has to take into account the degeneracy coming from two sources:

• one due to all possible reorderings of the {si} labels over punctures,

• and the other coming from all possible combinations of the mi labels
associated to each configuration satisfying the constraint (4.29).

The difference between the two possible countings is contained in this
last term. For the only reason of being able to explicitly write down some
expressions, we are going to consider for the moment the term corresponding
to the GM counting. One can then write the degeneracy associated to a given
configuration {ns}smaxs=1 as:3

d(n1, ..., nsmax) =
(
∑
s ns)!∏
s ns!

∏
s

(s+ 1)ns , (4.31)

where sums and products run from s = 1 to smax. In the above expression
the projection constraint is not being introduced, but this fact will not affect
the results that we are going to obtain in the remainder of the section. This
degeneracy was studied in [19], where the question of which are the values of
ns that give rise to the maximal value of degeneracy, for a fixed value of area,
was addressed.

The degeneracy d(n1, ..., nsmax) (or equivalently ln d(n1, ..., nsmax)) is max-
imized by varying ns subject to the constraint (4.30), which is introduced via a
Lagrange multiplier. This maximizing process can be easily worked out in the
large area limit, where the variables ns � 1 can be considered as continuous.
The variational problem is then easily solved by using Stirling’s approximation,
which gives the result4

n̂s =
ns∑
s ns

= (s+ 1)e−λ
√
s(s+2) , (4.32)

3 The factor (s+ 1)ns is the one accounting for all the possible values of mi associated to
each si, so in order to make the analysis for the counting of [18] it will be enough to change
this term by 2ns

4 Although the equivalent expression obtained in [18] was presented on the basis of different
considerations, it can also be given the same interpretation of a degeneracy maximizing
distribution.
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where for consistency, λ must satisfy the “normalization condition”

smax∑
s=1

(s+ 1)e−λ
√
s(s+2) = 1 . (4.33)

Numerical solutions of this equation, in the large area limit (smax � 1)
gives λGM = 0.861006 ( or λDLM = 0.746232 in the case of the other counting
proposal).

We will call this n̂s distribution the Maximal Degeneracy Distribution5

(MDD), and it will play a pivotal role from now on. Besides, it was shown
in [18, 19] that the introduction of the projection constraint does not modify
this distribution, so despite one starts without imposing it, the results can be
considered as including this constraint.

It is worth noting that, in the MDD, the proportions between the
different ns are maintained for different values of area (the values of ns grow
proportionally), and then the values of n̂s are independent of area. When
plotting n̂s (Figure 4.11), an interesting behavior is observed. Although the
largest contribution comes from the smallest value of s (which contributes with
approximately one half of the punctures), the contribution of the next few
values of s is also significant. Nevertheless, the MDD shows an exponential
decrease as s grows, so for s larger than the smallest few values the contribution
will become negligible.

Once the MDD has been obtained, the total number of quantum states for
a given value of area can be computed. The result is [18, 19]

d =
α√
A/`2P

exp (
λ

4πγ`2P
A) , (4.34)

where α ∼ O(1). It is seen that the number of quantum states grows
exponentially with area; the extra factor A−1/2 appears due to the introduction
of the projection constraint (4.29). From this the entropy can be computed,
obtaining

S(A) =
λ

πγ

A

4`2P
− 1

2
ln
A

`2P
+O(1) . (4.35)

This result verifies the semiclassical Bekenstein-Hawking entropy formula
for large areas provided that γ = λ/π. Substituting the value of λ for
each counting the corresponding values for the Barbero-Immirzi parameter are
obtained

γGM = 0.274066858 , γDLM = 0.237532958 .
5 We will use the term distribution as opposed to configuration, in the sense that it gives

the proportions between the different ns instead of the absolute value of each ns. We will
use this terminology in the next sections.
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Fig. 4.11: The n̂s given by the Maximal Degeneracy Distribution (MDD) is plotted
as a function of s. The relevant contribution of the lower values of s and
the exponential decrease as s grows are observed.

4.5.3 Large area limit

In the previous computations the large area approximation was involved.
However, one can wonder about the meaning of “large area” in this context. If
one looks at the normalization condition (4.33), it is easy to see that the value
of λ obtained from it depends on the value of smax to which we are summing up.
Then, as the value of smax depends on the area, we have a λ that is a function
of area. Nevertheless, if one studies the function λ = λ(A) (or equivalently
λ = λ(smax), as shown in Figure 4.12), one sees that the value of λ grows very
quickly and saturates the asymptotic value for relatively small values of smax
(for smax around 12 the value of λ only differs from the asymptotic value in
a 0.006%). But this value of smax corresponds to values of area around 45`2P.
So for areas larger than that, we can say that we are already in the large area
limit, as far as the distribution (4.32) is concerned.

4.5.4 Previous computational results

In the previous section, some approximations were employed in order to count
the number of quantum microstates compatible with a macroscopic black hole.
One can legitimately be worried about the fact that this approximations could
be hiding part of the richness of the problem. Fortunately, in spite of its
intrinsic complexity, an exact counting can be performed to see whether there
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Fig. 4.12: The value of λ as a function of smax is plotted, and compared with the
asymptotic value.

is a richer structure in the spectrum or not. This can be done by means of
an explicit enumeration computational algorithm. The strategy is to generate
systematically all possible combinations of labels (for any possible number of
punctures), and to check one by one whether it satisfies the required conditions.
Then, by explicitly enumerating all states, one can make an exact counting
of the black hole quantum configurations (for a given value of area) in this
framework. This was done in [38, 43]; here we are going to review the main
results obtained there and in subsequent work. Even when such an exact
counting can be done, the price to pay for overcoming the complexity of
the problem with an explicit enumeration is a severe restriction to the black
hole sizes that can be analyzed due to the huge number of configurations
to be counted. For that reason, the available computing power allowed to
analyze black holes up to just a few hundred Planck area sizes. However,
these computations were enough to confirm the results of the previous sections,
namely the exponential growth of the number of states with area and, when
imposing the projection constraint, the factor A−1/2. The fact that this results
are compatible with the analytical computations gives one some confidence in
the interest of performing such a counting even though, due to computational
limitations, one is restricted to work in a small horizon area regime, far below
the large area limit in which the Isolated Horizon framework in LQG was
originally formulated.

But besides confirming the previous analytical results, the exact counting
showed a much richer behavior in the black hole area spectrum [43]. It
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Fig. 4.13: Plot of the degeneracy (number of different horizon states in each area
interval of 0.01l2P). States accumulate around some equidistant values of
area, exhibiting a band structure.

was found that the black hole quantum states are distributed according to
a “band structure” in terms of the area. The most degenerate configurations
cluster around evenly spaced values of area, giving rise to equidistant peaks
of degeneracy, with some orders of magnitude less degeneracy in the regions
between them (Figure 4.13). This fact gives rise to an effective equidistant
quantization of the black hole area in LQG, even when the area spectrum in
the theory (4.27) is not equidistantly quantized. The most relevant quantitative
information about this phenomenon is the fundamental area gap between peaks,
which is given by

∆A = γχ`2P , (4.36)

where χ was estimated to be
χ ≈ 8.80 .

A remarkable fact is that this result was obtained for both choices of labels to
be counted, and that all the difference resides just in the value of the Barbero-
Immirzi parameter.

The obvious interest is now in the physical consequences of this structure.
The first clear consequence is in the entropy-area relation. This periodic band
structure in the area spectrum gives rise to a very distinctive signal in the black
hole entropy, namely a stair-like behavior of entropy as a function of area,6

6 For details on how to obtain the entropy shown in Fig.4.14 from the degeneracy of
Fig.4.13 see [38, 43]
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as shown in Figure 4.14. Furthermore, the particular structure of the area
spectrum can also have some implications regarding the black hole radiation
spectrum, as pointed out in [22].
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Fig. 4.14: Plot of the results for the entropy as a function of area (in Planck units)
obtained with the computational counting. The stair-like behavior, with a
step width corresponding to ∆A, is observed.

On the other hand this regular pattern in the black hole area spectrum
provides a nice contact point with the heuristic ideas of Bekenstein and
Mukhanov [35] about black hole area equidistant quantization. Even though
the basic area spectrum in LQG is not equidistant, this phenomenon shows that
in the case of black holes this equidistance in the spectrum appears in a rather
subtle way, namely as a result of the non trivial degeneracy distribution. This
point of contact becomes even more intriguing when one realizes that the value
of χ is close to 8 ln 3 ≈ 8.788898, as there is also a logarithmic constant arising
from the heuristic considerations of Bekenstein and Mukhanov. It is evident
that no reliable conclusion can be extracted from this numerical proximity but
it is worth keeping it in mind to see if a more detailed work can confirm a
deeper relation behind this coincidence.

4.5.5 The richness of discreteness

In this section we seek to understand where the equidistant structure in the
black hole spectrum comes from. We are going to analyze what happens to
the MDD when one takes into account the discrete nature of the problem.
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Then, we are going to classify all configurations in sets characterized by two
parameters, in such a way that the accumulation of states around the peaks
of degeneracy becomes explicit and easy to study. Using these parameters,
and some information extracted from the MDD, we will compute the value of
area corresponding to each peak of degeneracy and then the area gap between
peaks.

The first thing to consider is how is it possible to obtain information about
the quasi-discrete structure of the spectrum using a distribution that was
computed with approximations that seem to neglect all the information about
this behavior. In this point the important thing to notice is that, in fact, the
approximation that is hiding all the discrete information is to assume that one
can find some configuration satisfying the MDD for any given value of area.
When doing this, one is implicitly assuming that the ns numbers can take any
possible real value given by (4.32), that in general are not integer values. It is
clear that a non integer value for ns makes no sense. Then in order to find the
actual maximally degenerate configuration, one should take the closest integer
to each value of ns given by the MDD. However, if one modifies the value of ns,
one is modifying also its contribution to the area. Then, there are two possible
cases, depending on the value of area we start with:

• When one tries to find the closest integer configuration, the area changes
of each ns compensate each other in such a way that at the end the integer
configuration that we find takes almost the same value of area. Then we
will be able to find some highly degenerate integer configurations with
the same value of area we started from. This case would correspond with
a peak of degeneracy.

• When changing to the closest integer configuration, the deviations of
each ns add up giving rise to a global area change so that the resulting
integer configuration lies, in fact, in a different region of the spectrum.
If one tries to find some integer configuration with the same value of
area than the continuous one, it will not suffice to just take the closest
integer to each ns. One would be forced to modify considerably the ns
distribution, in order to reach this value of area with integer ns values.
But then, the obtained configuration will follow a distribution no longer
close to the maximal degeneracy one, and would then have a much lower
degeneracy. Therefore, one will not be able to find a highly degenerate
integer configuration for this value of area. Such values of area are the
ones corresponding to the regions of low degeneracy between peaks.

Our task now is to find out which values of area correspond to the first case
and which ones to the second. In order to do that, we will use a convenient
classification of states.
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4.5.6 Classifying states

The combinatorial problem we are trying to address is a very complicated
one, given the large number of variables (degrees of freedom) that come into
play. For this reason, it is very difficult to handle all the information in
a straightforward way. In order to be able to understand the underlying
structure, we are going to organize all these configurations according to two
parameters that will allow us to have a reasonable number of variables while
keeping enough information for our analysis and computations. The two
parameters we are going to consider to classify configurations are:

• The number p of punctures of the configuration, p =
∑smax
s=1 ns , and

• the sum over all punctures of the si labels S =
∑p
i=1 si =

∑smax
s=1 s ns.

For each pair of values of these parameters, we will have a set of many
possible configurations. But the interesting thing is that if one fixes a given
pair (S, p), then the only freedom left to change the value of area associated to
a configuration, is to distribute the S “units of s label” over the p punctures
in different ways (or in other words, to change the ns distribution). But
the changes in area given by changing the distribution of ns are very small
compared with the change in area given by modifying the parameters S or
p in one unit (the requirement that all ns must be integer obviously implies
that S and p can only take integer values). Then, by considering all possible
ns distributions, one is covering an almost continuous region of area in the
spectrum, while modifying S or p results in a discrete jump to another area
region. Of course, if one modifies radically the ns distribution, from one
extreme to the other, one can get changes in area larger than the one given by
a change of one unit in S or p, so these different area regions could overlap at
some points.

On the other hand, although changing S produces a jump in areas and so
does a change in p, one could in principle modify both parameters in such a
way that the final area change is small. In fact, as we are going to see, there
is a way of changing S and p so that the area does not change. As pointed
out in [22], there is a very precise relation in the area spectrum of LQG that
will help us to obtain this interesting relation between S and p. One can check
that the contribution to area given by one puncture with s = 6 is exactly the
same as the contribution given by four punctures with s = 1. The interesting
fact about this relation is that it is the only existing one for the low values of
s that are relevant to the highly degenerate configurations7 (as pointed out in
section 4.5.2, the value of n̂s decreases exponentially with s in the MDD).

7 The next exact relation is found between one puncture with s = 16 and six punctures with
s = 2, but the contribution of punctures with s = 16 to the highly degenerate configurations
is completely negligible.
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Then, given a configuration, one can obtain another one with exactly the
same value of area by removing a puncture with s = 6 and adding four
punctures with s = 1 (decreasing the value of n6 in 1 unit and increasing
n1 in 4 units). But this change implies increasing the number of punctures
p in three units and decreasing the sum of s over all punctures (S) in two.
Therefore, different pairs of parameters (S, p) related by this transformation
will be in the same area region.

We can write down this relation in a more concrete way. Given a value S0

for S and a value8 p0 = 1, 2, 3 for p, all pairs (St, pt) that satisfy the following
relation:

(St, pt) = (S0 − 2t, p0 + 3t) , (4.37)

with t ∈ Z such that St ≥ pt, are in the same region of area. S0 will be the
maximum value of S and p0 the minimum value of p among all pairs (St, pt)
satisfying this relation. Thus, if we consider the quantity K = 3S0 + 2p0, we
can associate to the same value of area all pairs of parameters satisfying

3S + 2p = K . (4.38)

Then, for each value of K we will obtain the configurations that appear in
a certain region of area. In fact, it is important to notice that, if one takes into
account the projection constraint, then the value of S can only be even (for an
odd value of S would imply that

∑
imi can only take half-integer values, and

it could not be zero). With this in mind, K will only be allowed to take even
values.

4.5.7 Highly degenerate integer configurations

Now, in order to account for the peaks of degeneracy, we have to consider the
most degenerate integer configurations, which we will find with the help of the
MDD. For a certain value of area, this distribution fixes a value for S and p,
that we will call Smd(A) and pmd(A). Furthermore, as the values of n̂s are
constant with area, Smd(A) and pmd(A) will grow proportionally with area,
giving rise to a constant quotient ŝmd = Smd

pmd
. Hence, not all the pairs (S, p)

can contain maximally degenerate configurations; these configurations can only
take values of S and p satisfying the quotient ŝmd. However, it is important
to notice that the values of Smd(A) and pmd(A) fixed by the MDD are not, in
general, integer numbers. Then, if starting from a configuration satisfying the
MDD one changes to the closest integer values for each ns in order to find the
actual maximally degenerate integer configuration, this would necessarily imply
a change in S and in p to integer values. But as we have seen, to change S and p
implies relatively large changes in area, unless such changes in S and p follow the

8 Any value of p larger than 3 would be in correspondence with one of these tree values of
p0, i.e., a pair (S, p = 4) will correspond to (S0 = S + 2, p0 = 1), and so on.
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“constant area” relation (4.38). Therefore, if those (Smd(A), pmd(A)) satisfy
this relation for an even value of K, it will be possible to find, for the same value
of area, some integer pair (S′, p′), with even S′, close to (Smd(A), pmd(A)), thus
containing highly degenerate configurations. Otherwise, it will not be possible
to find any highly degenerate configuration for that value of area, as explained
at the begining of section 4.5.5.

In addition, among all configurations compatible with a given pair of values
(S′, p′), the most degenerate ones will be those having ns distributions close
to the MDD, and therefore they will all appear together in a region of area
much smaller than the total area covered by the set of all configurations with
these values of (S′, p′). Then, although the regions of area corresponding to
different pairs (S, p) can overlap (as pointed out above), the regions containing
highly degenerate integer configurations will not. Thus, we expect to find the
highly degenerate configurations clustered around some area values, each one
corresponding to a different value of K.

We are going to compute in next section the values of area for which the
MDD fixes a pair of values (Smd(A), pmd(A)) satisfying the constant area
relation for each value of K, which will correspond to the values of area of
the peaks of degeneracy.
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Fig. 4.15: Plot of the sum S of spin labels vs. the number p of punctures. All the
discrete configurations are placed in the marked points. The thin lines
represent “constant area surfaces” (K-lines) while the thick line cointains
the values of (S, p) that satisfy the quotient ŝmd (MD-line).

We can understand the above discussion in a more graphical way looking
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at Figure 4.15. The positive slope line represents the pairs (S, p) that satisfy
the maximal degeneracy quotient ŝmd (MD-line). Each of the negative slope
lines represent the values (S, p) related by (4.38) for each even value of K
(K-lines). The marked points represent the allowed integer pairs (S, p). Only
for those points at where the MD-line intersects some of the K-lines, a close
integer pair (S′, p′) can be reached following the corresponding K-line (keeping
area constant). In other words, the actual highest degeneracy configurations,
that can only be found in the integer points close to the MD-line, correspond
to the values of area associated to the point at which the corresponding K-
line intersects this MD-line. The MDD provides the necesary information to
compute the value of area associated to each point of the MD-line, as well as the
slope of this MD-line. We can compute, therefore, the area of each intersection
point and, thus, of the corresponding peak of degeneracy. Finally, computing
the difference in area between two consecutive intersections (two consecutive
even values of K) we will get the area gap between two peaks of degeneracy.

As a final remark in this section, we can analyze the effect of the projection
constraint. In our model, this constraint is introduced by considering only even
values of K (i.e. even values of S). Then, if the projection constraint was not
introduced, there would be an additional line between each two consecutive
K-lines in Figure 4.15. This would correspond to having an additional peak
of degeneracy between each two. But looking at Figure 4.13 one can see that,
given the proportions of the spacing between peaks and the width of those
peaks, placing an additional one between each two would almost result in no low
degeneracy regions between them, hiding then the “quasi-discrete” structure of
the spectrum. Then, as pointed out in [20], the regular pattern we are studying
is a general feature that affects to all states and not only those satisfying the
projection constraint. But it is precisely the introduction of this constraint
what makes the “discrete” structure to arise in a clear and relevant way.

4.5.8 Computation of ∆A

Let us then proceed whith the explicit computation of these quantities. The
steps we are going to follow are:

• In the first place, using the MDD we will compute the quotient Smd
pmd

for
maximally degenerate states (ŝmd).

• From (4.38) we will obtain an explicit relation S = S(p,K).

• We will use this explicit relation and the value of the quotient ŝmd to
compute the number of punctures of the maximally degenerate state
pmd(K) for a given value of K (the value of p at which the MD-line
intersects a K-line in Figure 4.15).
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• Then, again using the MMD, we will compute the mean contribution to
area Âmd of a puncture in a configuration satisfying this distribution.

• Thus, the value of area associated to an intersection with a line
characterized by K will be Amd(K) = pmd(K)Âmd.

• Finally, computing the difference between Amd(K) for two consecutive
even values of K (Amd(K + 2) − Amd(K)), we will obtain the value of
∆A.

In order to compute ŝmd it is worth noticing that the quantity S
p can be seen

as the mean value of s of each puncture in a configuration. Then, to compute
this value in the case of the MMD we can write

ŝmd =
∑
s

sn̂s. (4.39)

Thus we can compute the value of ŝmd and we know that

Smd
pmd

= ŝmd . (4.40)

Now, from the relation between S and p in a given band (3S + 2p = K), we
can extract the following equation

S(p,K) =
K

3
− 2

3
p . (4.41)

Plugging this into (4.40), we get

Smd(p,K)
pmd(K)

=
K
3 − 2

3pmd(K)
pmd(K)

= ŝmd ,

leading to

pmd(K) =
K

3ŝmd + 2
. (4.42)

We have then the number of punctures that correspond to a maximal
degeneracy configuration for a given value of K (the intersection for a given
K-line).

Now, to compute the mean contribution to the area from a puncture in a
configuration satisfying the MDD, we proceed in the same way as we did to
compute ŝmd. We then write

Âmd =
∑
s

a(s)n̂s = 4πγ`2P
∑
s

n̂s
√
s(s+ 2) . (4.43)
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With this expression we can write the value of area associated to each of the
intersections for each value of K,

Amd(K) = pmd(K)Âmd =
KÂmd

3ŝmd + 2
. (4.44)

We have then arrived at the main goal of the section, i.e. obtaining the value
of area associated to the corresponding peak of degeneracy for each value of
K. With this expression we can compute numerically the value of area of each
peak of degeneracy. We can also easily see that Amd has a linear dependence
on K, so the peaks are evenly spaced. We can hence compute this spacing just
by taking the difference between two consecutive values of K,

∆A = Amd(K + 2)−Amd(K) = Âmd(pmd(K + 2)− pmd(K)) =
2Âmd

3ŝmd + 2
.

(4.45)
Then, finally, writing explicitly all the terms in the above result, we can express
the value of the area gap between peaks as

∆AGM = χGMγGM =
8πγGMl

2
P

∑
s

√
s(s+ 2)(s+ 1)e−λGM

√
s(s+2)

3(
∑
s s(s+ 1)e−λGM

√
s(s+2)) + 2

. (4.46)

At this point, we can recall that the only difference in all this discussion
between the label choice we are using and the other comes from the degeneracy
associated to the combinations of mi compatible with each configuration.
Introducing this change, the result for the ∆ADLM in the case of the counting
of [18] is

∆ADLM = χDLMγDLM =
8πγDLMl

2
P

∑
s 2
√
s(s+ 2)e−λDLM

√
s(s+2)

3(
∑
s 2se−λDLM

√
s(s+2)) + 2

, (4.47)

with the corresponding λDLM.

Analysis of the results

In this section we present the numerical values obtained for χ and analyze them.
The resulting values of the expressions we have found can be easily computed
using MathematicaTM and we get

χGM = 8.789242 , χDLM = 8.784286 . (4.48)

The fact that the difference between these two values is in the fourth digit gives
us a hint on the level of accuracy that is being reached. Besides, it was pointed
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out in [43] that the value of χ is numerically close to 8 ln 3 = 8.788898. One
can see that the above results coincide, also up to the fourth digit, with this
value, and furthermore, that 8 ln 3 is contained between the two values of χ
above. One can compute the deviations between the three values:

|χGM − 8 ln 3|
8 ln 3

= 0.000039 = 0.004% ,

|χDLM − 8 ln 3|
8 ln 3

= 0.00052 = 0.05% ,

|χGM − χDLM|
χGM

= 0.00056 = 0.06% .

Then, with a precision of 0.06%, the values of χGM, χDL and 8 ln 3 are the
same. Of course, this is still not a rigorous proof that χ is equal to 8 ln 3, but
it is relevant to see how, when one improves the accuracy of the calculations,
the numerical coincidence is still satisfied.
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Fig. 4.16: Comparison between the analytical values for the area of the peaks (dashed
vertical lines) and the actual peaks obtained from the computational data.

Let us end this section with two remarks.

• One can check whether the results obtained with the model presented
here are in good agreement with the computational data obtained from
the algorithm of [38]. It can be seen in figure (4.16) how the values for
the area of the peaks that we obtained here fit the peaks observed in the
spectrum obtained from the computer. We see how the analytical values
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Fig. 4.17: The mean values of n̂s obtained from the computational results (points)
are compared with the exponential decrease expected from the MDD.

match in a nice way with the computational data. On the other hand,
in figure (4.17) the mean values of the n̂s obtained with the computer
for the five most degenerate configurations of three consecutive peaks
(with areas between 170 and 177`2P) are compared with those given by
the MDD. One can check that, even for this extreme low value of area, the
agreement is quite good, as expected from the analysis in section 4.5.3,
so one can feel confident with the use of the MDD in the computations.
Finally, using these computational data we have observed that, in fact,
all configurations giving relevant contributions to the degeneracy at any
given peak are characterized by pairs of values (S, p) that satisfy the
relation (4.38) for the corresponding value of K, in complete agreement
with the analysis presented in section 4.5.5. Thus, the computational
data support the fact that the model presented here works reasonably
well.

• At this point we can analyze the results previously obtained in [20].
There, the problem is addressed using a rather different approach, namely,
reformulating it in terms of the so called random walks. It is very
interesting to see how, within this alternative approach, the accumulation
of states around certain values of area also becomes manifest. By treating
the area spectrum of LQG as an effectively quasi-equidistant spectrum,
a way to compute the area gap between peaks is then proposed. The
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value for ∆A was obtained as 2/3 of the spacing in this effectively quasi-
equidistant area spectrum. This 2/3 factor was introduced ad hoc in order
to fit the computational data. A noteworthy fact is that this independent
derivation gave rise to the same expresion (4.47). Nevertheless, from the
point of view of the authors it is not easy to reconcile the introduction
of this 2/3 coefficient with the qualitative picture of a quasi-equidistant
spectrum being the origin of the observed regular pattern.

With the picture presented here, it is now rather easy indeed to
understand where this coefficient comes from. The fundamental area
gap in the quasi-equidistant spectrum of [20] corresponds to the mean
area change given by increasing S in one unit in our formalism. But as
we have seen, S only takes even values. Then the minimum increment in
S must be two. Furthermore, if one comes back to the relation between
S0, p0 and K (K = 2S0+3p0) then one can check that for each even value
of S0 there are three corresponding values of K (the ones corresponding
to p0 = 1, 2, 3) and then to three peaks of degeneracy. Hence, the mean
area change given by increasing S in two units corresponds to three times
the area gap between peaks. Thus, the fundamental gap of the quasi-
equidistant spectrum in [20] is nothing but three halves of the area gap
between peaks ∆A.

4.5.9 Conclusion and outlook

Let us summarize the results of the section. We have analyzed the combinato-
rial problem and we have qualitatively understood the reason why the highest
degenerate configurations can only appear for some values of area and not for
all of them. When the discrete nature of the problem is taken into account,
there are regions of area for which the “discrete configurations” are not allowed
to satisfy a distribution close to the one that gives the maximal degeneracy in
the continuous case, thus giving rise to the observed pattern in the black hole
area spectrum. We have also verified that the analysis is valid for both choices
of labels, as the arguments presented here apply equally to both cases, so it
seems now rather natural that the analyzed behavior of the spectrum appear
with both counting procedures. Finally, our analytical computations allowed
us to obtain the values of area for which the peaks of degeneracy should appear
and showed that these values are evenly spaced. In addition, the results match
in a nice way with the computational data obtained in [38], thus indicating
the validity of the model. From this, we have also been able to compute the
analytical value of the corresponding parameter χ for both label choices and we
have found that the results coincide up to a precision of 0.06%. Furthermore, we
have checked out that, up to this improved precision, the surprising numerical
coincidence with 8 ln 3 keeps holding.
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There are still some important open questions. On the one hand, one may
ask which are the sources of this 0.06% deviation. Moreover, it would be
very interesting to obtain an analytical proof for the conjectured value of χ =
8 ln 3. On the other hand, although the area gap between peaks obtained with
our model has no dependence on the area, one may be interested in knowing
what would happen to the width of the bands for large areas. Whether this
width increases with area, thus hiding the quasi-discrete behavior, or not, is
also an interesting issue to be investigated. A comprehensive analysis of the
full combinatorial problem could shed light on some of these questions. But
undoubtedly, the most important and interesting open question is to find a
consistent physical interpretation to this intriguing behavior of quantum black
holes.

4.6 Number theory techniques

In this section we are going to give a precise characterization of the area
spectrum by relying on number-theoretic methods, and addressing the com-
binatorial problems related to the projection constraint. We do it for the
original counting of states proposed in [14] and carried out in [18], and also
for the one described in [19]. The method that we discuss in the following
will allow us to have a full understanding of the different factors that come into
play to reproduce the features previously observed in the black hole degeneracy
spectrum. In addition, it can be efficiently used to perform exact entropy
computations –extensible to large areas– that improve and confirm the results
obtained by brute force methods presented previously.

4.6.1 Characterization of the area eigenvalues

We start by characterizing the area eigenvalues and their degeneracies. As we
stablish in the former, the LQG the black hole area is given by an eigenvalue
A of the area operator

A = 8πγ`2P
N∑
I=1

√
jI(jI + 1) , (4.49)

. As before, the labels jI are half-integers, jI ∈ N/2, associated to the edges
of a given spin network state. They pierce the horizon at a finite set of
N distinguishable points called punctures [14]. Horizon quantum states are
further characterized by an additional label mI . In the case where we have
spherical symmetry a projection constraint

N∑
I=1

mI = 0 (4.50)
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must be satisfied by the mI .
A first problem that we address is the characterization of the numbers

belonging to the spectrum of the area operator restricted to the vector subspace
spanned by spin network states having no vertices nor edges lying on the black
hole horizon. In the following when we talk about the area spectrum we refer,
in fact, to this restriction. The first question that we want to consider is: Given
A ∈ R, when does it belong to the spectrum of the area? In order to simplify
the algebra and work with integer numbers we will write jI = kI/2 in the
following, so that the area eigenvalues become

A =
N∑
I=1

√
(kI + 1)2 − 1 =

kmax∑
k=1

nk
√

(k + 1)2 − 1.

Here we have chosen units such that 4πγ`2P = 1, and the nk (satisfying n1 +
· · ·nkmax = N) denote the number of punctures corresponding to edges carrying
spin k/2. An elementary but useful comment is that we can always write√

(k + 1)2 − 1 as the product of an integer and the square root of a square-
free positive integer number (SRSFN) by using its prime factor decomposition.
Hence, with our choice of units, only integer linear combinations of SRSFN’s
can appear in the area spectrum. The questions now are: First, given such
a linear combination, when does it correspond to an eigenvalue of the area
operator? If the answer is in the affirmative, what are the permissible choices
of k and nk compatible with this value for the area?
In the following we will take advantage of the fact that SRSFN’s are linearly
independent over the rational numbers (and, hence, over the integers) i.e.
q1
√
p1 + · · · + qr

√
pr = 0, with qi ∈ Q and pi different square-free integers,

implies that qi = 0 for every i = 1, . . . , r. This can be easily checked for
concrete choices of the pi and can be proved in general (see for instance [40]).
We can answer the two questions posed above in the following way. Given an
integer linear combination of SRSFN’s

∑r
i=1 qi

√
pi, where qi ∈ N, we need to

determine the values of the k and nk, if any, that solve the equation

kmax∑
k=1

nk
√

(k + 1)2 − 1 =
r∑
i=1

qi
√
pi . (4.51)

Each
√

(k + 1)2 − 1 can be written as an integer times a SRSFN so the left
hand side of (4.51) will also be a linear combination of SRSFN with coefficients
given by integer linear combinations of the unknowns nk. As a preliminary
step, let us find out –for a given square-free positive integer pi– the values of k
satisfying √

(k + 1)2 − 1 = y
√
pi , (4.52)

for some positive integer y. This is equivalent to solving the Pell equation
x2−piy2 = 1 where the unknowns are x := k+1 and y. Equation (4.52) admits
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an infinite number of solutions (kim, y
i
m), where m ∈ N (see, for instance, [41]).

These can be obtained from the fundamental one (ki1, y
i
1) corresponding to the

minimum, non-trivial, value of both kim and yim. They are given by the formula

kim + 1 + yim
√
pi = (ki1 + 1 + yi1

√
pi)m.

The fundamental solution can be obtained by using continued fractions [41].
Tables of the fundamental solution for the smallest pi can be found in standard
references on number theory. As we can see both kim and yim grow exponentially
in m. By solving the Pell equation for all the different pi we can rewrite (4.51)
as

r∑
i=1

∞∑
m=1

nkimy
i
m

√
pi =

r∑
i=1

qi
√
pi.

Using the linear independence of the
√
pi, the previous equation can be split

into r different equations of the type

∞∑
m=1

yimnkim = qi, i = 1, . . . , r. (4.53)

Several comments are in order now. First, these are diophantine linear
equations in the unknowns nkim with the solutions restricted to take non-
negative values. They can be solved by standard algorithms (for example the
Fröbenius method or techniques based on the use of Smith canonical forms).
These are implemented in commercial symbolic computing packages. Second,
although we have extended the sum in (4.53) to infinity it is actually finite
because the yim grow with m without bound. Third, for different values of i the
equations (4.53) are written in terms of disjoint sets of unknowns. This means
that they can be solved independently of each other –a very convenient fact
when performing actual computations. Indeed, if (ki1m1

, yi1m1
) and (ki2m2

, yi2m2
)

are solutions to the Pell equations associated to different square-free integers
pi1 and pi2 , then ki1m1

and ki2m2
must be different. This can be easily proved by

reductio ad absurdum.
It may happen that some of the equations in (4.53) admit no solutions. In

this case
∑r
i=1 qi

√
pi does not belong to the relevant part of the area spectrum.

On the other hand, if these equations do admit solutions, the
∑r
i=1 qi

√
pi

belong to the spectrum of the area operator, the numbers kim tell us the spins
involved, and the nkim count the number of times that the edges labeled by
the spin kim/2 pierce the horizon. A set of pairs {(kim, nkim)} obtained from
the solutions to equations (4.51), (4.52), and (4.53) will define what we call
a spin configuration. The number of different quantum states associated to
each of these is given by two degeneracy factors, namely, the one coming from
reorderings of the kI -labels over the distinguishable punctures (r-degeneracy)
and the other originating in all the different choices of mI -labels satisfying (2),
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(m-degeneracy). The combinatorial factors associated to the r-degeneracy are
straightforward to obtain and appear in the relevant literature.

4.6.2 The solution to the projection constraint

The problem that we have to solve is: Given a set of (possibly equal) spin labels
jI , I = 1, . . . , N , what are the different choices for the allowed mI such that
(4.50) is satisfied? Notice that an obvious necessary condition for the existence
of solutions is that

∑N
I=1 jI ∈ N.

In the standard DLM approach the number of different solutions for the
projection constraint can be found by solving the following combinatorial
problem (closely related to the so called partition problem): Given a set
K = {k1, . . . , kN} of N –possibly equal– natural numbers, how many different
partitions of K into two disjoint sets K1 and K2 such that

∑
k∈K1

k =
∑
k∈K2

k
do exist? The answer to this question can be found in the literature (see, for
example, [42] and references therein) and is the following

2N

M

M−1∑
s=0

N∏
I=1

cos(2πskI/M) , (4.54)

where M = 1 +
∑N
I=1 kI . This expression can be seen to be zero if there are

no solutions to the projection constraint.
Let us consider now the GM proposal. The problem is equivalent in this

case to counting the number of irreducible representations, taking into account
multiplicities, that appear in the tensor product

⊗N
I=1[jI ], where [jI ] = [kI/2]

denotes the irreducible representation of SU(2) corresponding to spin jI . In
order to solve this problem we rely on techniques developed in the context of
conformal field theories [33] and in the spectral theory of Toeplitz matrices [34].
The starting point is to write the tensor product of two SU(2) representations
in the form [

k1

2

]
⊗
[
k2

2

]
=
∞⊕
k3=0

N k3
k1k2

[
k3

2

]
,

where the integers N k3
k1k2

, called fusion numbers (see e.g. [33]), tell us the
number of times that the representation labeled by k3/2 appears in the tensor
product of [k1/2] and [k2/2]. For each k ∈ N ∪ {0}, we introduce now the
infinity fusion matrices (Ck)k1k2 := N k2

k1k
, where k1, k2 ∈ N ∪ {0}. These can

be shown to satisfy the following recursion relation

Ck+2 = XCk+1 − Ck, k = 0, 1, . . . (4.55)

where we have introduced the notation X := C1. Explicitly Xk1k2 = δk1,k2−1 +
δk1,k2+1, which shows that X is a Toeplitz matrix (see [34]). The solution to
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(4.55), with initial conditions C0 = I and C1 = X, can be written as

Ck = Uk(X/2), k = 0, 1, . . .

in terms of the Chebyshev polynomials of the second kind Uk. The tensor
product of an arbitrary number of representations can be decomposed as a
direct sum of irreducible representations by multiplying the fusion matrices
introduced above. By proceeding in this way we get[

k1

2

]
⊗
[
k2

2

]
⊗ · · · ⊗

[
kN
2

]
=
∞⊕
k=0

(Ck2Ck3 · · ·CkN )k1k

[
k

2

]
.

Notice that the product of matrices appearing in the previous formula is, in
fact, a polynomial in X. The total number of representations, that gives the
solution to the combinatorial problem at hand, is simply given by

∞∑
k=0

(Ck2Ck3 · · ·CkN )k1k. (4.56)

This is just the sum of the (finite number of non zero) elements in the k1 row
of the matrix Ck2Ck3 · · ·CkN . A useful integral representation for this sum can
be obtained by introducing a resolution of the identity for X as in [34] and
the well-known identity Un(cos θ) = sin[(n + 1)θ]/ sin θ. In fact, the number
defined in (4.56) can be equivalently written as

2
π

∫ π

0

dθ cos
θ

2

[
cos

θ

2
− cos

(
K+

3
2
)
θ

]N∏
I=1

sin(kI + 1)θ
sin θ

, (4.57)

where K = k1 + · · · + kN . This is related to the well known Verlinde formula
for SU(2) (see [33]).

The procedure to calculate the black hole spectrum described above can be
efficiently implemented in a computer, for instance using Mathematica. This
allows us to analyze in detail the different factors that shape the degeneracy
spectrum. First of all, the fact that the diophantine equations are decoupled
allows us to obtain the configurations compatible with a given value of area A =∑r
i=1 qi

√
pi as the cartesian product of the sets of solutions to the diophantine

equations for each pi. Let us then begin by analyzing the results for area
values of the form A = q

√
p, with q ∈ N and

√
p a fixed SRSFN. What we see

in this case is that the r-degeneracy –coming from the reordering of puncture
labels– will be maximized by those configurations having both a large number
of different values of k and a large number of punctures. For a fixed area value
these two factors compete with each other because higher values of k imply
a lower number of punctures. On the other hand the m-degeneracy shows an
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exponential growth with area (both in the DLM and GM countings). When the
two sources of degeneracy are taken into account –in the present case involving
a single SRSFN– the total degeneracy can be seen to be dominated by the
m-degeneracy. The reason for this dominance of the m-degeneracy is that the
number of different (small) values of k available within the set of solutions to
the Pell equation for a given p is limited, and hence only a few possibilities of
reordering exist.

This situation is expected to change drastically when we consider areas
A =

∑r
i=1 qi

√
pi, with r > 1, built as linear combinations of different SRSFN’s.

In this case it is possible to obtain configurations with a large number of
different small values of k (associated to different SRSFN’s). The effect of
considering linear combinations involving several SRSFN’s produces a very
distinctive feature when the r-degeneracy is plotted as a function of area,
namely, it creates a “band structure” where high values of degeneracy alternate
with much lower ones. Furthermore, maxima and minima are evenly spaced.
When this behavior is considered together with the m-degeneracy we obtain
the regular pattern shown in Figure 4.13.

Several remarks are now in order. First, we want to point out that the result
obtained from the explicit computational analysis carried out in [38] (by using
the GM counting) is exactly recovered with the new approach. The fact that the
same result is obtained from two completely independent procedures (a brute
force approach and the algorithm proposed here) provides strong evidence for
the reliability of both computations. Second, the structure of the degeneracy
spectrum obtained by using the DLM and GM countings is basically equal.
They differ only in the absolute values of the degeneracy whereas the band
structure (including the position and spacing of the bands) is the same. This
can be understood in our framework because the terms accounting for the r-
degeneracy, responsible for this effect, coincide for both counting procedures.
This justifies the appearance of the

1.

constant χ obtained in [38, 43, 44]. Third, once we understand how the r-
degeneracy works, we see that the area values for which the degeneracy is large
are those that can be written as linear combinations of the SRSFN’s originating
from small solutions k to the corresponding Pell equation. Thus, considering
these linear combinations will suffice to account for the band structure. The
remaining area values give rise only to very low degeneracies.

Summarizing, we have been able to find a number-theoretic/combinatorial
way to tackle the problem of calculating the degeneracy spectrum of spherical
black holes in LQG. Our procedure has several advantages over previous
approaches. First, we have been able to characterize the area spectrum in a
proper way, giving an algorithm to explicitly find every single spin configuration



4.6. Number theory techniques 79

contributing to each value of the area spectrum. In particular, the degeneracies
of the area eigenvalues can be obtained. This has allowed us to reproduce
and understand the band structure already observed in [38, 43, 44] for the
black hole degeneracy spectrum in a much more efficient way. We not only
recover previous results obtained by using a brute force algorithm, but easily
extend them to area values significantly larger than those reached in [38].
Moreover, with our methods it is possible to compute the configurations and
degeneracy even for much larger values of area. As a token we give the
degeneracy for an area of 8320

√
2 + 14400

√
3 + 2240

√
6 + 4640

√
15 + 1120

√
35,

which is 3.46437296507975 · · · × 1024420. Finally, the concrete procedures and
explicit formulas given in this aproach offer a good starting point to study
the asymptotic behavior of the entropy as a function of the area of a black
hole. This could help us investigate whether the effective entropy quantization
discussed here is present in macroscopic black holes.
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5. CONCLUSIONS

Let us review the results presented in this thesis. We have performed an
extensive study of the counting of states leading to the black hole entropy within
the framework of isolated horizon in LQG (following the ABCK approach [14]).
The following points are our results:

1. The surface states are described by a U(1) Chern-Simons theory. But the
origin of this U(1) could be understood, at the classical level, as a breaking
of the SU(2) group of the LQG setting in the bulk. We have employed the
correspondence between this theory and conformal field theory, following
the ideas of Witten [17]. This allows us to emmploy the well-known
Verlinde’s formula and induce this breaking at the quantum level. The
final result is given by (3.9), a formula whichi is also re-obtained by the
method presented in the last section employing the number-theoretical
techniques.

2. We have presented an explicit computational counting, namely a brute
force method, to count all the states of an isolated horizon compatible
with the condition of area and the projection constraint. This method,
aviable for the DLM and GM approaches, shows that we can recover the
leading linear behavior of entropy with area and moreover a logarithmic
correction with a (−1/2) coefficient. This is consistent with the
appropriate value of the BI-parameter γ presented in the literature for
both countings.

Nevertherless, with this explicit counting we can no reach more than a few
hundres Planck areas. This is due to the complexity of the combinatorial
problem that appear in the counting of the states. In particular, the
number of such states grows exponentially. Hence, we need to improve
the computacional algorithm to try reach more realistic black holes.

3. This explicit counting exhibits an interesting behavior namely, the
entropy is a stair-like function with area. Each step has a width with
value ∆A = χγ`2P, where γ is the proper value for each counting presented
here. On the other hand, χ has a value very close to 8 ln 3.
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4. It is clear that the DLM and GM countings are valid at the large area
limit, but the aproximations performed in that computations hide the
discrete structure of entropy with area. In anycase, we present here the
a method in order to extract this effect from the previous results. As
consequence of this work we can constraint the value of χ given by (4.48).

5. Finally, we have presented a new point of view for the black hole
combinatorial problem. We rewrite the area spectrum making use of the
square root of square free numbers (SRSFn). This allows us to make use
of several diophantine equations on. We conclude that the area spectrum
can be expresed as a finite linear combination of SRSFn with integer
coefficients. We also address the combinatorial calculation of the states
compatible with the projection constraint for both the DLM or the GM
counting. It is worth mentioning that the solution to this problem leads
to the same expresion obtained in the third chapter of this thesis which
relies on CFT’s thecniques.

Let us finish with some open question which will be addressed in future
research.

i) It should be interesting to study further the role played by CFT in this
problem. On the other hand, this problem could be related with the possibility
to define properly the isolated horizon conditions at the quantum level.

ii) In the literature we find some controversy about the actual definition
of the surface states. One possible method to select the correct ones would
be through a better undertanding of the Chern-Simons theory present at the
horizon. Specifically, we would study the posibility to carry out the ABCK
framework employing an SU(2) Chern-Simons theory, studying the consistency
of the framework (the isolated horizon definition) with this theory. We expect
that within this framework we could see in a natural way the reason of the
restriction to a U(1) gauge group.

iii) It will be interesting to explore the analogy between this problem and
the quantum Hall effect.

iv) Finally, we are interested in the proper definition of the counting. As it
has been point out before, it exists a problem with the prequantized value of the
black hole area defined in terms of level of the Chern-Simons theory. This level
k must be integer in order to have a well-define quantization procedure, but this
means that the area A0 induced on the horizon surface must be A0 = 4πγ`2Pk.
Unfortunately, this value does not belong to the spectrum of the standard area
operator used in LQG. We would like to explore this problem in the future in
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order to give a consistent solution.
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[25] Engle, J., Pérez, A., Noui, K. 2009, Black hole entropy and SU(2) Chern-
Simons Theory, [arXiv: 0905.3168v1]



Bibliography 87
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