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Abstract

Recent studies of biological networks have focused on the distribution of the number of links per node. However, the connectivity distribution does not uncover  all the complexity of their topology. Here, we analyse the relation between the connectivity of a species and the  average connectivity of  its nearest neighbours in  three  of  the  most  resolved community food webs. We compare the pattern arising with the one recently reported for protein networks and for a simple null model of a random network. Whereas two highly connected nodes are unlikely to be connected between each other in protein networks, the reverse happens in food webs. We discuss this difference in organization in relation to the robustness of biological networks to different types of perturbation.
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IN T R OD U C TI ON 
With the recent growth of empirical information, biological networks are becoming better resolved. This empirical work is providing insight into how these complex networks are assembled and how they remain stable to deleterious perturbations (Albert  et al. 2000; Williams & Martinez 2000; Sole´ & Montoya 2001). Previous studies of biological networks have focused on  the  connectivity distribution, that is, the probability density distribution of the number of links per  node.  This  connectivity distribution has  been shown to have longer tails than would be expected for an exponential distribution, meaning that some species may be extremely connected and that the network is very heterogeneous (Ulanowicz &  Wolff 1991; Amaral et al.

2000; Jeong et al. 2000; Montoya & Sole´ 2002; Jordano, Bascompte & Olesen, unpublished Ms; see however, Camacho et al. 2002 and Dunne  et al. 2002a). However, the connectivity distribution does not necessarily capture all the topological  complexity  of biological networks (Doro- govtsev & Mendes 2002). A first step  towards a  more detailed characterization of  biological networks concerns the study of connectivity correlation, that is, the relation between the  number of  interactions of  a node  and the average connectivity of its nearest neighbours (Krapivsky & Redner 2001).

Recently, Internet  and protein networks have been analysed by plotting their connectivity correlation (Pastor- Satorras et al. 2001; Maslov & Sneppen 2002), a method


never used before in ecology. Two types of  protein networks  have  been  analysed: physical interaction, and transcription regulatory  networks. Protein connectivity represents the fraction of pairs of proteins that interact, forming a network with functional and structural relation- ships (Maslov &  Sneppen 2002). Here,  we analyse the connectivity correlation in  three  of  the  most  resolved community food  webs to  date and compare the  arising pattern with that recently reported for protein networks. Protein networks show an inverse relationship between the connectivity of a node and the average connectivity of its nearest neighbours. That is, neighbours of highly connected proteins have low connectivity and, similarly, low connected proteins are connected with highly connected proteins. This means that  links between highly connected proteins are systematically suppressed.  That is, the network is compart- mentalized in sub-networks organized around a highly connected node with few links among such sub-networks (Maslov & Sneppen 2002).

In this paper we first study the connectivity correlation in food webs, and compare the observed pattern with characteristic values for  protein  networks.  We  discuss differences between both types of networks in relation to their robustness to perturbations.

METHODS 
Connectivity correlation (Fig. la) is  best  represented by the  conditional probability Pc  (k¢| k), which defines the
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Figure 1 (a) A hypothetical food web graph. The average connectivity of the neighbours of the black node with k ¼ 3 links is < kn > ¼ 4. (b) A subset of the network of physical interactions between nuclear proteins (modified from Maslov & Sneppen 2002); (c) a single random replicate of the Ythan Estuary food web, and (d) the graph of the Ythan Estuary food web. (b¢) The average connectivity < kn > of the neighbours of a link with connectivity k as a function of k in interaction (s) and regulatory (h) protein networks; (c¢) the average and standard deviation of 1000 randomly assembled networks; and (d¢) the average connectivity of food webs (Little Rock Lake (n) (Martinez

1991); El Verde (•) (Reagan & Waide 1996); and Ythan Estuary (h) (Huxham et al. 1996)). Arrows  point to the threshold in connectivity (kc) where a significant shift in the relationship appears. Note that links between highly connected proteins are systematically  suppressed, generating a compartmentalized network (b and b¢), whereas links between highly connected species are common in food webs, generating a cohesive network (d and d¢). Randomly assembled networks show uncorrelated connectivity (c and c¢). The network visualization was carried out using the PAJEK  program for large network analysis: <http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm>.
probability that a link belonging to species with connectivity k points to a species with connectivity k¢.  If Pc  (k¢| k) is independent of k, there is no correlation among species’

< k  >
X
k0


k0 Pc  ðk0 jkÞ:
ð1Þ
connectivity. The  average connectivity (< kn  >)  of  the species directly connected (nearest neighbours) to a species with connectivity k can be expressed as:


To detect shifts in the relationship between the connec- tivity of  a node  (k) and the  average connectivity of  its nearest neighbours (< kn  >)  we used split-line regression

(Schmid  et al. 1994; Bersier  & Sugihara 1997). Provided that a shift was detected in the  slope of  the  regression, the threshold value (kc)  was calculated, and  the  data  were divided into two groups: one including the data with values below the threshold, and the other including the rest of the data. Different subsets are thus determined in base to significant differences in the slope of the regression. As a benchmark to compare the connectivity correlation pattern we generated 1000 randomly assembled networks with the same number of species and connectivity in a similar way to Newman et al. (2001). For species with connectivity k we calculated the average connectivity and standard deviation of the nearest neighbours across all generated networks. The basic rules operating in  the  assemblage process were as follows.

1 At time t ¼ 0, no  nodes with no ) 1 links each were created.

2 At each time step, a new node was added to the network, and ingoing and outgoing links with nodes already present were established with the same probability. That is, a link between two nodes was treated as a random event, independent of the presence of other links.

Although some patterns may depend on the choice of the nature of the links considered (ingoing links, outgoing links, or both; Camacho  et al. 2002; Montoya  & Sole´ 2002), in this paper we consider both ingoing and outgoing links following the analysis  by Maslov & Sneppen (2002). We can thus directly compare our results with the ones observed for protein networks. Also, the results presented here are based on  binary interactions. Future work will determine to  what extent results based on  binary inter- actions stand when quantitative information (i.e. interaction strength) is incorporated (Ulanowicz &  Wolff 1991; Ulanowicz 2002).

RESULTS 
The  three  types of  network compared here differed in their internal topology (see Fig. 1). For  both  interaction and  regulatory   protein  networks  (Fig. 1b)  correlation existed across all domains of connectivity (k), with con- nectivity  correlation (< kn  >)  decaying as  a  power  law

< kn  > oc k )0.6  (Maslov & Sneppen 2002; Fig. 1b¢). On the
other hand, randomly assembled networks (Fig. lc) showed

uncorrelated connectivity across all the domain of connec- tivity, that is, an absence of correlation between a species connectivity and  the  average connectivity of  its  nearest neighbours (Fig. lc¢).
In contrast to protein and random networks, food webs (Fig. 1d) showed a connectivity threshold kc  in the response of < kn  > with increasing k (kc¼19  interactions for Ythan Estuary;  kc¼39  for Little Rock Lake; and kc¼28  for El


Verde, Fig. 1d¢).  That  is, food  webs had  two  different domains with significantly different slopes across the range of values of species’ connectivity. Specifically, both of Ythan Estuary’s  subsets best  fit a  power law (P < 0.05), with slopes of ) 0.27 and ) 0.49 above and below the threshold, respectively; Little Rock Lake’s first subset best fits a linear regression (P < 0.05) with a slope of ) 0.48; the relationship is nonsignificant below the threshold;  El Verde best fits a power law (P < 0.05) in both subsets with slopes of 0.12 and ) 0.26 above and below the threshold, respectively.

The above pattern suggests the existence of two assembly patterns  at  different scales of  connectivity. In  the  first domain, connectivity of the nearest neighbours either decays very slowly or does not decay at all with k. In the second domain, < kn  > decays with k in a similar way to that found for protein networks. Globally, the average connectivity of the  nearest neighbours does not  decay as fast with the connectivity of a focal node as in protein networks.

SUMMARY  A N D  D ISCUSSION 
The internal topology of the two types of biological network compared here depart from randomly assembled networks. Interaction and regulatory protein networks are structured so that two highly connected nodes are not connected to each other. The distribution of connections is highly heterogeneous, the network being organized as a series of highly connected nodes isolated from each other. In other words, the network is compartmentalized.

Recent papers on  complex networks have studied the robustness of a network with regard to two different types of perturbation: robustness to the spread of a deleterious mutation (Maslov & Sneppen 2002), and robustness to the fragmentation of the network as an increasing number of nodes is deleted (Albert et al. 2000; Sole´ & Montoya 2001; Dunne et al. 2002b). How is the connectivity correlation pattern observed for food webs related to these two types of robustness?
As suggested by Maslov & Sneppen (2002) the compart- mentalized pattern observed in protein networks increases the  overall robustness  of  the  network by  isolating the cascading effects of deleterious mutations. In contrast, the food webs studied here have a pattern that is neither similar to the structure of randomly assembled webs, nor similar to protein networks. Food webs show two well-defined domains in  the  connectivity correlation distribution. In contrast to protein networks, two highly connected species within a food web are likely to interact among each other. This is likely to decrease the level of compartmentalization, a traditional concept in food web studies (Pimm & Lawton

1980). In  this regard, food  webs are likely to  be  more susceptible to the spread of a contaminant. However, the connectivity correlation pattern  here described for  food

webs, with their low level of compartmentalization (densely connected species connected to each other), may confer on them a higher resistance to fragmentation if a fraction of the species were removed. Thus, there are different ways of being robust related to different types of perturbations.

Previous authors have explored the effect of the connectivity distribution on  the  resistance of  complex networks to  fragmentation (Albert et al. 2000; Sole´ & Montoya 2001; Dunne et al. 2002b). However, a given connectivity distribution may be  organized in  different patterns of connectivity correlation. Our results build on previous work focusing on connectivity distribution patterns by pointing out that the pattern of connectivity correlation may also be important for understanding how food webs respond to perturbations. We suggest that the connectivity correlation provides an additional characterization of both the  structure  of  food  webs  and  their  susceptibility to perturbations. Further work based on assembly models of biological networks incorporating both  qualitative and quantitative information (Ulanowicz 2002) will give more insight into the relationship between connectivity distribu- tion, connectivity correlation, and  their importance to network responses to disturbances.

Through this and related papers we have looked at structural properties of food webs and their influence on the network response to perturbations. This work complements traditional theoretical approaches based on the stability of linearized dynamical systems (May 1972; Rozdilsky & Stone

2001). Further  work  is  needed  to  integrate these  two

perspectives.
In summary, the pattern of connectivity correlation of complex networks reveals intrinsic features of their topol- ogy. The suppression of links between highly connected proteins, but  their presence in  food  webs, reflects both differences in their structure and in their response to different perturbations.
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