ENVIRONMENTALLY-FRIENDLY FORMULATIONS OF ALACHLOR AND ATRAZINE: PREPARATION, CHARACTERIZATION AND REDUCED LEACHING.

(running title: Reduced leaching of alachlor and atrazine)

TRINIDAD SÁNCHEZ-VERDEJO§, TOMÁS UNDABEYTIA*§, SHLOMO NIRǂ, JAIME VILLACERDE§, CELIA MAQUEDA§, ESMERALDA MORILLO§

(§). Institute of Natural Resources and Agrobiology, CSIC, Apdo. 1052. 41080 Sevilla, Spain.
(ǂ). Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot 76100, Israel.

Keywords: herbicides, liposomes, slow release formulations, bioactivity, leaching.

*Corresponding author; phone: +34-954624711; fax: +34-954624002; e-mail: undabeyt@irnase.csic.es
ABSTRACT

Atrazine and alachlor formulations were designed by encapsulating the herbicide molecules into phosphatidylcholine (PC) vesicles, which subsequently were adsorbed on montmorillonite. PC and montmorillonite are classified as substances of minimal toxicological risk by the USEPA. PC enhanced 15- and 18-fold alachlor and atrazine solubilities, respectively. A 6 mM PC:5g/L clay ratio was found as optimal for PC adsorption on the clay. Active ingredient contents of the PC-clay formulations ranged up to 8.6% for atrazine and 39.5% for alachlor. Infrared spectroscopy showed hydrophobic interactions of herbicide molecules with the alkyl chains of PC, in addition to hydrophilic interactions with the PC headgroup. Release experiments in a sandy soil showed a slower rate from the PC-clay formulations than the commercial ones. Soil column experiments under moderate irrigation and bioactivity experiments indicate that a reduction in the recommended dose of alachlor and atrazine can be accomplished by using PC-clay formulations.
INTRODUCTION

Use of pesticides is essential for the needed food-production over the world. On reaching the soil, pesticides may go through dissipation pathways, such as microbial or chemical degradation, photodecomposition, volatilization, colloidal soil sorption. Furthermore, losses can occur by surface run-off and leaching through the soil profile. This implies a reduction in the efficiency of conventional formulations that have been applied at larger rates to compensate for these losses, with the subsequent environmental and economic cost (1, 2).

Since lower amounts, or less frequent applications are required for biological effect (3-5), design of controlled release formulations of pesticides is aimed at maintaining for longer periods the threshold concentration of the active compound (denoted active ingredient, or a.i.) for pest control in soil by its release at the required rate, and reducing its level in the environment. The use of dissolved or suspended polymers or surfactants, or polymer-pesticide complexes can reduce volatilization, leaching and wind drift (6, 7).

Clay minerals have been used in attempts to improve controlled release formulations. Release of pesticide from alginate beads was dependent on the solubility of the entrapped pesticide; besides the release profile was modified by addition of clay minerals as fillers in the gelling process (8). Alginate formulations containing natural and acid-treated bentonite have been frequently reported (9-11). Numerous studies have been focused on the use of modified montmorillonite by preadsorbing organic cations as a support system for slow release. Organoclay complexes of metolachlor and metribuzin prepared using hexadecyltrimethylammonium reduced their downward mobility in soil (12). Benzyltrimethylammonium (BTMA)-based formulations of alachlor and metolachlor reduced leaching in soil columns and showed herbicidal activity in the top 10 cm, whereas the commercial formulations were mostly bioactive at depths of 20-30
These formulations can be optimized by the choice of a suitable organic cation (15). Phenyltrimethylammonium (PTMA)-montmorillonites gave better reduction in the leached fraction of alachlor and metolachlor than BTMA-clays (16). Thioflavin-T was a better choice for norflurazon formulations (17).

A recent approach based on clay minerals has been developed by encapsulation of the pesticide molecules in micelles or vesicles formed by cationic surfactants in solution, and their further adsorption on the clay mineral (18, 19). This method allows to shorten the preparation time to less than 2 h (20) and may apply for slow release formulations of hydrophobic pesticides by avoiding the use of organic solvents or other chemicals which have been frequently added to enhance the solubility of the pesticide when using organoclays (21).

However, the employed organic cations as well as those mostly used in the synthesis of organo-montmorillonite formulations are not considered to be of minimal toxicological risk. Despite the environmental and economical advantage of slow release formulations the rate of their acceptance by farmers has been slow, due mainly to the slow process of their registration. Recent research has focused on the replacement of certain organic cations by other ones more environmentally friendly, preferably EPA approved (22, 23). In the current work, we demonstrate the potential use of the neutral non-toxic lipid phosphatidylcholine (PC) for the development of environmentally friendly formulations of the herbicides alachlor and atrazine, which have been frequently detected in surface waters and groundwater (24). The molecules of these hydrophobic herbicides are incorporated within PC liposomes formed in solution, which subsequently were adsorbed on montmorillonite. In a first report on this system (25), we studied the optimization of PC adsorption on montmorillonite for its application to slow release formulations of herbicides. In that study we combined adsorption of PC by the clay with
X-ray diffraction and fluorescence studies which elucidated the kinetics of structural changes of PC liposomes interacting with the clay. In the current study we have prepared herbicide formulations of alachlor and atrazine by optimizing the active ingredient (a.i.) content, followed by FTIR studies for characterizing the system clay-(PC) liposome-herbicide. We will show tests of these formulations for slow release first in funnel experiments and then in soil columns. Our main focus in the current study is on combination of leaching and bioactivity in soil column experiments.

MATERIALS AND METHODS.

Materials. The clay used was Wyoming Na-montmorillonite (SWy-2) obtained from the Source Clays Repository of The Clay Minerals Society (Columbia, MO) (cation exchange capacity (CEC) of 0.8 mmol/g). Phosphatidylcholine (SPC-3) (74% distearoyl-PC and 26% 1-palmitoyl-2-stearoyl-PC) was kindly supplied by Lipoid GmbH (Ludwigshafen, Germany). HPLC–methanol was purchased from Sigma-Aldrich (Sigma Chemical Co., St Louis, MO); HPLC-acetonitrile from Teknokroma S.A. (Barcelona, Spain). The analytical herbicides alachlor and atrazine were purchased from Sigma-Aldrich Co. Commercial formulations of alachlor (Alanex, 480 g/L a.i.) and atrazine (Herbimur Atrazina, 475 g/L a.i.) were kindly provided by Makhteshim Agan Industries Ltd. (Tel-Aviv, Israel) and Agroservicios López Pastor S.A. (Sevilla, Spain) respectively. The structural formulas of the herbicides and the lipid are shown in Figure 1.

The upper 20 cm of a sandy soil from Coria (Seville, Spain) was sieved at 2 mm before use. This soil contains 86 g kg\(^{-1}\) of CaCO\(_3\), 7 g kg\(^{-1}\) of organic matter and its pH is 7.8. The particle-size distribution is: 26 g kg\(^{-1}\) clay, 20 g kg\(^{-1}\) silt and 954 g kg\(^{-1}\) sand.
Preparation of phosphatidylcholine vesicles.

Phosphatidylcholine (PC) used was a mixture of 74% distearoyl-PC and 26% 1-palmitoyl-2-stearoyl-PC. PC (6 mM) was dissolved in methanol. The solvent was removed under a gentle stream of nitrogen gas, and the lipid film was first dried under high vacuum for 1h and then hydrated under agitation for another hour. The hydration of the lipid film produced multilamellar liposomes that were converted into unilamellar and sized down by 13 times of sequential extrusion through polycarbonate filters with 0.1 µm pore size (Avanti Mini-extruder; Avanti Polar Lipids, Inc., Alabaster, USA). The lipid hydration and sizing procedures were performed at 65 °C which is above the gel-to-liquid crystalline phase transition temperature (T_m) of the lipid with the higher T_m in the mixture (59.5 °C).

Adsorption of PC vesicles on montmorillonite

Adsorption of liposomes on the clay was carried out in duplicate in polypropylene tubes by mixing 10 ml of a 6 mM lipid solution with montmorillonite under continuous stirring. The final clay concentrations in the tubes were 1.6 and 5 g/L. After shaking for 1 and 3 days at 20°C, the tubes were centrifuged at 12100 g for 20 min, and PC concentration in the supernatants was determined by HPLC using a post-column fluorescence system as in Postle (26). No statistical difference was noticed in the amounts adsorbed after 1 or 3 days of incubation.

Preparation of herbicide-PC-clay formulations

PC formulations of the herbicides were prepared by dissolving several amounts of the herbicide in a 6 mM PC solution by sonication, and further addition to montmorillonite.
The added concentrations of herbicides were 1.5, 8.0 and 14.0 mM for alachlor and 1.8 and 2.4 mM for atrazine. The clay concentrations were 1.6 and 5 g/L. After shaking for 24 h the suspensions were centrifuged at 12100 g for 20 min, the supernatants analyzed for the remaining herbicide and the pellets dry-frozen. A nomenclature for PC-clay formulations was introduced (see Table 1) where the first letters indicate the herbicide (A: alachlor; AT: atrazine), the first number denotes the clay concentration and the second one gives the initial herbicide concentration.

Herbicide analysis

Herbicides were analyzed by HPLC (Shimadzu Model 10A) equipped with a PDA detector. The reverse phase column was a 15 cm Kromasil 100 C18. The flow rate was 1.0 mL min\(^{-1}\). The mobile phases were for alachlor 60% acetonitrile and 40% water, and for atrazine 50% methanol and 50% water. The wavelengths were set at 220 nm for alachlor and 230 nm for atrazine. The retention times were 6.26 and 5.13 min for alachlor and atrazine, respectively.

Fourier Transform Infrared spectroscopy

Fourier Transform Infrared (FTIR) spectra of the herbicides, PC-clay complex and herbicide formulations were recorded in KBr pellets (2 wt.% sample) using a Nicolet spectrometer (510P), in the range of 4000-400 cm\(^{-1}\). Resolution was of 2 cm\(^{-1}\). 300 scans were accumulated for improving the signal to noise ratio in the spectra.

Release of herbicides

Release of herbicides from PC-formulations as well as those from the commercial products was conducted in triplicate by using Büchner funnels. In this procedure 98.9 g
of a sandy soil was added to each Büchner funnel (9.5 cm internal diameter) that had a paper filter on the bottom. The soil layer was homogenized to a 0.5 cm height. The soil surface was uniformly sprayed with the different herbicide formulations. The applied amount of active ingredient was 1 kg ha\(^{-1}\). The soil layer in each funnel was irrigated 43 times with 15 mL of distilled water, each washing corresponding to 2.12 mm rain at 20 minutes intervals, or a total equivalent to 91 mm of rain. The volume eluted after each irrigation was collected and analyzed for the herbicide.

Soil columns experiments

Metacrylate tubes of 3.0 cm diameter were cut into 4- and 8-cm sections, and three units of 4 cm were glued together with a 8 cm unit at one end to construct a 20 cm column. The column was covered at the end opposite to the 8 cm unit with 1 mm nylon screen padded with a thin layer of glass wool (0.5 g) to hold the soil firmly in the column. Sand soil (0.164 kg) was packed from the top of the column (8 cm section), creating a 16 cm soil column that could be readily separated into 4 cm segments. The pore volume was determined to be 46 mL.

3 ml of suspensions of the commercial and PC-clay formulations of atrazine and alachlor were sprayed at the soil surface at a rate of 3 kg \(a.i.\) ha\(^{-1}\). Soil column experiments were performed in triplicate. Distilled water equivalent to 70 mm rain (50 mL) was added at the top of the column in two portions, letting the soil to equilibrate for 24 h between additions and after the final addition. The leachates were collected and analysed for the herbicide. A parallel experiment for alachlor formulations was also performed by adding water equivalent to 140 mm rain.

Each soil column was separated into six 4 cm-segments. Two grams of soil in duplicate were dried at 100°C for 24 h to determine the humidity of each soil segment. The
amount of herbicide remaining in each segment was extracted in triplicate by shaking 5 g of soil with 15 mL of methanol for 24 h. The suspensions were centrifuged and the herbicide analyzed by HPLC.

A bioassay was used to calculate the residual activity of the herbicides throughout the first two upper rings of the soil column. Six beakers containing 15 g of soil of each segment for each formulation were planted with 7 seeds of *Setaria viridis*, and irrigated daily for 2 weeks. The bioactivity of the formulations was determined by measuring the reduction in fresh weight per shoot of *Setaria Viridis* with respect to a control.

RESULTS AND DISCUSSION

Preparation of herbicide formulations

Preparation of herbicide formulations required the optimization of two processes: (i) PC adsorption on the clay; and (ii) solubility enhancement of the herbicide molecules by the PC vesicles to achieve a high a.i. content in the formulations.

An optimal vesicle-clay formulation of herbicides in which a large fraction of the herbicide is adsorbed by the vesicle-clay complex, can be obtained for particular vesicle-clay ratios, for which most of the vesicles are adsorbed without undergoing premature decomposition (20). As a first choice a 6 mM PC/5 g/L clay ratio was tentatively tested for PC adsorption because this was the maximized ratio for the adsorption of cationic vesicles on montmorillonite in the incorporation of anionic herbicides (18). PC adsorption was 95%; this ratio was considered sufficient for an optimal concentration of PC in the clay complex, giving rise also to a solubility enhancement of the herbicides.

After optimizing the PC/clay ratio, a study was performed to determine the maximal solubility enhancement of alachlor and atrazine for a 6 mM PC solution. Water
The solubilities of alachlor and atrazine at 25 °C are 242 (0.90 mM) and 33 (0.15 mM) mg/L, respectively. Stable suspensions of PC enabled 15 and 18-fold solubility enhancement of alachlor and atrazine up to 14 mM and 2.4 mM, respectively. Table 1 shows clay-PC based formulations of alachlor and atrazine prepared by first dissolving several amounts of the herbicides into a 6 mM solution of PC vesicles followed by their adsorption on montmorillonite at 5 g/L. The a.i. content ranged from 3.4 to 24% for alachlor and from 3 to 4.6% for atrazine. A 1.6 g/L clay concentration was also used, in order to increase the active ingredient (a.i.) contents, since the adsorption of the vesicles was still high, i.e., 85% of the total PC added. At this clay concentration, the a.i. content was increased to 39.5% for alachlor, which is quite close to that of the commercial formulation (48%), and to 8.6% for atrazine.

FTIR results.

FTIR measurements can provide information about the molecular interactions occurring in the PC-clay-herbicide systems. The spectra of clay, PC, PC-clay complex, alachlor, atrazine and the PC-clay based formulations A5/14 and AT5/1.8 are shown in Figure 2. For the clay-lipid complex three distinct regions can be assigned in the infrared spectrum according to the potential modes of interaction of PC with the clay: (i) the hydrophobic chain region, which involves the C-H stretching modes and CH$_2$ scissoring; (ii) the interfacial region consisting of C=O stretching; and (iii) the polar headgroup region comprising of PO$_2^-$ and (´N(CH$_3$)$_3$) asymmetric stretching bands respectively (27). The asymmetric stretching vibration of PO$_2^-$ is observed at 1245 cm$^{-1}$. The location of this peak reflects hydration which lowers the wavenumber from 1260 cm$^{-1}$ in pure, dry PC (28). The PC spectrum also shows this absorption band at the same frequency indicating that the PC molecules employed in the current study were also
hydrated. Grdalnik and Hadži (29) reported this band at 1243 cm$^{-1}$ upon hydration of pure dipalmitoyl-PC with about six water molecules per one lipid. Water intercalation will weaken the interaction between the phosphate and the ammonium groups of the polar headgroup by increasing the distance between these two groups that are in close contact in the dry PCs, thus facilitating a close interaction between the positively charged choline group and the clay surface.

Previous studies showed PC adsorbing on layer silicates by developing extended bilayers with a water layer intercalated between the clay surface and the interacting moiety of the lipid headgroup (30, 31). As a result, the water solvating the choline group increases its polarity through H-bonding with the hydrophilic clay surface, and the OH stretching vibration of water is shifted to a higher frequency (3437 cm$^{-1}$) from the absorption at 3421 cm$^{-1}$ in pure PC. Direct visualization of the interaction of the choline group with the clay surface through water molecules could not be followed in this study by the shift of the (N(CH$_3$)$_3$) asymmetric stretching absorption band at 968 cm$^{-1}$ which is very sensitive to dipolar interactions, because of its overlapping with that of the Si-O stretching mode of the clay at 1043 cm$^{-1}$.

The absorption band at 1737 cm$^{-1}$ is due to the stretching of non-hydrogen bonded C=O groups of the glycerol moiety (28). The bands assigned to the hydrophobic chain are located at 2850 and 2920 cm$^{-1}$ for the symmetric and asymmetric methylene stretching, respectively, and at 1473 cm$^{-1}$ for the methylene scissoring. The position of the band at 2850 cm$^{-1}$ which is very sensitive to conformational changes, indicates that the fatty acyl chains are tightly packed in all-trans conformation since an increase in the number of gauche conformers would have shifted this band to higher frequencies (32).

Alachlor interaction within the PC-clay complex gave new absorption bands at 1679 and 1377 cm$^{-1}$ assigned to the stretching vibration of the C=O group and the anilidic
group vibration, respectively. These peaks are shifted from 1688 and 1372 cm\(^{-1}\) in the spectrum of free alachlor, which indicates formation of H-bonds between C=O and the hydration water of the PC headgroup. As a result of the new interaction, the double-bond nature of C=O is reduced lowering the frequency for its resonance, and this results in an increased double bond nature of the anilidic group producing a shift to a higher frequency (33, 34). Formation of water bridges between alachlor and PC did not cause any significant shift in the frequency of the P=O group, indicating weak interactions with the most external hydration sphere of the headgroup.

In addition to the appearance of these new bands, there are some important changes in the bands of the adsorbed PC. The intensity of both absorption bands at 2920 and 2850 cm\(^{-1}\) decreases notably whereas the absorption due to the scissoring methylene vibration is lowered to 7 cm\(^{-1}\) from 1473 cm\(^{-1}\). These features indicate a strong interaction of alachlor with the hydrophobic chain.

In the case of atrazine, the most characteristic absorption bands used as fingerprints for studying its interactions are the ring stretching modes in the 1400-1600 cm\(^{-1}\) region. The interaction of this herbicide with the PC-clay complex showed an increase in frequency at the absorptions at 1620 and 1551 cm\(^{-1}\) to 1629 and 1557 cm\(^{-1}\), respectively, indicating formation of H-bonds through the lone pair electron of the nitrogen atom to OH groups of the headgroup-solvating water (the P=O moiety). A similar mechanism was observed in the interaction of atrazine with humic substances (35, 36). As previously observed with alachlor, there is also a decrease in the intensity of the bands due to methylene stretching modes, suggesting interactions of the alkyl chains of PC with atrazine molecules.

Funnel Experiments: Release of herbicides in soil
Figure 3 shows the elution curves obtained for the commercial formulation of atrazine as well as those based on PC. For PC formulations of atrazine two elution peaks are evident, which is ideal for slow release formulations, because a significant fraction of bound molecules of the herbicide is initially released in the early stages where a high bioefficacy is desired, whereas the remaining fraction is released more gradually than in the case of the commercial formulation, as noted in the lower ascendant part and longer extended tail.

Atrazine-PC formulations showed considerable reduction in release. After 8 irrigations, the cumulative amount of herbicide released was 79.3±0.3% for the commercial formulation, whereas values of 15.7±0.1, 24.2±0.2 and 26.3±4.3% were obtained for AT5/1.8, AT5/2.4 and AT1.6/2.4, respectively, with percentage reductions of release ranging from 67 to 80%. The total released percentages were 101.8±1.8 for the commercial formulation, 95.7±5.5 for AT5/1.8, 103.4±3.4 for AT5/2.4 and 100.4±0.8 for AT1.6/2.4, indicating again that no irreversible binding of the herbicide occurs in the PC-clay formulations. Essentially a similar pattern was obtained for alachlor formulations (25).

Soil column experiments

In the previous experiments, the funnels were excessively irrigated to test whether PC formulations gave a significant reduction in herbicide release as compared to the commercial formulations. The aim of soil column experiments was to follow the mobility and bioactivity of alachlor and atrazine formulations along the soil columns due to irrigation under conditions similar to those existing in the field in Mediterranean regions.
The formulations employed were selected on the basis of their slow release and high active ingredient content. In the case of alachlor, two PC-clay formulations were chosen, one with the highest $a.i.$ content (A1.6/14) and another one with an intermediate $a.i.$ value (A5/8), whereas in the case of atrazine, the three PC-clay formulations were examined.

The amounts of atrazine and alachlor of the commercial and PC-clay formulations were extracted from each soil segment. Figure 4 shows the distribution of alachlor and atrazine residues at different depths in the soil columns at the end of the experiments. The data show a considerable reduction in leaching in the upper rings from PC-clay formulations.

The amount of atrazine retained in the upper layer (0-4 cm) from the PC-clay formulations in Fig. 4a was about 75% of the applied versus a value of 53% for the commercial, which amounts to a 29% reduction in leaching. In the following segment (4-8 cm) the amount of atrazine detected from the commercial formulation was about 2.5-fold larger than those from PC-clay formulations. No leached amount was detected at the lowest depth (12-16 cm) for the PC-clay formulations of atrazine, unlike the commercial one. These data were corroborated by measuring the herbicidal activity in the upper rings (Fig. 5a). A very high inhibition percent (70-76%) was obtained for PC-clay formulations. This inhibition percent in the top layer is two-fold larger than that of the commercial formulation. The opposite trend is observed in the following segment, a two-fold larger bioactivity from the commercial than that of the PC-clay formulations, in good agreement with the extracted amounts.

In Fig. 4b, the remaining alachlor in the top 0-4 cm layer was 12.3 ± 0.9 % of the total applied for the commercial, whereas 2.3-fold larger amounts were determined for PC-clay formulations. No clear difference was detected at the lowest depth (12-16 cm).
between the PC-clay formulations and the commercial that was largely accumulated at 8-12 cm, whereas PC-clay formulations were nearly evenly distributed in the first 12 cm. The herbicidal activity at the top layers of the soil columns between the commercial and PC-clay formulations was the same despite the different extracted amounts (Fig. 5b), which may be rationalized on the basis that methanol extracts not only the active ingredient from PC-clay formulations, which is acting immediately, but also the bound fraction of the herbicide, which is released slowly yielding a longer herbicidal activity with leaching events. The fast released fraction present in the upper layers is sufficiently bioactive to achieve a good weed control, because of the high sensitivity of the tested plant to this herbicide as seen by the high inhibition percent obtained for the commercial formulation though the amount of herbicide in the upper layer was quite low. To test this possibility, a parallel experiment was performed by increasing the added water to 140 mm rain, so that the differences in the extracted amounts and the herbicidal activities in the upper layers between the commercial and the PC-clay formulations were more pronounced. The added water was larger than the pore volume of the soil column so that a fraction of the total amount applied was leached out from the soil column, amounting to 30.3±0.7% for the commercial formulation versus values of 18.7±3.5 and 15.1±3.0% for the A5/8 and A1.6/14 formulations, respectively. The PC-clay formulations not only reduced by two-fold the eluted amount from the commercial formulation, but also changed the distribution pattern of the remaining amounts in the soil column with respect to that at a lower irrigation. In Fig. 4c, the total remaining amounts of alachlor at 0-4 and 4-8 cm depths were significantly larger by 2.63- and 1.74-fold, respectively, than those of the commercial formulation. The opposite trend was observed at larger depths, where the amounts of alachlor from the commercial were always significantly larger than those from the PC-clay formulations.
These formulations were mainly accumulated at the 4-8 cm depth, whereas the commercial was concentrating in the 8-12 cm segment.

The differences in the remaining amounts of alachlor in the upper layer were noticed by a larger herbicidal activity from the PC-clay formulations than that of the commercial formulation (Fig. 5c).

The combined results of the extracted amounts, the plant growth inhibition percents and the eluted amounts indicate that a large reduction in the recommended dose of alachlor and atrazine, respectively, can be accomplished by using PC-clay formulations. The success in designing a slow release formulation of atrazine with an appreciable percentage of $a.i.$ is remarkable in view of our many previous unsuccessful attempts of designing formulations based on organo-clay and micelle-clay complexes (unpublished results).

In the current study, PC-clay formulations were designed for triazine and acetanilide herbicides, such as atrazine and alachlor, respectively. However, this approach may be extended to many other herbicides, whose molecules can interact with the hydrophobic chains of PC molecules. Other modes of interaction, such as H-bonding can be operating between polar functional groups of the herbicides and the PC headgroup.

Slow release formulations should be designed to obtain a compromise between the reduction in leaching and the herbicidal activity in the top soil layer. PC-clay formulations fulfill both of these requirements since the amount of herbicide leached was reduced several-fold and the biological activity was enhanced in the upper layer of the soil, which is of prime concern for long-term weed control. In addition, PC-clay formulations can be classified as environmentally-friendly because their use poses the advantage that phosphatidylcholine and the clay mineral montmorillonite are approved substances of minimal toxicological risk by the USEPA.
ACKNOWLEDGMENTS

The authors acknowledge financial support by the Spanish Ministry of Education and Science (Project AGL2005-00164) and Junta de Andalucía (Project P06-FQM-1909).

LITERATURE CITED

(16) El-Nahhal, Y.; Nir, S.; Serban, C.; Rabinovitch, O.; Rubin, B. Montmorillonite-
phenyltrimethylammonium yields environmentally improved formulations of

(17) Undabeytia, T.; Nir, S.; Rubin, B. Organo-clay formulations of the hydrophobic
4767-4773.

(18) Undabeytia, T.; Mishael, Y.G.; Nir, S.; Papahadjopoulos-Sternberg, B.; Rubin, B.;
Morillo, E.; Maqueda, C. A novel system for reducing leaching from
37, 4475-4480.

(19) Nir, S.; Rubin, B.; Mishael, Y.; Undabeytia, T.; Rabinovitch, O.; Polubesova, T.
2006. Controlled release formulations of anionic herbicides. US Patent

measurements and structural implications for slow release formulations of

(21) Hermosín, M.C.; Celis, R.; Facenda, G.; Carrizosa, M.J.; Ortega-Calvo, J.J.;
Cornejo, J. Bioavailability of the herbicide 2,4-D formulated with organoclays.

(22) Polubesova, T.; Nir, S.; Rabinovitch, O.; Rubin, B. Mepiquat-acetochlor

(23) Rytwo, G.; Gonen, Y.; Afuta, S.; Dultz, S. Interactions of pendimethalin with

Milothridou, A.; Kintzikiglou, K.; Vlachou, P. The potential of pesticides to

FIGURE LEGENDS

Figure 1. Structural formulae of the herbicides and phosphatidylcholine.

Figure 2. Infrared spectra of herbicides, clay, PC, PC-clay complex (6 mM PC:5 g/L), and herbicide formulations.

Figure 3. Herbicide release from PC-clay formulations of atrazine.

Figure 4. Percents retained of atrazine (a) after 70 mm rain and alachlor after 70 (b) and 140 (c) mm rain, in soil columns along the depth in leaching experiments.

Figure 5. Herbicidal activity in the upper rings of the soil columns from formulations of atrazine (a) after 70 mm rain and alachlor after 70 (b) and 140 (c) mm rain.
Table 1. Clay-vesicle formulations.a

<table>
<thead>
<tr>
<th>Clay added (g/L)</th>
<th>Herbicide added (mM)</th>
<th>Notation of formulation</th>
<th>Active ingredient (w/w %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>A5/1.5</td>
<td>3.4</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>A5/8</td>
<td>15.0</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>A5/14</td>
<td>24.0</td>
</tr>
<tr>
<td>1.6</td>
<td>14</td>
<td>A1.6/14</td>
<td>39.5</td>
</tr>
</tbody>
</table>

Alachlor

5	1.8	AT5/1.8	3.0
5	2.4	AT5/2.4	4.6
1.6	2.4	AT1.6/2.4	8.6

Atrazine

a PC initial concentration was always 6 mM.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5