ABSTRACTS

XII International Conference on Plant Embryology

September 5-7, 2005
Cracow, Poland
Medicago truncatula: A model plant for studying somatic embryogenesis and organogenesis in legumes

Nijat Imi1, Mahira Nizzazzidi1, Nikki Schultz2, Peta Holmes1, Jeremy J Weinman1, Tursun Kerim1, Pernko de Jong1, Kim F Nolan1, Ray J Roll1, Barry G Rolfe1

1ARC Centre of Excellence for Integrated Legume Research 'Genomics Interactions Group, Research School of Biological Sciences, Australian National University, Australia, e-mail: nijat.imi@anu.edu.au

2School of Environmental and Life Sciences, University of Newcastle, Australia

We are investigating the process in which protoplast cells and explant leaves of Medicago truncatula (Mt) de-differentiate to establish totipotency and form embryos or roots through proliferation and re-differentiation. The Mt mutant line 2HA has a 500 fold greater capacity to re-generate plants in culture by somatic embryogenesis than wild type Jerusalem when auxin (naphthaleneacetic acid) and cytokinin (β-aminobutyric acid) are added to the culture media (Roe and Nolan, 1995; Nolan et al., 2003). We have used transcriptomic and proteomic analyses which revealed that changes in gene/protein expression correlate with the developmental commitment and growth during somatic embryogenesis and organogenesis (Imi et al., 2004; Imi et al., 2005). We have identified many genes/proteins including several tran-
scription factors that may play critical roles in cellular commitment during embryogenesis.

REFERENCES


Profilin variability in olive (Olea europaea L.) pollen cultivars

Jos Carlos Jiménez-López, Sonia Morales, Juan de Dios Alché, María Isabel Rodríguez-García

Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, C.S.I.C., Professor Alhondiga 1, 18008, Granada, Spain, e-mail: mareinioebel@rodriguezgarcias.ces.es

Profilins are ubiquitous low molecular weight (15-18 kDa) proteins found in animals, plants, and even viruses. They are structurally well-conserved proteins able to in-
teract with a variety of physiological ligands including cytoskeletal components -actin- and phosphatidyl-
ositides (Goldsmith-Clements et al., 1990). Profilins may link the microfilament system with signal transduction pathways. Plant profilins have been shown to be highly cross-reactive allergens within a broad range of species and plant tissues. Pollen profilins bind to IgE antibodies of allergic patients, thus triggering the symptoms of type I allergy.

Olive pollen profilin (also named Ole e 2) has been characterized, sequenced and expressed in E. coli, show-
ing 86% and 73% identity to birch and grass profilins respec-
tively (Lledóaura et al., 1996; Martinez et al., 2003). The protein displays a molecular weight of 15-18 kDa and a high degree of homology in both its nucleotide and amino acid sequences. Three isoforms of the protein have also been described. The present work reports and analyzes the presence of polymorphisms in the nucleotide sequences of profilins individually amplified by RT-PCR from the pollen of several olive cultivars. Expression of profilins in

the olive pollen cultivars has also been analyzed by Western Blotting and immunofluorescence localization of the protein by confocal microscopy. Localization was mainly performed in pollen tubes grown after in vitro germination of pollen.

ACKNOWLEDGEMENTS

This work was funded by projects AGL2003-07919 and MEC BFU2004-99092/BFI, J.C. Jiménez and J. Morales thank the Spanish CSIC for supporting his work (BPI-CSIC 2002-2004). The authors also thank C. Martín and S. Sánchez for her technical assistance.

REFERENCES

