EB Simplex Superficialis Resulting from a Mutation in the Type VII Collagen Gene

Amalia Martinez-Mir*,1, Jianjun Liu‡,1, Derek Gordon§, Madeline S Weiner¶, Wasim Ahmad*, Jo-David Fine†, Jurg Ott‡, T Conrad Gilliam‡ and Angela M Christiano*†

*Department of Dermatology, Columbia University, New York, New York, U.S.A.
†Department of Genetics and Development, Columbia University, New York, New York, U.S.A.
‡Columbia Genome Center, Columbia University, New York, New York, U.S.A.
§Laboratory of Statistical Genetics, Rockefeller University, New York, New York, U.S.A.
¶Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, U.S.A.

Correspondence: Dr Angela M. Christiano, Department of Dermatology, Columbia University, College of Physicians & Surgeons, 630 West 168th Street VC-1526, New York, New York 10032. Email: amc65@columbia.edu

1These authors contributed equally to this work.

Abbreviations:

DEB, dystrophic epidermolysis bullosa; DDEB, dominant forms of DEB; EBS, epidermolysis bullosa simplex; EBSS, epidermolysis bullosa simplex superficialis

To the Editor:

Epidermolysis bullosa simplex (EBS) is an inherited blistering disease characterized by intraepidermal cleavage (Gedde-Dahl and Anton-Lamprecht, 1990; Fine et al, 1991). A very rare subset of EBS, termed "EBS superficialis" (EBSS), has been described in two families by Fine et al (1989). Skin biopsy of these patients shows clefts of variable size just beneath the level of the stratum corneum, which can be completely separated from the rest of the epidermis in some cases. In two of the patients reported, there are also some clefts in the lower one-third of the epidermis.

Together with this unusual clinical picture, most of the patients show atrophic scarring, milia, nail dystrophy, and blistering involving the oral cavity. After the first description of EBSS in two unrelated families, no other cases have been reported, emphasizing the rareness of these findings.

Up to now, mutations in the genes KRT5, KRT14, and PLEC1 have been described underlying different subsets of EBS. None of them, however, is a good candidate for the superficial lesions observed in EBSS. KRT5 and KRT14 are expressed in basal keratinocytes, whereas mutations in the PLEC1 gene are associated with EBS together with muscular dystrophy (Smith et al, 1996). In the absence of a candidate gene for EBSS, we performed a genome-wide screen in one of the
pedigrees previously described (Fine et al, 1989). The second family was not included in the study, as only the proband showed evidence of blister formation, suggesting a sporadic mutation. Briefly, the affected individuals studied here belong to a five-generation pedigree with an autosomal dominant pattern of inheritance (Figure 1a). In affected family members, variably sized clefts were noted just beneath the level of the stratum corneum in each biopsy specimen (Fine et al, 1989). In some, clefts were subcorneal; in others, lower intraepidermal. In none of the affected individuals was sub-lamina densa cleavage noted, nor was any diminution of type VII collagen staining noted using the anti-type VII antibody LH 7:2 (Fine et al, 1989).

A genome-wide screen was performed using a panel of 324 microsatellite markers, with an average marker spacing of 10 cM and a semiautomated fluorescence-based genotyping system (Aita et al, 1999). Two-point linkage analyses were carried out using the MLINK program of the FASTLINK suite of programs (Lathrop et al, 1984; Cottingham et al, 1993; Schaffer et al, 1994). A disease allele frequency of 0.001 and an autosomal dominant mode of inheritance with complete penetrance were assumed. The marker allele frequencies were estimated from observed and reconstructed genotypes of founders within the pedigree. To avoid computation errors due to observed allele frequencies of 0.0, alleles for all markers were re-coded using the RECODE program (Weeks, 2000). Multipoint analyses and reconstruction of pedigrees were carried out using the SIMWALK program version 2.6 (Sobel and Lange, 1996).

The results of the initial genome-wide scan revealed three chromosomal regions with a maximum two-point LOD score greater than 1.4, on chromosomes 3 (Zmax= 1.62), 8 (Zmax= 1.80), and 10 (Zmax= 1.40). Haplotype and multipoint analyses of additional markers allowed us to exclude the regions on chromosomes 8 and 10, and to more decisively establish the linkage to chromosome 3.

A total of 28 additional markers were used for the fine-mapping of the EBSS locus. Maximum two-point LOD scores of 4.11 and 3.77 at $\xi = 0.0$ were obtained for markers D3S2420 and D3S3582, respectively. Multipoint linkage analysis showed a maximum LOD score of 5.96 for marker D3S2420 (Figure 1b). Finally, analysis of the reconstructed haplotypes confirmed the linkage results and placed the disease locus within a 2.94 cM region on chromosome 3, flanked by markers D3S3624 and D3S1289 (Figure 1a).

According to the different maps derived from the Human Genome Project (Human Genome Project Working Draft; National Center for Biotechnology Information; Ensembl Genome Server; GeneMap'99), the region flanked by markers D3S3624 and D3S1289 spans approximately 10 Mb of genomic DNA on 3p21. Coincidentally, the $COL7A1$ gene, in which mutations are responsible for DEB (Uitto et al, 1999; Fine et al, 2000), lies within this genetic interval. Type VII
collagen is the main constituent of the anchoring fibrils and at the microscopic level, DEB is
classified by skin cleavage beneath the lamina densa. The morphologic defect is a reduced
number or complete absence of the anchoring fibrils, in the dominant and recessive forms of DEB,
respectively (Tidman and Eady, 1985). In DEB skin, blisters appear just beneath an intact lamina
densa. In contrast, the family we studied and reported by Fine et al (1989) showed blister formation
just beneath the stratum corneum. On the basis of the differences in phenotype between these two
subtypes of EB, the COL7A1 gene was not considered to be a candidate gene for EBSS.
Nevertheless, to unequivocally rule out this possibility, we performed heteroduplex analysis and
direct sequencing of the coding region.

Quite unexpectedly, we identified a heterozygous transition in exon 73, 6100G→A, leading to the
amino acid change G2034R (Table I). Exon 73 codes for a 67-amino-acid collagenous polypeptide
sequence preceded by the 39-amino-acid noncollagenous segment (Christiano et al, 1994a). The
substitution of a glycine residue within the collagenous domain of the molecule, characterized by
the repeating Gly-X-Y sequence, is the major class of pathogenetic mutations in the dominant forms
of DEB (DDEB) (Christiano et al, 1994b, 1995; Burgeson et al, 1995). Moreover, mutations
involving the glycine residue at position 2034 have been previously reported (Kon et al,
1997; Hammami-Haasli et al, 1998; Rouan et al, 1998; Mecklenbeck et al, 1999) (Table I). The
very same amino acid substitution has been described in three families with different forms of
DDEB: the "Cockayne-Touraine" variant of DDEB (Kon et al, 1997), DDEB "generalisata"
(Hammami-Haasli et al, 1998; Mecklenbeck et al, 1999), and an unspecified subtype of DEB
(Mecklenbeck et al, 1999). In addition, a different amino acid substitution affecting the same
residue, G2034W, has also been reported. Rouan et al (1998) identified this second amino acid
change in a family with a mild form of DDEB, mainly involving the hands, feet, and mouth. In
another study, Mecklenbeck et al (1999) described the same mutation, G2034W, in two families
with the so-called DDEB "localisata" (Table I). In these families, a clear DDEB phenotype has
been reported, and these types of glycine substitution mutations are the most prevalent in DDEB.

In light of our results, we believe that the clinical phenotype in the EBSS kindred studied here
actually represents a case of DDEB, rather than a unique subset of EBS. The molecular data suggest
that the subcorneal cleavage observed in different members of this kindred would likely not be
pathogenic or contribute to the disease process. As the proband from the second family reported in
the original work (Fine et al, 1989) was not available for this study, these findings do not fully
exclude the possibility that rare forms of EBS having superficial skin cleavage may also exist.
Although it is true that the family studied here does indeed have several clinical findings that are
commonly associated with DEB, data from the National EB Registry have also shown that at least
10%-25% of all EBS patients have one or more of these "dystrophic" features as well, making the diagnosis based on clinical phenotypes sometimes imprecise. Genetic studies such as the one presented here become an invaluable tool to clarify the true molecular basis of a disease like EBSS, where the clinical features cannot be used to unequivocally classify a particular phenotype. Collectively, these findings allow us to reclassify a previously uncharacterized form of EB as another clinical variant of DDEB.

References

4. Center for Medical Genetics, Marshfield Medical Research Foundation

9. Ensembl Genome Server

16. Human Genome Project Working Draft

20. National Center for Biotechnology Information

Acknowledgments

We thank the family for their participation in this study and Dr. Peter Cserhalmi-Friedman, Columbia University, for helpful comments and discussion. The authors gratefully acknowledge NIH USPHS grants R01 AR43602, R01 AR44924, and K02 AR02047 (to A.M.C.), K01-HG00055-01 (to D.G.), and HG00008 (to J.O.), the National Epidermolysis Bullosa Registry (to M.S.W. and J.D.F.), the Skin Disease Research Center of Columbia University P30 AR44345 (to J.O. and A.M.C.), and the Dermatology Foundation.
Haplotype and multipoint analysis in the pedigree with EBSS, (a) Pedigree with EBSS and haplotypes for microsatellite markers on chromosome 3. The disease-associated haplotype is shaded. Asterisks indicate the key recombination events. Non-informative marker in cross-hatched. Genotypes in parenthesis have been inferred; (b) multipoint LOD scores for family with EBSS. Markers used are listed on the X-axis. The map positions were computed by SIMWALK 2.6. The
order and distance between the markers were deduced from the genetic map at the Center for Medical Genetics, Marshfield Medical Research Foundation (Broman et al., 1998).

Tables

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Type of EB</th>
<th>Inheritance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2034R</td>
<td>EBSS</td>
<td>AD</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>DEB-CTa</td>
<td>AD</td>
<td>Kon et al (1997)</td>
</tr>
<tr>
<td></td>
<td>DEBb</td>
<td>AD</td>
<td>Mecklenbeck et al (1999)</td>
</tr>
</tbody>
</table>

a DDEB-CT: Cockayne-Touraine variant of DDEB.
b The subtype of EB has not been specified.