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 2 

Abstract  1 

Bacitracin is an antibiotic used in rabbit husbandry to control microbial digestive 2 

pathologies. Collateral effects on absorption and mucosal development have been 3 

reported and these may impact on protein metabolism. The present study aims to analyse 4 

the effect of the antibiotic on protein synthesis in lactating does because mammary gland 5 

metabolism and milk output should provide a sensitive index of any undesirable action of 6 

bacitracin. Rates of protein synthesis were measured in mammary gland, liver, intestinal 7 

mucosa and muscle of lactating rabbits does by injecting a flooding dose of 8 

[
2
H5]phenylalanine into the auricular artery of two groups (each n=8) of New Zealand 9 

White does fed different experimental diets. The control group (C) received the basal diet 10 

and the bacitracin group (B) ingested the same diet but supplemented with bacitracin (100 11 

mg/kg). Animals received the experimental diet from d 28 of pregnancy until d 26 of 12 

lactation when they were slaughtered. Just after birth, litter size (LS) was adjusted by 13 

cross-fostering either to 5 or 9 pups (4 does per dietary treatment). The relative weight of 14 

the liver tended to be greater in those females receiving the B diet (27 vs 22.5 g/kg BW; 15 

P<0.07), while diet did not effect mammary gland weight (255.7 ± 10.59 g). Fractional 16 

protein synthesis rate (FSR) was higher for intestinal mucosa (duodenum; 51.7 ± 2.09 17 

%/d) followed by mammary gland and liver (38.29 ± 2.62 %/d and 40.2 ± 1.98 %/d, 18 

respectively), and the lowest value was observed in muscle (2.92 ± 0.26 %/d; P<0.0001). 19 

Bacitracin treatment lowered FSR in the mammary gland by 23% (P = 0.024) and this was 20 

independent of litter size. Conversely, FSR in the duodenum was not affected by antibiotic 21 

treatment but reduced by 15% (P = 0.021) for the larger litter size.    22 
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Implications 1 

Bacitracin, as feed additive, has been banned from livestock diets (EU 1831/2003) 2 

because of the widespread use would increase pathogen resistance. Moreover bacitracin 3 

is not innocuous in metabolic terms given that altered protein metabolism observed here 4 

for lactating does.  5 

 6 

Introduction  7 

Zinc bacitracin is the most common antibiotic used in rabbit husbandry to control digestive 8 

pathologies induced by intestinal micro-organisms, although collateral effects on nutrient 9 

absorption (Abecia et al., 2005) or intestinal mucosa development (King, 1980) have been 10 

also described. Bacitracin is a polypeptide antibiotic, produced by Bacillus licheniformis, 11 

that acts by interfering with the formation of lipid-linked sugars and thus disrupting the 12 

synthesis of peptidoglycan in bacterial cell membranes (Storm and Strominger, 1973 and 13 

1974). These lipid-linked sugars are intermediates in the biosynthesis of several 14 

glycoproteins and polysaccharides not only in bacteria (Waechter and Lennarz, 1976) but 15 

also in plants (Ericson et al., 1978) and animals (Herscovics et al., 1977). Moreover, 16 

bacitracin has been shown to impact on both isolated cells and subcellular organelles, 17 

through inhibiting the degradation of substances that influence protein synthesis, including 18 

thyrotropin, luteinising hormone releasing factors (McKelvy et al., 1976), insulin (Roth et 19 

al., 1980) and β-endorphin (Patthy et al., 1977). Collateral effects of bacitracin on nutrient 20 

absorption (Abecia et al., 2005; King, 1980) may be exerted through protein metabolism, 21 

either by blocking synthesis of specific cell wall peptidoglycane or altering the hormonal 22 

environment of protein metabolism. During lactation, protein metabolism is enhanced 
23 

(Baracos et al., 1991) due to the metabolic activity of the mammary gland and thus may be 24 

particularly sensitive to any undesirable action of the antibiotic.  25 
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 The aim of this study was to investigate the impact of the antibiotic on protein synthesis in 1 

lactating does using litter size as a tool to modify intake.  2 

 3 

Material and methods 4 

Animals and diets  5 

Protocols, animal handling and infusion procedures used in this experiment were approved 6 

by the Comité Etico de Experimentación Animal of the University of Zaragoza. Sixteen 7 

New Zealand White doe rabbits in the third pregnancy and a similar body weight, (4.3 ± 8 

0.42 Kg) at the beginning of the experiment were randomly divided into two groups that 9 

were fed from late pregnancy (2-3 d before parturition). Ingredients and chemical 10 

composition of experimental diets were described on Table 1.  11 

Experimental design  12 

Less than 12 hours after birth, the litter size of four does within each dietary treatment was 13 

adjusted by cross-fostering either to 5 (LS5) or 9 (LS9) pups. The females were housed 14 

separately from their offspring in individual metabolism cages and pups were allowed to 15 

suckle for 10 min every morning. Daily milk yield was recorded by weighing the does 16 

immediately before and after suckling. On day 26 after parturition the does were weighed, 17 

a manual milk sample (5-10 ml) obtained and then they were suckled by their offspring. 18 

Afterwards the females were fitted with two indwelling catheters: one in the auricular artery 19 

[20G 11/4 ″;1.1 x 32mm] and the other in the marginal vein [22 G 1″; 0.9 x 25mm; Braun 20 

Medical S.A, Rubi, Barcelona) of the contralateral ear, for infusion and sampling, 21 

respectively. Surgery was performed under sterile conditions in an appropriately equipped 22 

operating room. To insert the catheters, the ears were anesthetised using a commercial 23 

topical cream (EMLA, Astra-Zeneca Farmaceutico S.A, Madrid, Spain).  24 

 25 

Infusion protocol and tissue sampling 26 



 5 

A flooding dose of phenylalanine (set at 15 times the size of the body free phenylalanine 1 

pool), 40 % of which was as [ring-2H5]phenylalanine (Cambridge Isotope Laboratories IL, 2 

Inc., Miamisburg, OH, USA), dissolved in sterile saline (9g NaCl/l) was infused over a 10 3 

min period into the artery. The amount of total phenylalanine infused per doe averaged 4 

400 mg. Venous blood samples (1 ml) were withdrawn at -10 min (for background natural 5 

abundance) and at 12, 15, 20, 25, 30 and 40 min after the start of the infusion. Therefore, 6 

isotope was infused and sampled during 40 min in order to obtain an equilibrium of the 7 

isotope distribution into the plasma pool but avoiding the return of bounded-[2H5] 8 

phenylalanine. These samples were used to define the temporal kinetics of plasma free 9 

phenylalanine enrichment. After the last plasma sample a small volume of milk (2-5 ml) 10 

was taken manually and then does were killed by lethal injection of sodium thiopental 11 

(Braun Medical S.A, Rubi, Barcelona). In order, tissue samples (2–3 g) from the liver, 12 

semitendinosus muscle, mammary gland and duodenum were rapidly dissected, washed 13 

in cold saline and frozen in liquid nitrogen until analysis. The remainder of the liver and 14 

mammary gland were then extracted and weighed.  15 

 16 

Analytical procedures  17 

Dry matter (DM), organic (OM) matter, nitrogen (N) and fibre in feed and faeces and N in 18 

urine were determined by standard procedures of AOAC (Association of Official Analytical 19 

Chemists, 1995). Casein in defatted milk samples (2 ml) was determined after cool-casein 20 

coagulation using chymosin (CHR Hansen, Madrid, Spain) and calcium chloride followed 21 

by centrifugation (15000 g, 1h at 4ºC). N was determined in both the supernatant (serum 22 

protein) and casein-precipitated fractions.  23 

 24 

Isotope determination 25 



 6 

Free phenylalanine extracts from both plasma, obtained from centrifugation of blood at 1 

1000 g for 15 min at 4°C, and tissues were obtained, converted to t-butyldimethsilyl 2 

derivatives and isotopic enrichments measured by gas-chromatography mass 3 

spectrometry (GCMS) as described previously (Connell et al., 1997) and calculated as 4 

mole per cent excess (MPE). Protein-bound phenylalanine from the tissues was 5 

enzymatically converted to phenylethylamine and the enrichments determined as the 6 

heptafluorobutyryl n-butyl ester as described previously (Calder et al., 1992).  7 

 8 

Calculation and statistics 9 

 Fractional rates of protein synthesis (FSR; percentage of the tissue protein pool 10 

synthesised per day) in the different tissues were calculated using the equation developed 11 

by Garlick et al., (1980) for the “flooding” dose technique.   12 

FSR (%/d ) = (Sb / Sa)*(100/t) 13 

Where Sb is the isotopic enrichment of the phenylalanine bound to tissue protein above 14 

natural abundance (assumed to be the same as in plasma protein) at time t (d-1), the time 15 

of tissue removal. Sa is the calculated area under the curve (AUC) for the isotopic 16 

enrichment of the free phenylalanine pool, between time = 0 until t, calculated by 17 

trapezium-based analysis for each doe and tissue. The AUC was calculated from the 18 

plasma data, extrapolated to the time of tissue excision, and this then corrected by the 19 

ratio of the terminal tissue free pool:extrapolated plasma phenylalanine enrichments.  20 

Absolute rate of protein synthesis (ASR, g/d) in liver and mammary gland was calculated 21 

according to the equation: 22 

  ASR = (FSR/100) * total protein content in tissue (g)  23 

 24 

Results were examined by ANOVA as a 2 x 2 factorial design, considering the diet (C vs 25 

B) and the litter size (LS5 vs LS9) as main effects. When comparisons between tissues 26 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Calder%20AG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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FSR were performed, rabbit was taken as a random factor. All statistical analyses were 1 

carried out using the GLM Procedure of the Statistical Analysis Systems computer 2 

software package, version 8 (SAS Institute Inc. 2000). Significance was taken as P<0.05.  3 

 4 

Results 5 

No major incidents were registered during the experiment and no apparent differences in 6 

behaviour were observed among does eating either the control or the medicated diet.  7 

Production data from the last day of experiment (to match with isotope kinetics) are shown 8 

in Table 2. On the terminal day no treatment differences were observed for body weight 9 

(4011 (SE 40.35) g), dry matter intake (293 (SE 13.57) g/d) or milk yield (242 (SE 17.98) 10 

g/d). In addition, no significant changes were detected in either protein (107.7 g/Kg of milk) 11 

or casein (57.6 g/Kg) concentration in milk between experimental treatments, the latter 12 

constituted 54 % of total milk protein.  13 

The relative and absolutes weights of the mammary gland averaged 63.8 (SE 2.24) g/Kg 14 

BW and 255.7 (SE 14.38) g, respectively, and were neither influenced by diet nor litter 15 

size. In contrast, the relative weight of the liver tended to be greater in those females 16 

receiving the B diet (27 vs 22.5 g/kg BW; P<0.07). Liver weight was independent of litter 17 

size. 18 

Temporal changes in plasma enrichment of free phenylalanine are presented in Figure 1, 19 

together with terminal enrichments of free phenylalanine recorded for the different tissues. 20 

The FSR for the different tissues are presented in Table 3. The highest mean values were 21 

found for the intestinal mucosa (duodenum; 51.7 %/d) followed by mammary gland and 22 

liver (38.29 and 40.2 %/d) as showed in table 3. Protein contents in muscle, mammary 23 

gland and liver were 17.0 (SE 0.68), 15.2 (SE 1.05) and 15.8 (SE 0.57) g CP/100 g wet 24 

tissue, respectively. Bacitracin lowered FSR in the mammary gland by 23% (P = 0.024) 25 

and this was independent of litter size. Similar changes were observed when ASR was 26 



 8 

considered. In contrast, protein synthesis in the duodenum was not affected by antibiotic 1 

treatment but was reduced (- 15%, P=0.021) for the larger litter size. No significant 2 

changes in FSR or ASR were detected for liver or muscle. Data from N balance are 3 

presented in Table 4. Feed N input (g/d) averaged 7.9 (SE 0.29) whereas output in urine 4 

(3.26 (SE 0.13)), faeces (2.12 (SE 0.16)) and milk (4.54 (SE 0.24)) totalled 9.92 g/d, so the 5 

does were in a negative daily balance of 1.9 g/N, equivalent to 12.1 g/protein, even at this 6 

stage of late lactation.  7 

Figure 1 shows enrichment (mpe) of free phenylalanine in plasma. Liver was the first 8 

tissue sampled followed by muscle due to the relatively easy access to both of them. 9 

However to take mammary gland and duodenum samples longer time was consumed.  10 

  11 

Discussion 12 

The experimental animals formed part of a larger study (Abecia et al., 2008) but 13 

experimental constraints, including availability of metabolic cages, meant that only 16 does 14 

could have kinetics measurements performed. The limited numbers meant that some 15 

production data (discussed below) did not show the treatment differences reported earlier 16 

(Abecia et al., 2008). Nonetheless, the main objective focused on protein metabolism in 17 

responses to bacitracin was demonstrated.  18 

Diet inclusion of bacitacin reduced FSR and ASR in the mammary gland and tended to 19 

increase the relative weight of the liver. Bacitracin intake has been shown not to affect 20 

either the caecotrophy process (Abecia et al., 2008) or the bacterial caecum population 21 

(Abecia et al., 2007) and, therefore, the responses in mammary protein synthesis and liver 22 

weight  probably reflect the direct effect of bacitracin on metabolism of the doe. 23 

During lactation, protein synthesis is crucial not only in the mammary gland but also in 24 

those organs involved in nutrient supply to the gland (e.g. liver and gut mucosa). All these 25 

tissues demonstrate higher protein synthesis rates during lactation (Baracos et al., 1991) 26 
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and thus may be particularly sensitive to modifiers of protein synthesis, including 1 

bacitracin.  2 

The flooding-dose method proposed initially by Garlick et al. (1980) is suitable for short-3 

term measurements in high turnover tissues or longer term analyses of slower turnover 4 

tissues. Ideally, at the end of the flood dose period the enrichments of free phenylalanine 5 

in plasma and the tissue should be similar so that the plasma dynamics can be 6 

extrapolated confidently to the tissues. As shown in Figure 1, this is the case for muscle 7 

and, to a lesser extent, for the mammary gland (final values 8% lower than plasma). 8 

Terminal values for liver and duodenum were, respectively, 25 and 31 % lower than 9 

plasma, however, due to dilution of the labelled phenylalanine by amino acid released by 10 

protein degradation within the tissue. For these tissues FSR calculated based on the 11 

plasma AUC would be under-estimated while values corrected for the terminal tissue value 12 

may be over-estimated.  13 

Liver weight was higher in does fed on bacitracin but hepatic FSR was unaffected by 14 

bacitracin. The heavier liver may be due to a reduced fractional degradation rate of 15 

constitutive hepatic protein or, alternatively, be related to bacitracin effects in lipolytic 16 

activity, as demonstrated in vitro (Heckemeyer et al., 1982). The authors are not aware of 17 

data on the effect of bacitracin on liver FSR but the values in the present study and the 18 

relationship between tissues agrees well with literature reports related to rabbits (Nicholas 19 

et al., 1977), rodents (Garlick et al., 1973) and ruminants (Attaix et al., 1988). The greater 20 

hepatic FSR (40.2 %/d) compared with younger rabbits (14.8 - 31.7 %; Nicholas et al., 21 

1977) is probably technique related since the flood dose technique would incorporate 22 

hepatic export proteins while these would be mainly excluded from the continuous infusion 23 

approach (Nicholas et al., 1977). Export proteins have been proposed to account for 24 

approximately 30% of liver synthesis (Waterlow, 1991). In addition, lactation causes an 25 

increase in the whole-body protein turnover, including across the mammary gland, liver 26 
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and gastrointestinal tract (Millican et al., 1987), with hepatic metabolism elevated to 1 

provide more nutrients and protein for milk production. 2 

Bacitracin intake did not modify muscle FSR. The current values (2.92 %/d) are similar to 3 

those reported previously for adult rabbits, using either a decay protocol (Signoret et al., 4 

1973) or a continuous infusion method (Nicholas et al., 1977). Higher values (5 and 10 5 

%/d, respectively) have been observed for young males of either up to 1.4 kg (Palmer et 6 

al., 1980) or 2-2.5 kg body weight (Laurent, 1982).  FSR is known to be closely related to 7 

animal development (Laurent, 1982) and decreases with age (Millward et al., 1975; Lobley 8 

1993) and the multiparous does used in this study are considered adult animals. Lactation 9 

has a clear effect on mammary and liver tissues (Sampson et al., 1986), but effects on 10 

muscle are not yet confirmed. In other species, muscle protein synthesis (FSR) can even 11 

be reduced in order to redirect amino acids toward those tissues involved in milk precursor 12 

synthesis (Baracos et al., 1991).  13 

 14 

Protein synthesis within the mammary gland comprises mainly export protein, including 15 

caseins and the whey acidic proteins (WAP), plus minor endogenous tissue turnover. In 16 

addition, some proteins are synthesised in other tissues (mainly liver) and then transported 17 

via plasma to the mammary gland.  The gland synthesises mostly αs1-casein and β-casein 18 

plus some other proteins, relevant in ruminants but of minor importance in lagomorphs 19 

(Grabowski et al., 1991). The absolute synthesis of protein (15.06 g/d; Table 3) exceeds 20 

the secreted casein (13.9 g/d) but when allowance is made for WAP, reported to comprise 21 

10% of total protein synthesized in milk (Grabowski et al., 1991), then much of the 22 

synthesis can be accounted. In support of previous reports in other species (Sampson et 23 

al., 1986; De Santiago et al., 1991), the mammary gland had a higher FSR than liver. 24 

Nonetheless, mammary gland FSR was not affected by litter size but, in practice, this did 25 

not lead to a significant change in daily milk yield at this late stage of lactation, but rather 26 
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the amount of milk available to each pup altered. Under condition of unchanged milk 1 

output there would be no need to increase the rate of protein synthesis. Interestingly, 2 

however, bacitracin decreased mammary gland protein FSR. As there were also no 3 

changes in the size of the mammary gland this meant that absolute synthesis was also 4 

decreased (P<0.03). Although this was not accompanied by any significant changes in 5 

milk volume output during the complete lactation cycle (Abecia et al., 2008), there were 6 

numerical changes in both protein and casein yield (Table 2) in the period just prior to the 7 

kinetic measurements and these were of comparable magnitude to the reduced protein 8 

synthesis. The mechanism behind such action remains obscure. Enhanced sensitivity 9 

compared with other tissues is one possibility, as are impacts on hormonal regulation, 10 

especially as a known action of bacitracin is the inhibition of degradation of a number of 11 

polypeptide hormones, including insulin, linked in some cases to reduced internalisation 12 

within cells (Bonser et al., 1983) and this may lead to repartitioning of nutrients away from 13 

the mammary gland.  14 

 15 
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Table 1. Ingredients (g per kg of dry matter) and chemical composition (g per kg of dry 1 

matter) of both experimental diets. 2 

 3 

Ingredients  

(g/kg of dry matter) Control +Bacitracin  

 Chemical composition 

(g/kg of dry matter) Control +Bacitracin 

Grass hay 400 400 Organic matter  92,12 91,97 

Wheat grain 200 200 Crude protein  19,06 18,61 

Soyabean meal 150 150 Acid-detergent fibre 19,52 19,55 

Barley grain 130 130 Neutral-detergent fibre 31,91 33,42 

Sugarbeet pulp 100 100 Acid-detergent lignin 4,81 4,45 

Sunflower-seed oil 5 5 Ether extract. 2,67 2,68 

Ammonium sulfate 5 5    

Vitamin–mineral mix  10 10       

Bacitracin  - 0.1    

 4 

Vitamin mineral mixture composition: Co (CoSO4.7H2O), 200 parts per million (ppm); Cu (CuSO4.5H2O), 5 

3000 ppm; Fe (FeSO4.H2O), 20 000 ppm; Mn (MnO2), 8000 ppm; Zn (ZnO), 30 000 ppm; Se (Na2SeO3), 30 6 

ppm; I (KI), 500 ppm; vitamin A, 270 mkat (4 500 000 IU)/ kg; vitamin D3, 33 mkat (550 000 IU)/kg; vitamin 7 

E, 1100 ppm; vitamin B1, 250 ppm; vitamin B2, 1500 ppm; vitamin B6, 100 ppm; vitamin B12, 6000 ppm; 8 

vitamin K, 500 ppm; Dpantothenate, 5000 ppm; niacin, 12 500 ppm; choline chloride,100 000 ppm. 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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Table 2. Body weight (g), dry matter intake (g/d), milk yield (g/d), protein yield and casein 1 

yield (g/d) of 16 does on the last day of the experiment (slaughter day) together with liver 2 

and mammary gland contribution to final body weight in lactating does fed on a 3 

conventional diet either supplemented (+bacitracin) or not (control) with zinc bacitracin 4 

(100 ppm) and nurturing 5 or 9 pups (SE for diet comparison). 5 

 6 

  Diet  2-way ANOVA 

Last day 

(slaughter) Litter Size Control +Bacitracin SE Diet LS D x LS 

Body weight g 9 pups 4093 3924 44.5 NS NS NS 

 5 pups 4052 3970     

DM intake g/d 9 pups 279 269 29.8 NS NS NS 

 5 pups 313 310     

Milk Yield g/d 9 pups 260 233 42 NS NS NS 

 5 pups 252 224     

Casein yield g/d 9 pups 15.0 13.5 2.42 NS NS NS 

 5 pups 14.5 12.9     

Protein yield  g/d      9 pups  28.0 25.2 4.52 NS NS NS 

 5 pups 27.2 24.1     

Relative tissue weight g/Kg BW       

Liver 9 pups 22.0 29.3 1.54 0.07 NS NS 

 5 pups 23.1 24.6     

Mammary gland 9 pups 64.0 59.6 3.49 NS NS NS 

 5 pups  65.8  65.7     

 7 

NS, P>0.05; SE, standard error; LS, litter size; D, diet.  8 
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Table 3. Fractional synthesis rates (FSR) in liver, duodenum, mammary gland and muscle 1 

together with absolute synthesis rates (ASR) of liver and mammary gland in 26d lactating 2 

does fed on a conventional diet either supplemented (+bacitracin) or not (control) with zinc 3 

bacitracin (100 ppm) and nurturing  5 or 9 pups (SE for diet comparison). 4 

 5 

  Diet  2-way ANOVA 

 Litter Size Control +Bacitracin SE Diet LS D x LS 

FSR (%/d)        

Liver 9 pups 40.3 41.4 1.98 NS NS NS 

 5 pups 39.5 40.2     

Mam. Gland 9 pups 40.9
a
 33.8

 b
 2.62 * NS NS 

 5 pups 46.5
 a
 32.8

 b
     

Duodenum 9 pups 45.1
 b
 49.7

 b
 2.09 NS * NS 

 5 pups 58.5
 a
 53.5

 a
     

Muscle 9 pups 3.14 3.22 0.26 NS NS NS 

 5 pups 2.62 2.75     

ASR (g/d)        

Liver  9 pups 6.08 6.03 0.58 NS NS NS 

 5 pups 6.38 6.01     

       Mam. Gland 9 pups 15.88
 a
 12.80

 b
 1.50 * NS NS 

 5 pups 20.48
 a
 12.72

 b
     

 6 

In a same line, means with different superscript differ (P<0.05) 7 

NS, P>0.05; *, P<0.05; SE, standard error; LS, litter size; D, diet.   8 

 9 

 10 

11 
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Table 4. Nitrogen balance in lactating does (d17 to d24) fed on a conventional diet either 1 

supplemented (+bacitracin) or not (control) with zinc bacitracin (100 ppm) and nurturing 5 2 

or 9 pups. 3 

  4 

  Diet  2-way ANOVA 

 Litter Size Control +Bacitracin SE Diet LS D x LS 

N Intake  (g/d) 9 pups 7.99 7.92 0.575 NS NS NS 

 5 pups 7.85 8.02     

N Excretion        

Milk 9 pups 4.75 4.73 0.315 NS NS NS 

 5 pups 4.56 3.89     

Faeces 9 pups 2.07 2.06 0.348 NS NS NS 

 5 pups 2.43 2.18     

Urine  9 pups 3.04 3.13 0.880 NS NS NS 

 5 pups 2.85 4.05     

N Balance (g/d) 9 pups -1.87 -2.08 1.015 NS NS NS 

 5 pups -1.99 -2.00     

 5 

NS, P>0.05; SE, standard error; LS, litter size; D, diet.   6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Figure 1. Plasma enrichment (MPE, molar percent excess) of free phenylalanine 1 

(Average, n = 16) in plasma after 12, 15, 20, 25, 30 and 40 min of isotope infusion and in 2 

tissues after slaughtering, in rabbit does supplemented or not with bacitracin (100 mg/kg 3 

DM) and adjusted by cross-fostering at 5 or 9 pups. 4 
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