Effect of Carotenoids and Monogalactosyl Diglyceride on Bacteriochlorophyll c Aggregates in Aqueous Buffer: Implications for the Self-Assembly of Chlorosomes

Pavel Klinger¹, Juan B. Arellano², František Vácha³,⁴, Jan Hálá¹ and Jakub Pšenčík¹,⁴,*

¹Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic;
²Instituto de Recursos Naturales y Agrobiologia (CSIC), Salamanca, Spain;
³Institute of Plant Molecular Biology, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic and
⁴Institute of Physical Biology, University of South Bohemia, Nové Hrady, Czech Republic

*To whom correspondence should be addressed at: Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic; fax +420 221 911 249; e-mail: jakub.psencik@mff.cuni.cz;

Keywords: aggregate, bacteriochlorophyll, carotenoid, chlorosome, hydrophobic interaction

Abbreviations: BChl, bacteriochlorophyll(s); Car, carotenoid(s); Csm, chlorosomal protein; Chl., Chlorobium; MGDG, monogalactosyl diglyceride; BChlide, bacteriochlorophyllide(s);
ABSTRACT

Aggregation of bacteriochlorophyll (BChl) \(c \) from chlorosomes, the main light harvesting complex of green bacteria, has been studied in aqueous buffer. Unlike other chlorophyll-like molecules, BChl \(c \) is rather soluble in aqueous buffer, forming dimers. When BChl \(c \) is mixed with carotenoid (Car), the BChl \(c \) \(Q_y \) transition is further red-shifted, in respect to that of monomers and dimers. The results suggest that Car are incorporated in the aggregates and induce further aggregation of BChl \(c \). The red shift of the BChl \(c \) \(Q_y \) band is proportional to the Car concentration. In contrast, the mixture of bacteriochlorophyllide (BChlide) \(c \), which lacks the non-polar esterifying alcohol, does not form aggregates with Car in aqueous buffer or non-polar solvents. Instead, the position of the BChlide \(c \) \(Q_y \) transition remains unshifted in respect to that of the monomeric molecule, and Car precipitates with the course of time in aqueous buffer. Similar effects on both BChl \(c \) and BChlide \(c \) are also observed when monogalactosyl diglyceride (MGDG), which forms the monolayer envelope of chlorosomes, is used instead of (or together with) Car. The results show that the hydrophobic interactions of the BChl \(c \) esterifying alcohols with themselves and the non-polar carbon skeleton of Car, or the fatty acid tails of MGDG, are essential driving forces for BChl aggregation in chlorosomes.

INTRODUCTION

Bacteriochlorophyll (BChl) \(c, d \) and \(e \) are the major pigments found in the main light harvesting complexes of green photosynthetic bacteria, the so-called chlorosomes (for a recent reviews see Blankenship and Matsuura (1) and Frigaard et al. (2)). A unique property of chlorosomes is that the main BChl pigments are not present in pigment-protein complexes, rather they form self-assembled aggregates based on their unusual chemical structure (3,4, review by Blankenship and Matsuura (1) and references therein). The main interactions
involved in the formation of BChl aggregates are the coordination of the central Mg of a BChl molecule to a hydroxyethyl substituent at C31 of a neighboring BChl, which can be also hydrogen-bonded to the keto group at C131 of a third BChl molecule (5,6). The aggregation leads to strong exciton interactions between BChl monomers, which in turn modulate optical properties of the BChl aggregates. Models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze fracture electron microscopy and spectroscopic constraints (5-9). Recently a lamellar model, in which BChl molecules aggregate into semi-crystalline lateral arrays, has been proposed (10). Aggregates with very similar optical properties to those in chlorosomes can be prepared \textit{in vitro} either in non-polar solvents or in aqueous buffers with addition of lipids (4,11, reviews by Blankenship and Matsuura (1) Blankenship et al. (12) and Tamiaki (13)).

Chlorosomes also contain carotenoids (Car) in amounts that depend on bacterial species, growth phase, and light and temperature conditions, thereby the stoichiometry between BChl and Car varies between approx. 2:1 and 20:1 (14–17). In addition, the chlorosomal baseplate, which connects the chlorosome to the cytoplasmic membrane, contains monomeric BChl \textit{a} in a pigment-protein complex together with the chlorosomal A protein (CsmA) (1,18). Besides pigments, quinones are present in chlorosomes, acting as quenchers of excitation energy (19). The chlorosomal envelope consists of a glycolipid monolayer, mainly monogalactosyl diglyceride (MGDG), where other proteins of the Csm family are anchored in relatively small amounts, having seemingly no interaction with the BChl pigments.

The location and function of Car in chlorosomes is not yet well understood. A number of results indicates that one part of Car is present in the baseplate (20,21) and another part must be in close contact with chlorosomal BChl (22,23). The lamellar model provides plausible explanation for the location of 'chlorosomal' Car in the lipid-like space between the
planes (10). The strong interaction between 'chlorosomal' Car and BChl is also manifested by fast energy transfer from the S₂ state of Car to BChl (<100 fs⁻¹) (24) and by triplet-triplet energy transfer from BChl to Car (21,22,25), for which an overlap of electron wave functions is a prerequisite. Moreover, the amount of 'chlorosomal' Car affects optical spectra of BChl aggregates (23).

In this work we have studied the origin of Car effect on the self-assembly of BChl c aggregates in vitro in aqueous buffer. We have used both BChl c and chlorobactene from the green sulfur bacterium Chlorobium (Chl.) tepidum. The results shows that the chlorosomal BChl aggregation relies not only on the intermolecular interaction between the polar heads of BChl molecules, but also on the hydrophobic interactions between the BChl esterifying alcohols themselves and between the BChl esterifying alcohol and the carbon skeleton of Car, or the fatty acid tails of MGDG.

MATERIALS AND METHODS

Growth conditions. Growth culture media were initially inoculated with Chl. tepidum cells kindly gifted by Prof. G. Hauska (University of Regensburg, Germany). Cells were grown for 3 days at 48°C in a modified Pfennig's medium (26) and stored at 4°C until use. Whole cells were harvested by centrifugation.

Bacteriochlorophyll c and carotenoids. BChl c and Car were extracted from whole cells of Chl. tepidum by means of acetone:methanol 7:2 (v/v). The mixture was centrifuged at high speed in a bench centrifuge and the supernatant collected. The pellet was newly suspended in the organic phase. Three cycles were enough to extract quantitatively all pigments. About 1 mM sodium ascorbate was early added to the whole cells to avoid pigment oxidation during the procedure. Phase separation by mixing the extracted pigments with light petroleum:dichloromethane, 9:1 (v/v) and followed by 1 M NaCl was carried out to bring the
bulk of pigments to the non-polar epiphase. Pigments were dried under stream of nitrogen. A first crude separation between BChl c—main and secondary homologues—and Car—chlorobactene and its precursors—was achieved by washing out Car from the dried bulky film of pigments by hexane. Pigment fractions enriched in BChl c or Car were further purified by reverse phase HPLC on a Tessek (Prague, Czech Republic) SGX C18 column 8×250 mm, particle size 7 µm using solvents A (100% methanol) and B (methanol:hexane 4:1, v/v) in a two-step gradient as follows: 100% solvent A for the first 10 min and 100% solvent B for the next 35 min. Each time, the column was (re)equilibrated with solvent A for 15 min prior to the next injection. The flow rate was 3 ml min⁻¹. The main four homologues of BChl c—esterified with farnesol—were collected in one single pool and so was chlorobactene with none of its derivatives.

Bacteriochlorophyllide c. Bacteriochlorophyllide c (BChlide c) was obtained by dissolving BChl c in 5% KOH methanol and left for two hours at 30°C. BChlide c was further purified by reverse HPLC as described above, except that the flow rate was 1 ml min⁻¹. Both BChl c (Fig. 1) and BChlide c (not shown) have identical absorption spectra in methanol, but they differ from each other in HPLC retention time due to their significantly different polarity. All homologues of BChlide c were collected in one single pool. HPLC purified pigments were dried under a stream of nitrogen and kept in an inert atmosphere at -20°C until use.

Preparation of BChl c aggregates. HPLC purified BChl c was dissolved in methanol to a final concentration of approx. 3 mM; whereas HPLC purified chlorobactene was in acetone (approx 0.6 mM). A volume of 10 µl of BChl c in methanol was mixed with 0−10 µl of Car in acetone and the resulting mixture injected vigorously into 3 ml of 50 mM Tris-HCl pH 8.0. The final concentration of BChl c in buffer was approx. 10 µM, and the concentration of Car varied between 0 and 2 µM. Each sample was left on the bench for a few hours at room temperature and in dark so as to reach a steady state absorption spectra, unless described in
text. When MGDG from wheat (St. Louis, Missouri) was used, 0.1 mg of MGDG dissolved in 10 µl methanol was added to a mixture of BChl c and Car in methanol:acetone. The full mixture was then injected vigorously into 3 ml of 50 mM Tris-HCl pH 8.0 as described above. The maximal final concentration of MGDG was ~40 µM.

Absorption spectra and determination of molecular concentrations. Absorption spectra were measured on Spectronic Unicam UV-300 (Cambridge, United Kingdom). The molar absorption coefficient of BChl c in methanol was determined to be 52 mM\(^{-1}\) cm\(^{-1}\) by comparing the absorption spectrum of BChl c dissolved in acetone (extinction coefficient 75.4 mM\(^{-1}\) cm\(^{-1}\); (27)) with the absorption spectrum of the same amount of BChl c redissolved in the same volume of methanol. Extinction coefficient of chlorobactene in acetone was determined to be 170 mM\(^{-1}\) cm\(^{-1}\) using the value of 161.7 mM\(^{-1}\) cm\(^{-1}\) for chlorobactene in light petroleum (recalculated from values given by Foppen (28)). For MGDG, a molar mass of 746 was used assuming esterification with one molecule of hexadecatrienoic acid (16:3) and another of γ-linolenic acid (18:3) (formula C\(_{43}\)H\(_{70}\)O\(_{10}\)).

RESULTS

BChl c is soluble in aqueous buffer

Figure 1 shows absorption spectra of BChl c in different environments. BChl c exists as a monomer in e.g. methanol (Q\(_y\) maximum at 669 nm). In chlorosomes, or when mixed with lipids (such as MGDG) and dissolved in aqueous buffers, BChl c forms aggregates with its Q\(_y\) absorption maximum peaking at ~740 nm. Surprisingly, pure BChl c is also soluble and stable in aqueous buffer. Its absorption spectrum is characterized by a main Q\(_y\) maximum at 710 nm and shoulders at ~635 nm and ~680 nm, i.e. very similar to that of BChl c dimers in non-polar solvents (29) (see Discussion). To our knowledge, the solubility of pure BChl c in aqueous buffer was for the first time reported in the paper by Uehara et al. (30), where Q\(_y\) absorption
maxima of different BChl c homologues in phosphate buffer with and without MGDG are reported. The absorption spectra presented in this study correspond to the naturally occurring mixture of the four main homologues of BChl c.

Effect of Car on BChl c and BChlide c aggregation

In order to study the effect of Car on aggregation of BChl c, a series of samples with a constant concentration of BChl c and increasing concentrations of Car were prepared. Figure 2A shows results of a typical experiment. Increasing concentration of Car led to pronounced changes in the absorption spectrum, mainly in the Qy region of BChl c, where Car does not absorb. The main Qy band underwent a red shift and an increase in intensity upon increasing Car concentration, while the shoulders at ~635 and ~680 nm maintained their position, but decreased in intensity. The actual Qy absorption maxima were at 730 nm (molar ratio BChl:Car 1:0.06), 735 nm (1:0.12) and 740 nm (1:0.18), not having further effect on the Qy position ratios beyond the latter. The used stoichiometries between BChl c and chlorobactene were within a broad range as found in chlorosomes of several green photosynthetic bacteria (1:0.05–1:0.5) (16). The presence of Car in solution can be best monitored around 500 nm, where its contribution does not overlap with the Soret band of BChl c. The aggregates prepared from a mixture of BChl c and Car were stable for hours–days in dark at room temperature and Car did not precipitate. On attempting to dissolve only Car in aqueous buffer, Car completely precipitated in minutes–hours (not shown).

The above described results point to a fundamental interaction between Car and BChl c. To localize the site of the interaction, the same experiments were repeated using BChlide c instead of BChl c (Fig. 2B). BChlide c, which lacks the esterifying alcohol at C17, is by far a more polar molecule and therefore well soluble in aqueous buffers. In contrast to BChl c, the position of the BChlide c Qy band (673 nm for all samples) was not affected by Car at all (Fig.
2B). Except for the red shift of the Q_y band from 669 to 673 nm, the absorption spectrum of BChlide c in aqueous buffer is very similar to that of BChlide c or BChl c in methanol, indicating that BChlide c remains as a monomer in aqueous buffer. This is also supported by the facts that BChlide c degrades into bacteriopheophorbide c within minutes–hours after preparation, and that the contribution of Car disappears from absorption spectra on the same time scale as observed for pure Car in aqueous buffer, manifesting a lack of interaction with BChlide c (not shown).

In contrast to BChl c, BChlide c does not form either dimers or aggregates even in organic solvents (polar or non-polar) such as CH_2Cl_2 or hexane, where it also remains in a monomeric form (Fig 2B, inset). On top of this, when first BChl c is dissolved in organic solvents such as acetone, where it remains as a monomeric molecule, and secondly the solvent is dried under a stream of nitrogen, dimers are formed as revealed by absorption spectroscopy. In contrast, the absorption spectrum of dried films of BChlide c (not shown) resembles that of monomeric BChlide c (Fig 2B). This result shows that the inability of BChlide c to form aggregates is not just due to a solvent polarity effect, but the missing esterifying alcohol.

Effect of MGDG on BChl c and BChlide c in aqueous buffer

BChl c, d or e aggregates in aqueous buffers are usually prepared in the presence of lipids, e.g. MGDG (30) or lecithin (31), inducing the aggregation. Figure 3 summarizes results of experiments carried out to explore the interaction of MGDG with BChl c. On adding MGDG up to a final concentration of approx. 0.003% to the mixture of BChl c and Car, a constant shift of the BChl c Q_y band for all samples was observed, no matter what the Car concentration was (Fig. 3A). The used concentration of MGDG was previously reported to saturate the bathochromic shift of BChl c aggregates in aqueous buffer (30) and Car thus cannot induce any further red shift (BChl c:Car:MGDG ratios were between 1.0:0–0.2:4.0 in
this study). Nevertheless, Car were intriguingly stabilized inside the aggregates and did not precipitate (Fig. 3A). The absorption spectra of these aggregates resemble that of chlorosomes (Fig. 1). An addition of Car at different concentrations to BChl c aggregates, prepared several hours before in the presence of MGDG, has no effect on the absorption spectra and Car precipitated soon. This suggests that Car does not get inside the aggregates once they have formed. A similar effect was also observed, when mixture of BChl c and Car was first injected to the aqueous buffer and MGDG up to 0.003% was added afterwards. In this case, the absorption spectra of BChl c and Car (Fig. 2A) also remained unaffected (not shown). These results indicate that aggregates are formed after injection and further additions do not change them.

Using increasing concentrations of MGDG (from 0 to 0.003%), the BChl c Q_y band gradually shifts to the red (Fig. 3B) in agreement with previous results (30). Interestingly, the effects of both MGDG and Car are complementary: The large red shift (Q_y peak at ~ 740 nm) can be obtained also by mixing non-saturating concentrations of MGDG and Car, which would not be sufficient to reach the full red shift if used separately (not shown). In addition, the effect of MGDG on the absorption spectrum of BChlide c was investigated, however, no shift of the BChlide c Q_y band was observed (not shown), suggesting that MGDG does not interact or does not induce aggregation of BChlide c as neither does Car.

All these results suggest that the interaction leading to the red shift of the BChl c Q_y band in the presence of Car and/or MGDG is similar. However, it is expected that there might be differences between the two type of BChl c aggregates. One difference that can be drawn easily on comparing the absorption spectra of Fig. 2A and 3A is that there is less light scattering in the MGDG-induced BChl c aggregates than in the Car-induced ones, indicating that the former aggregates have a smaller size.
DISCUSSION

Pure BChl c form dimers in aqueous buffer

Despite the fact that chlorophyll-like molecules have a polar tetrapyrrole head, they are scarcely soluble in aqueous buffers, because of their non-polar esterifying alcohol tails at C17. On removing it, the solubility of their corresponding (B)Chlide changes remarkably, being thus easily soluble in aqueous buffers. Conversely, (B)Chl are soluble in polar organic solvents. BChl c, as does BChlide c, exists as a monomer e.g. in methanol, where the central Mg ion is known to be six coordinated (32 and references therein). Absorption spectra of BChlide c in methanol and aqueous buffer are very similar, suggesting that BChlide c also exists as a monomer in aqueous buffers.

In contrast to other non-chlorosomal (B)Chl molecules, BChl c is rather soluble in aqueous buffer (Fig. 1), but its absorption spectrum clearly differ from that of monomeric BChl c in methanol, or BChlide c in methanol or aqueous buffer. The overall shape of the absorption spectrum, including positions and relative intensities of all three bands and shoulders in the Qy region of BChl c in aqueous buffer fit very well with absorption spectra of 2 mM BChl c in CCl₄ and benzene, and especially in CH₂Cl₂. In the former two solvents, BChl c form stable antiparallel dimers with a piggy-back conformation, whose structure was determined by NMR (29,33,34). In solvents with higher polarity (CH₂Cl₂), antiparallel dimers may coexist with the so called T-dimers, where one of the central Mg ions of BChl c is not coordinated to the hydroxyethyl group at C3¹ of the neighboring BChl c. This situation is likely to occur in aqueous buffer, since the latter group has to compete with hydroxyl groups of the water bulk for the central Mg ion. So both, antiparallel and T-shaped dimers of BChl c could thus co-exist in aqueous buffer. In order to confirm that BChl c form dimers in aqueous buffer, which might be the building block of higher aggregates, Raman and ¹H-NMR spectroscopies are planned to be used in the near future.
In addition, BChl c molecules are strikingly stable in aqueous buffer, and do not degrade as easy as monomeric BChl c or BChlide c in solution. The increased stability of BChl c dimers and higher aggregates might be explained, for example, by their drastically decreased quantum yield of triplet state population (compared to monomers) and consequently of singlet oxygen sensitization (35,36), as a result of a shorter singlet lifetime. Another reason for the increased stability of aggregates is that the coordination of Mg of one BChl molecule to the hydroxyethyl substituent at C3\(^1\) of a neighboring BChl stabilizes the Mg ion and prevents pheophytization.

Car and MGDG interact with BChl c via its esterifying alcohol

Our results show unambiguously that non-polar Car, such as chlorobactene, directly interact with BChl c in aqueous buffer. This interaction enables to Car to remain dissolved in buffer and intriguingly affects the absorption spectra of BChl c dimers in their Q\(_y\) spectral region, where Car do not absorb. An important matter is to know the mechanism behind this interaction. Since neither stabilization nor interaction of Car in aqueous buffer are observed when BChlide c is used instead of BChl c, it is thus plausible to explain stabilization of Car in aqueous buffer by hydrophobic interaction with the soluble BChl c dimers via the carbon skeleton of Car and the non-polar esterifying alcohol tail of BChl c. The effect of Car on BChl c spectra, namely the observed red shift, can be explained either by the decreased polarizability of the BChl c local environment by the presence of Car, or by the build-up of larger aggregates from BChl c dimers induced by Car, which would lead to new excitonic interactions between the BChl c molecules. The former possibility is less likely, since it is known that the shift of the Q\(_x\) and Soret Bands is solvent dependent, while the shift of the Q\(_y\) band is usually less significant (37). Moreover, the effect of solvents with different polarizability on the position of the Q\(_y\) transition was evaluated: BChl c and BChlide c were
dissolved in hexane (refractive index $n=1.375$; polarizability $(n^2-1)/(n^2+2)=0.229$) and in tetradecane (refractive index 1.429; polarizability 0.258). Interestingly, the peak position of the BChlide c Q_y was at 674 nm in both cases, showing no dependence on polarizability and no indication of aggregation, in contrast to BChl c (not shown). Therefore the possibility that Car induce formation of larger aggregates seems to be more reasonable, which is also supported by the fact that the final absorption spectra of BChl c aggregates in the presence of Car resemble those of chlorosomes, where large aggregates of BChl c are present.

The effect of MGDG on absorption spectra of BChl c was similar to that of Car. The hydrophobic interaction between the BChl c esterifying alcohol and the MGDG esterifying acid tails, is expected to be the driving force for the BChl c aggregation also in this case. It is well documented that artificial MGDG aggregates of BChl c can be formed with no need of proteins or Car in aqueous buffer, reaching absorption and circular dichroism spectra very similar to those of chlorosomes (11,30,38). It is assumed that in artificial MGDG aggregates, a monolayer of MGDG surrounds the BChl c aggregates as in chlorosomes, forming a hydrophobic interior, which favors the intermolecular interaction among BChl. A lack of such an envelope in BChl-Car aggregates may lead to a tendency to form larger complexes, which explains the observed larger scattering of the Car-BChl aggregates. These large complexes can even be observed by a naked eye after a sufficiently long period (several days) for BChl-Car aggregates, but never for MGDG containing aggregates.

In contrast to BChl c, BChlide c did not form either dimers or aggregates in aqueous buffer, CH$_2$Cl$_2$ or hexane. This indicates that the hydrophobic interaction between the esterifying alcohols is essential, as a first step, for the formation of dimers of BChl c. This hydrophobic interaction is also manifested in dried films of BChl c, ruling out that the polarity (or the polarizability) of the solvent is the reason behind the failure of the BChlide c to form dimers.
In summary, formation of aggregates with absorption spectra similar to those in chlorosomes can be induced by addition of either Car or MGDG, or both. In both cases, the hydrophobic interaction between the esterifying alcohol of BChl c and either the Car skeleton or MGDG fatty acids, as well as the interaction between esterifying alcohols themselves, plays an essential role. Figure 4 shows the principles of the proposed interactions. These hydrophobic interactions seem to be the driving force for the overall assembly of monomers to dimers and into larger aggregates. The results support a recently proposed model for the chlorosome structure (10), in which undulated planar BChl aggregates form lamellar structures through the interaction between interdigitated esterifying alcohol tails of neighboring planes. Car are localized in the lipid-like space between the lamellar planes. The hydrophobic interactions are responsible for maintaining the lamellar organization and the stabilization of Car in the aggregate structure, in agreement with results presented here. Car thus play a structural role and have a direct effect on the position of the Qy band of BChl aggregates in chlorosomes (23), in addition to the photoprotective and light harvesting functions. To our knowledge, the described hydrophobic interactions have not been taken into account in previous models based on rod elements. In addition, planar aggregates are formed via the specific interactions of the chlorin rings (see Introduction), which represent other category of interactions that are unambiguously essential for the chlorosome assembly too.

Although the hydrophobic interaction with esterifying alcohols of BChl c is common for MGDG and Car, the role of MGDG and Car has subtle differences. MGDG seems to be essential to create the hydrophobic environment that is necessary for an optimal shape and size of the overall aggregate complex. These MGDG-induced artificial aggregates of BChl c are of similar dimensions as chlorosomes (38). On the contrary, Car stabilize themselves inside the hydrophobic space between the chlorin rings and induce the formation of large aggregates by strengthening the hydrophobic interaction between BChl c dimers. By creating
a more hydrophobic microenvironment around BChl c, Car can also help to convert T-shaped dimers into antiparallel dimers, which might be the building block of the BChl c aggregates (6,10,33,39–41 other authors suggest parallel monomers as the building block, see van Rossum et al. (9) and references therein) and thus enlarge the aggregation order of BChl c. In addition, a possible π-π interaction between the Aryl end group of chlorobactene and the chlorin ring can ensures the overlap of electron wave functions, which is a necessary prerequisite for the triplet-triplet energy transfer.

Finally, it is worth noting that all the trends described here are very well reproducible, with pigments from bacteria grown at different conditions, however, the actual positions and intensities of particular absorption bands may differ.

CONCLUSIONS

Pure BChl c forms dimers in aqueous buffers. The interaction between the esterifying alcohol is an essential driving force in this process, together with the well-known hydrogen bonding and Mg-coordination net between the chlorin rings. Car and MGDG interact directly with BChl c via hydrophobic interaction with the esterifying alcohol tail of BChl c and possibly diminish solvation around the BChl c head. Interaction of BChl c with Car induces self-assembly of the BChl c dimers into large aggregates with Car incorporated into the aggregate structure. These large aggregates have chlorosome-like absorption spectra, similarly to MGDG-induced BChl aggregates. The results have an important consequence for the understanding of the BChl self-assembly in chlorosomes and for the preparation of artificial BChl aggregates with defined properties. Further, these findings support a recently proposed lamellar model for the organization of BChl c aggregates in chlorosomes, which relies on the hydrophobic interactions between esterifying alcohols of BChl c molecules from neighboring
planes (10). Also, the model and the results presented here predict that 'chlorosomal' Car are stabilized in the hydrophobic space between the planes.

Acknowledgements: The authors express their gratitude to Prof. G. Hauska (University of Regensburg, Germany) for providing *Chl. tepidum* cells. This work was supported by the Czech Science Foundation and Czech Ministry of Education, Youth and Sports (contracts 206/02/0942, LN00A141). JBA is very grateful to the CSIC Marina Bueno program and the Spanish Ministry of Science and Technology for financial support (project reference AGL2003-00045).

REFERENCES

37. Linnanto, J. and J. Korppi-Tommola (2001) Spectroscopic properties of Mg-chlorin, Mg-bacteriochlorin, and bacteriochlorophylls a, b, c, d, e, f, g, and h studied by semiempirical and ab initio MO/CI methods. J. Phys. Chem. A 105, 3855-3866.

FIGURE LEGENDS

Figure 1.
Absorption spectra of ~10 µM BChl c in methanol (solid line), in 50 mM Tris-HCl pH 8.0 (dashed line), and mixed a priori with ~40 µM MGDG and then dissolved in 50 mM Tris-HCl pH 8.0 (dotted line). The absorption spectrum of chlorosomes, containing also BChl a and Car, from *Chl. tepidum* is also shown for the sake of comparison (dash-dotted line).

Figure 2.
(a) Absorption spectra of BChl c in aqueous buffer with four different Car concentrations. Molecular ratios between BChl c and Car were 1:0 (solid line); 1:0.06 (dashed line); 1:0.12 (dotted line), and 1:0.18 (dash-dotted line).
(b) BChlide c in aqueous buffer with four different Car concentrations. Molecular ratios between BChlide c and Car were the same as in (a). The spectra were recorded shortly after preparation. The inset shows normalized absorption spectra of BChlide c in hexane (solid line) and CH$_2$Cl$_2$:CHCl$_3$ (200:1 v/v, dashed line).

Figure 3.
(a) Absorption spectra of MGDG BChl c aggregates in aqueous buffer with four different Car concentrations. Molecular ratios between BChl, Car and MGDG were 1:0:4 (solid line), 1:0.06:4 (dashed line), 1:0.12:4 (dotted line) and 1:0.18:4 (dash-dotted line).
(b) Absorption spectra of MGDG BChl c aggregates in aqueous buffer with three different MGDG concentrations. Molecular ratios between BChl c and MGDG were 1:0 (solid line), 1:1 (dashed line), and 1:4 (dotted line). Spectra are normalized to equal absorbed energy.
Figure 4.

Simplified scheme of the proposed interactions between BChl c (solid line), Car (dashed line) and MGDG (dotted line). BChl is shown in a dimeric form, which can be extended into a larger aggregate by hydrogen bonding to another dimers to the left and right and by chlorin stacking in the direction above and below the plane of paper.
Figure 1
Figure 2
Figure 3