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Introduction 
Recent studies have demonstrated that acicular ferrite microstructures can be developed in medium carbon 
microalloyed forging steels with both isothermal and continuous cooling treatments [1-5

It is thoroughly accepted that elements such as manganese, sulfur and cooper influence the nucleation of acicular 
ferrite inside the austenite grains [2,

]. This subject represents a 
major and very exciting advance in the technology of steels. However, a deep understanding of the influences that 
the alloying elements have on the final microstructure should be reached to produce this kind of steels directly by 
industrial thermomechanical processes.  

6-7]. The influence of other alloying elements on the evolution of acicular 
ferrite transformation under isothermal and non-isothermal conditions is not yet well known. Many attempts have 
been made to describe the effect of molybdenum in alloys [8-15 9]. Paxton and Bain [ ] reported that molybdenum 
in small proportion exerts a very vigorous effect on hardenability when it is dissolved in austenite. Kinsman and 
Aaronson [8] justified the experimentally detected reduction in ferrite growth rate in molybdenum containing steels 
because molybdenum affects the thermodynamic stability of austenite relative to ferrite. A better knowledge of the 
effects of molybdenum on the evolution of the non-isothermal austenite decomposition could enhance the 
production of as-forged acicular ferrite microstructures.  
The purpose of the present work is to analyze experimentally the influence of molybdenum on the formation of a 
fully acicular ferrite microstructure in medium carbon microalloyed forging steels under continuous cooling 
conditions. In this sense, continuous cooling transformation processes of two medium carbon forging steels with 
different molybdenum content have been investigated. Some isothermal experiments have also been carried out in 
order to analyze the effect of the Mo on the evolution of acicular ferrite formation. 
 

Materials and Experimental Procedure 
 
The chemical composition of the two steels studied in this work are given in Table 1. 
 

Table 1Chemical composition (wt %) of the steels 
Steel C Mn Si P S Cr Mo V Cu Al Ti N 
A 0.37 1.45 0.56 0.010 0.043 0.04 0.025 0.11 0.14 0.024 0.015 0.0162 
B 0.38 1.44 0.62 0.010 0.041 0.07 0.16 0.10 0.07 0.026 0.016 0.0122 

 



An Adamel Lhomargy DT1000 high-resolution dilatometer has been used to analyze non-isothermal 
transformations and to obtain the continuous cooling transformation diagrams (CCT) of these steels. In order to 
avoid considering the effect of the variation of the prior austenite grain size (PAGS) on non-isothermal 
transformations, austenitization conditions were selected to achieve approximately the same PAGS in both steels 
(66 mm). Thus, cylindrical samples of 2 mm in diameter and 12 mm in length of steel A and B were austenitized 
for 60 s at 1200 °C and for 180 s at 1125 °C, respectively. Subsequently, transformations taking place during 
continuous cooling at rates ranging from 100 C s-1 to 0.05 °C s-1 have been dilatometrically analyzed. Cooling  is 
performed by helium flow directly blown onto the sample surface. The dimensional variations of the specimen are 
measured by a linear variable differential transformer (LVDT). For the isothermal treatments, cubic samples of 
10 mm were austenitized at 1250°C for 45 minutes followed by direct quenching in a salt bath in the range 
500-400 °C and hold there to complete the transformation, followed by water quenching to room temperature. The 
temperature was recorded by a thermocouple into the sample. The cooling rates from the austenitizing to the 
isothermal treatment temperatures ranged in the interval 800-500 ºC from 27 to 55 ºC s-1, depending on the final 
temperature. The samples were cut, polished and etched in nital to be observed by optical microscopy.  

 
Results and Discussion 

 
It is generally accepted that austenite decomposition is delayed in molybdenum containing steels leading to an 
increase in hardenability [9]. In the present work, the influence of molybdenum on the evolution of the austenite-
to-acicular ferrite transformation as well as on the morphology of this phase has been investigated. 
 

Figure 1. CCT diagram for the steel A, after an austenitization at 1200 ºC. (F = Allotriomorphic Ferrite, P = 
Pearlite, AF = Acicular Ferrite M= Martensite and Ms = Martensite start temperature). 
 
The CCT diagrams of the two steels studied in this work are presented in Figures 1 and 2. Figure 1 shows that the 
non-isothermal austenite-to-acicular ferrite transformation in steel A occurs at cooling rates ranging from 25  Cs-1 
to 1  Cs-1. The allotriomorphic ferrite formation is avoided cooling down at a rate higher than about 30  Cs-1. 
Pearlite formation is suppressed if the cooling is carried out at a rate of 7  Cs-1or higher. The micrograph in Figure 
3 (a) shows that, although pearlite formation is totally inhibited at a cooling rate of 10 °C s-1, a fine layer of 
allotriomorphic ferrite which represents approximately the 7% of the microstructure covers the most part of the 
prior austenite grain boundaries. The intragranular formation of ferrite leads to a mainly acicular ferrite 
microstructure for steel A cooled at the above mentioned cooling rate. Nevertheless, the decomposition of austenite 
does not complete before the martensite start temperature is reached, which causes the apparition of a small amount 
of martensite at the later stages of the cooling. By contrast, at a cooling rate of 6  C s-1 (Fig. 3(b)), a reduction in 
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the final amount of martensite is observed, the volume fraction of allotriomorphic ferrite increases to 10%, and a 
2% of pearlite is also present in the final microstructure. At a cooling rate of 3 ºC s-1 (Fig. 3(c)), significant 
amounts of allotriomorphic ferrite and pearlite are present in the final microstructure. Cooling rates lower than 
2 ºC s-1 would promote the formation of a mixture of allotriomorphic ferrite and pearlite as the main 
microstructural components.  
The formation of an allotriomorphic ferrite layer on the previous austenite grain boundaries is well known [16

3

] to 
inhibit the formation of bainite and contributes indirectly to the nucleation of AF. However, the steel A presents a 
high tendency to form an AF microstructure instead of bainite, even in the absence of this ferrite layer. By cooling 
at a rate between 10 and 2 ºC s-1, the final microstructure is mainly AF. Fully acicular ferrite microstructures have 
also been obtained in this steel by isothermal treatments [ ].  
 

Figure 2. CCT diagram for the steel B, after an austenitization at 1125 ºC. (F = Allotriomorphic Ferrite, P = 
Pearlite, AF = Acicular Ferrite M= Martensite and Ms = Martensite start temperature) 
 

  (a)              (b)                   (c) 
Figure 3. Microstructures obtained in steel A after the continuous cooling at (a) 10 ºCs-1 (b) 6 ºCs-1 and (c)3  ºCs-1. 
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The addition of Mo to the steel modifies the CCT curves. In comparison with the diagram for steel A in Fig. 1, the 
pearlite region in the CCT diagram of steel B (Fig. 2) is displaced to longer times. The region corresponding to the 
acicular ferrite transformation is expanded to lower cooling rates and slightly higher temperatures. It is observed 
that, like in steel A, the diminution of the allotriomorphic ferrite is not accompanied by the transition from acicular 
ferrite to bainite formation. As a result, the range of cooling rates leading to the formation of acicular ferrite as the 
predominant microstructural constituent in the Mo containing steel ranges now from 6 °Cs-1 to 0.3 °Cs-1. The 
produced microstructures for different cooling rates are shown in Fig. 4. The differences between steels A and B 
can be understood comparing the micrographs in Figs 3 and 4. It can be seen that a 10% of allotriomorphic ferrite 
is found in steel A upon cooling at 6 ºCs-1 but it is not distinguishable in steel B even at a much lower cooling rate 
of 0.75 ºC s-1. On the other hand, cooling rates higher than 6ºCs-1 applied to steel B produce significant amounts of 
martensite. According to the CCT diagrams in Figs 1 and 2, Mo does not seem to have a large effect on the Ms 
martensite start temperature on quenching. However, when acicular ferrite forms, the presence of Mo in the steel 
enhances the apparition of martensite in the final microstructure, even for cooling rates as low as 0.6 ºC s-1. This is 
probably due to the influence this element has on the transformation kinetics and on the hardenability. In the 
absence of this element in the steel, martensite formation requires cooling rates higher than 3 ºC s-1.  
 

   (a)       (b)      (c) 
Figure 4. Microstructures obtained in steel B after continuous cooling at a) 6 ºCs-1, b) 3 ºCs-1 and c) 0.75 ºCs-1. 
 
All these results show the difficulties encountered to produce fully acicular ferrite microstructures by continuous 
cooling, using industrially reproducible cooling rates, even in steels as studied here which present a resistance to 
bainite formation. The Mo delays the formation of allotriomorphic ferrite but, on the other hand, favors the 
presence of martensite in the final microstructure. To prevent martensite formation, a two stage cooling cycle or 
isothermal treatments can be applied. As reported elsewhere1, the two stage cooling cycles with the first cooling 
performed at 10  Cs-1 from the austenitizing temperature to one in a range 400-500 °C, followed by a second 
cooling at 2  Cs-1 from this to room temperature have demonstrated to be useful in producing acicular ferrite 
microstructures.  
Isothermal treatments have been carried out to investigate comparatively the behavior of both steels and the effect 
of the Mo on the acicular ferrite microstructure. The microstructural compositions obtained with the isothermal 
treatments carried out at temperatures in the range 500-400 ºC are shown in Table 2 for both steels. It can be seen 
that, for temperatures lower than about 450 ºC, the microstructure is mainly acicular ferrite. Above this 
temperature, different mixtures of ferrite, pearlite and acicular ferrite form. The final microstructures obtained for a 
holding time of 20 min at 450 ºC are shown in Fig. 5 for both steels. It can clearly be seen in the micrographs that 
Mo not only affects the transformation kinetics, as seen before, but also modifies the morphology of the 
transformation product. Steel A exhibits a microstructure after this treatment formed by the well known randomly 
oriented ferrite plates while steel B develops packets formed by different parallel sub-units. This type of 
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microstructure can be erroneously interpreted as being bainite if the evolution of the transformation is not carefully 
followed from the early stages. At this stage, the places where the nucleation takes place makes the difference 
between bainite and acicular ferrite. Looking at the partially transformed microstructures produced by interrupted 
isothermal tests, see Fig. 6, it can be seen that primary acicular ferrite plates in steel A nucleate on the second 
phase particles.  
These have been identified as being MnS particles covered by a shell of CuS. This shell seems to be favorable in 
terms of acicular ferrite formation, as discussed elsewhere [2,3]. The same type of particles also produces AF 
nucleation in steel B [17]. It has been shown that the transformation can progress in two different ways through the 
autocathalityc nucleation of new plates in different orientations to the primary ones or by the formation of subunits 
parallel to them [18

 

]. In the first case, The result is the typical interlocking microstructure of acicular ferrite that 
can be seen in Fig. 5(a) for the steel A at 450 ºC. Steel B behaves according to the second type of morphology. 

Table 2. Constituents of the final microstructures after isothermal heat treatments. 
Temperature (°C) Microstructure 

 Steel A Steel B 
500 P, AF, F AF (SPP), P 
450 AF AF (SPP) 
400 AF (SPP) AF (SPP) 

AF = Acicular Ferrite, AF (SPP) = Acicular Ferrite with 
Sheaves of Parallel Plates, P = Pearlite, F = Allotriomorphic 
Ferrite. 

 

       (a)      (b) 
Figure 5. Final microstructures obtained by isothermal treatment during 20 min at 450 ºC a) steel A and b) steel B. 
 

   a)       b)      c) 
Figure 6. Optical micrographs a) steel A held during 10s at 450ºC, b) steel A held during 20s at 400 ºC and c) steel 
B held during 20s at 450 ºC followed in all the cases by water quenching. 
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The formation of sheaves or packets constituted by ferrite subunits is not exclusive of Mo containing steels but can 
also been observed in other steels, depending on the transformation temperature. This is illustrated in Fig. 6(a) and 
6(b). Individual plates develop in steel A at 450 ºC but sheaves form in this steel during the isothermal treatment at 
400 ºC. As discussed elsewhere [19

This transition between both types of transformation relates to the carbon mobility which is expected in turn to 
depend not only on the treatment temperature but also on the steel composition. As can be seen in Fig. 6(c), the Mo 
containing steel presents an evolution of the transformation at 450 ºC similar to that exhibited by the steel A at 
400 ºC. The same type of SEM and TEM analysis carried out previously [

], the transition between both morphologies is associated to the transition 
between upper and lower acicular ferrite. The first leads to the formation of plates, and the second of sheaves. 

18,19] is now under progress for Mo 
containing steel. However, according to the present results, it seems that the addition of Mo has raised the 
temperature of transition between upper and lower acicular ferrite and consequently the temperature of formation 
of sheaves instead of plates. 

 
Conclusions 

 
1- Acicular ferrite has been obtained by both isothermal and continuous cooling treatments in two medium carbon 

microalloyed forging steels.  
2- Molybdenum not only affects the transformation kinetics but also modifies the morphology of the acicular 

ferrite.  
3- Molybdenum favors the acicular ferrite formation but increases the amount of martensite being present in the 

final microstructure. In Mo containing steel, the formation of this phase is the main variable limiting the design 
of useful cooling cycles in order to get microstructures with enhanced mechanical properties.  
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Introduction


Recent studies have demonstrated that acicular ferrite microstructures can be developed in medium carbon microalloyed forging steels with both isothermal and continuous cooling treatments [
 
 
 
 -
]. This subject represents a major and very exciting advance in the technology of steels. However, a deep understanding of the influences that the alloying elements have on the final microstructure should be reached to produce this kind of steels directly by industrial thermomechanical processes. 


It is thoroughly accepted that elements such as manganese, sulfur and cooper influence the nucleation of acicular ferrite inside the austenite grains [2,
-
]. The influence of other alloying elements on the evolution of acicular ferrite transformation under isothermal and non-isothermal conditions is not yet well known. Many attempts have been made to describe the effect of molybdenum in alloys [
 
 
 
 
 
 
 -
]. Paxton and Bain [9] reported that molybdenum in small proportion exerts a very vigorous effect on hardenability when it is dissolved in austenite. Kinsman and Aaronson [8] justified the experimentally detected reduction in ferrite growth rate in molybdenum containing steels because molybdenum affects the thermodynamic stability of austenite relative to ferrite. A better knowledge of the effects of molybdenum on the evolution of the non-isothermal austenite decomposition could enhance the production of as-forged acicular ferrite microstructures. 


The purpose of the present work is to analyze experimentally the influence of molybdenum on the formation of a fully acicular ferrite microstructure in medium carbon microalloyed forging steels under continuous cooling conditions. In this sense, continuous cooling transformation processes of two medium carbon forging steels with different molybdenum content have been investigated. Some isothermal experiments have also been carried out in order to analyze the effect of the Mo on the evolution of acicular ferrite formation.


Materials and Experimental Procedure

The chemical composition of the two steels studied in this work are given in Table 1.


Table 1Chemical composition (wt %) of the steels


Steel

C

Mn

Si

P

S

Cr

Mo

V

Cu

Al

Ti

N



A

0.37

1.45

0.56

0.010

0.043

0.04

0.025

0.11

0.14

0.024

0.015

0.0162



B

0.38

1.44

0.62

0.010

0.041

0.07

0.16

0.10

0.07

0.026

0.016

0.0122



An Adamel Lhomargy DT1000 high-resolution dilatometer has been used to analyze non-isothermal transformations and to obtain the continuous cooling transformation diagrams (CCT) of these steels. In order to avoid considering the effect of the variation of the prior austenite grain size (PAGS) on non-isothermal transformations, austenitization conditions were selected to achieve approximately the same PAGS in both steels (66 (m). Thus, cylindrical samples of 2 mm in diameter and 12 mm in length of steel A and B were austenitized for 60 s at 1200 (C and for 180 s at 1125 (C, respectively. Subsequently, transformations taking place during continuous cooling at rates ranging from 100 C s-1 to 0.05 (C s-1 have been dilatometrically analyzed. Cooling  is performed by helium flow directly blown onto the sample surface. The dimensional variations of the specimen are measured by a linear variable differential transformer (LVDT). For the isothermal treatments, cubic samples of 10 mm were austenitized at 1250°C for 45 minutes followed by direct quenching in a salt bath in the range 500‑400 °C and hold there to complete the transformation, followed by water quenching to room temperature. The temperature was recorded by a thermocouple into the sample. The cooling rates from the austenitizing to the isothermal treatment temperatures ranged in the interval 800-500 ºC from 27 to 55 ºC s-1, depending on the final temperature. The samples were cut, polished and etched in nital to be observed by optical microscopy. 


Results and Discussion


It is generally accepted that austenite decomposition is delayed in molybdenum containing steels leading to an increase in hardenability [9]. In the present work, the influence of molybdenum on the evolution of the austenite-to-acicular ferrite transformation as well as on the morphology of this phase has been investigated.
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Figure 1. CCT diagram for the steel A, after an austenitization at 1200 ºC. (F = Allotriomorphic Ferrite, P = Pearlite, AF = Acicular Ferrite M= Martensite and Ms = Martensite start temperature).


The CCT diagrams of the two steels studied in this work are presented in Figures 1 and 2. Figure 1 shows that the non-isothermal austenite-to-acicular ferrite transformation in steel A occurs at cooling rates ranging from 25  Cs-1 to 1  Cs-1. The allotriomorphic ferrite formation is avoided cooling down at a rate higher than about 30  Cs-1. Pearlite formation is suppressed if the cooling is carried out at a rate of 7  Cs-1or higher. The micrograph in Figure 3 (a) shows that, although pearlite formation is totally inhibited at a cooling rate of 10 (C s-1, a fine layer of allotriomorphic ferrite which represents approximately the 7% of the microstructure covers the most part of the prior austenite grain boundaries. The intragranular formation of ferrite leads to a mainly acicular ferrite microstructure for steel A cooled at the above mentioned cooling rate. Nevertheless, the decomposition of austenite does not complete before the martensite start temperature is reached, which causes the apparition of a small amount of martensite at the later stages of the cooling. By contrast, at a cooling rate of 6  C s-1 (Fig. 3(b)), a reduction in the final amount of martensite is observed, the volume fraction of allotriomorphic ferrite increases to 10%, and a 2% of pearlite is also present in the final microstructure. At a cooling rate of 3 ºC s-1 (Fig. 3(c)), significant amounts of allotriomorphic ferrite and pearlite are present in the final microstructure. Cooling rates lower than 2 ºC s-1 would promote the formation of a mixture of allotriomorphic ferrite and pearlite as the main microstructural components. 


The formation of an allotriomorphic ferrite layer on the previous austenite grain boundaries is well known [
] to inhibit the formation of bainite and contributes indirectly to the nucleation of AF. However, the steel A presents a high tendency to form an AF microstructure instead of bainite, even in the absence of this ferrite layer. By cooling at a rate between 10 and 2 ºC s-1, the final microstructure is mainly AF. Fully acicular ferrite microstructures have also been obtained in this steel by isothermal treatments [3]. 
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Figure 2. CCT diagram for the steel B, after an austenitization at 1125 ºC. (F = Allotriomorphic Ferrite, P = Pearlite, AF = Acicular Ferrite M= Martensite and Ms = Martensite start temperature)
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 (a) 
            (b)
                  (c)


Figure 3. Microstructures obtained in steel A after the continuous cooling at (a) 10 ºCs-1 (b) 6 ºCs-1 and (c)3  ºCs-1.


The addition of Mo to the steel modifies the CCT curves. In comparison with the diagram for steel A in Fig. 1, the pearlite region in the CCT diagram of steel B (Fig. 2) is displaced to longer times. The region corresponding to the acicular ferrite transformation is expanded to lower cooling rates and slightly higher temperatures. It is observed that, like in steel A, the diminution of the allotriomorphic ferrite is not accompanied by the transition from acicular ferrite to bainite formation. As a result, the range of cooling rates leading to the formation of acicular ferrite as the predominant microstructural constituent in the Mo containing steel ranges now from 6 (Cs-1 to 0.3 (Cs-1. The produced microstructures for different cooling rates are shown in Fig. 4. The differences between steels A and B can be understood comparing the micrographs in Figs 3 and 4. It can be seen that a 10% of allotriomorphic ferrite is found in steel A upon cooling at 6 ºCs-1 but it is not distinguishable in steel B even at a much lower cooling rate of 0.75 ºC s-1. On the other hand, cooling rates higher than 6ºCs-1 applied to steel B produce significant amounts of martensite. According to the CCT diagrams in Figs 1 and 2, Mo does not seem to have a large effect on the Ms martensite start temperature on quenching. However, when acicular ferrite forms, the presence of Mo in the steel enhances the apparition of martensite in the final microstructure, even for cooling rates as low as 0.6 ºC s-1. This is probably due to the influence this element has on the transformation kinetics and on the hardenability. In the absence of this element in the steel, martensite formation requires cooling rates higher than 3 ºC s-1. 
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Figure 4. Microstructures obtained in steel B after continuous cooling at a) 6 ºCs-1, b) 3 ºCs-1 and c) 0.75 ºCs-1.


All these results show the difficulties encountered to produce fully acicular ferrite microstructures by continuous cooling, using industrially reproducible cooling rates, even in steels as studied here which present a resistance to bainite formation. The Mo delays the formation of allotriomorphic ferrite but, on the other hand, favors the presence of martensite in the final microstructure. To prevent martensite formation, a two stage cooling cycle or isothermal treatments can be applied. As reported elsewhere1, the two stage cooling cycles with the first cooling performed at 10  Cs-1 from the austenitizing temperature to one in a range 400-500 (C, followed by a second cooling at 2  Cs-1 from this to room temperature have demonstrated to be useful in producing acicular ferrite microstructures. 


Isothermal treatments have been carried out to investigate comparatively the behavior of both steels and the effect of the Mo on the acicular ferrite microstructure. The microstructural compositions obtained with the isothermal treatments carried out at temperatures in the range 500-400 ºC are shown in Table 2 for both steels. It can be seen that, for temperatures lower than about 450 ºC, the microstructure is mainly acicular ferrite. Above this temperature, different mixtures of ferrite, pearlite and acicular ferrite form. The final microstructures obtained for a holding time of 20 min at 450 ºC are shown in Fig. 5 for both steels. It can clearly be seen in the micrographs that Mo not only affects the transformation kinetics, as seen before, but also modifies the morphology of the transformation product. Steel A exhibits a microstructure after this treatment formed by the well known randomly oriented ferrite plates while steel B develops packets formed by different parallel sub-units. This type of microstructure can be erroneously interpreted as being bainite if the evolution of the transformation is not carefully followed from the early stages. At this stage, the places where the nucleation takes place makes the difference between bainite and acicular ferrite. Looking at the partially transformed microstructures produced by interrupted isothermal tests, see Fig. 6, it can be seen that primary acicular ferrite plates in steel A nucleate on the second phase particles. 


These have been identified as being MnS particles covered by a shell of CuS. This shell seems to be favorable in terms of acicular ferrite formation, as discussed elsewhere [2,3]. The same type of particles also produces AF nucleation in steel B [
]. It has been shown that the transformation can progress in two different ways through the autocathalityc nucleation of new plates in different orientations to the primary ones or by the formation of subunits parallel to them [
]. In the first case, The result is the typical interlocking microstructure of acicular ferrite that can be seen in Fig. 5(a) for the steel A at 450 ºC. Steel B behaves according to the second type of morphology.


Table 2. Constituents of the final microstructures after isothermal heat treatments.


Temperature ((C)

Microstructure





Steel A

Steel B



500

P, AF, F

AF (SPP), P



450

AF

AF (SPP)



400

AF (SPP)

AF (SPP)



AF = Acicular Ferrite, AF (SPP) = Acicular Ferrite with Sheaves of Parallel Plates, P = Pearlite, F = Allotriomorphic Ferrite.











(a)





(b)


Figure 5. Final microstructures obtained by isothermal treatment during 20 min at 450 ºC a) steel A and b) steel B.





a)






b)





c)


Figure 6. Optical micrographs a) steel A held during 10s at 450ºC, b) steel A held during 20s at 400 ºC and c) steel B held during 20s at 450 ºC followed in all the cases by water quenching.


The formation of sheaves or packets constituted by ferrite subunits is not exclusive of Mo containing steels but can also been observed in other steels, depending on the transformation temperature. This is illustrated in Fig. 6(a) and 6(b). Individual plates develop in steel A at 450 ºC but sheaves form in this steel during the isothermal treatment at 400 ºC. As discussed elsewhere [
], the transition between both morphologies is associated to the transition between upper and lower acicular ferrite. The first leads to the formation of plates, and the second of sheaves.


This transition between both types of transformation relates to the carbon mobility which is expected in turn to depend not only on the treatment temperature but also on the steel composition. As can be seen in Fig. 6(c), the Mo containing steel presents an evolution of the transformation at 450 ºC similar to that exhibited by the steel A at 400 ºC. The same type of SEM and TEM analysis carried out previously [18,19] is now under progress for Mo containing steel. However, according to the present results, it seems that the addition of Mo has raised the temperature of transition between upper and lower acicular ferrite and consequently the temperature of formation of sheaves instead of plates.


Conclusions


1- Acicular ferrite has been obtained by both isothermal and continuous cooling treatments in two medium carbon microalloyed forging steels. 


2- Molybdenum not only affects the transformation kinetics but also modifies the morphology of the acicular ferrite. 


3- Molybdenum favors the acicular ferrite formation but increases the amount of martensite being present in the final microstructure. In Mo containing steel, the formation of this phase is the main variable limiting the design of useful cooling cycles in order to get microstructures with enhanced mechanical properties. 
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			700			850			1416.6666666667			2125			4250			8500


			600			1050			1750			2625			5250			10500


			500			1250			2083.3333333333			3125			6250			12500


			400			1450			2416.6666666667			3625			7250			14500


			300			1650			2750			4125			8250			16500


			200			1850			3083.3333333333			4625			9250			18500


			100			2050			3416.6666666667			5125			10250			20500


			0			2250			3750			5625			11250			22500










