Comparative Archaeologies

The American Southwest (AD 900–1600) and the Iberian Peninsula (3000–1500 BC)

Edited by Katina T. Lillios
Comparative Archaeologies

The American Southwest
(AD 900–1600)
and
the Iberian Peninsula
(3000–1500 BC)

edited by Katina T. Lillios
Chapter 4

Labor in the Making of Iberian Copper Age Lineages

Pedro Díaz-del-Río

The Iberian Copper Age (3100–2200 cal BC) stands between two key historical transformations: the beginning of agro-pastoralism (5500 cal BC) and the incorporation of the Peninsula into the Mediterranean “world system” during the early first millennium BC. A series of complex societies arose in the Peninsula throughout the Copper Age, but by the period’s end, not one of them existed in the same form. This dynamic of emergence and collapse can be tracked throughout southern Iberia, with some common signatures, such as demographic growth, population aggregations, monumental constructions, long distance exchange, the proliferation of symbolic material culture, and a lack of obvious evidence for elites. Needless to say, these features are common features of many complex societies. Thus, the Copper Age of the Iberian Peninsula may be a good case study for a historically contingent comparative archaeology.

In this chapter, I will argue that the period known as the Copper Age saw the rise of lineage societies, made possible and sustained through the cyclical involvement of different communities in collective labor processes and other public events. Collective infrastructural investments were non-agricultural facilities: enclosures, fortifications, and monumental burials. These kinship-based societies had limited technological development, and groups were by no means economically “caged,” to use Mann’s terms (Mann 1986). Consequently, inclusive — and frequently ritualized — strategies would have been more efficient than coercion as means of legitimizing political authority in and between aggregated corporate groups.

I will structure this chapter in three parts. In the first, I will address what I understand as common archaeological features of the Iberian Copper Age. In the second, I will draw on the site of Los Millares (Almería, southeast Spain) for a more detailed analysis of the “life history” of one of the most emblematic sites of the Iberian Copper Age. Finally, I will summarize my thesis and suggest some generalizations for the time period in Iberia.
Common Features of Copper Age Iberia

Although southern Iberia encompasses a wide range of climatic and ecological variability, environmental factors do not seem to have determined prehistoric cultural processes. From the humid Atlantic southwest to the drier southeast, from the rich soils of the Guadalquivir river basin to the less productive agricultural areas of Almería, southern Iberia shares certain common archaeological features throughout the Copper Age listed below.

Settlements and Settlement Patterns

There is clear evidence for an increase in the number of settlements beginning in the late fourth millennium BC. This is related to an increase in population density as a result of the consolidation of agropastoral economies, which emerged during the previous Neolithic. The new economic base allowed a more sedentary lifestyle, an increase in surplus production, and an enlargement of the available surplus labor.

Sites are extremely variable in size, ranging from 0.1 ha to more than 113 ha, and pose serious difficulties in terms of evaluating their possible contemporaneity. Their features are also variable. The biggest sites always have stone-walled or earthen enclosures. The former were exclusively erected on hilltops, where building material could be easily obtained. Earthen enclosures were situated in more diverse topographical contexts, but they are essentially located in river valleys and other lowlands. They all seem to lack...
public buildings or specialized public ritual facilities other than the actual space created by the enclosures. The archaeological features documented in excavated enclosures seem overtly domestic — although not necessarily lacking in ritual paraphernalia — and are indistinguishable from any other non-enclosed site. Many of the biggest sites, such as Los Millares (Molina and Cámara 2005), Valencina de la Concepción (Vargas 2004), Cheles (Hurtado 2004), or Perdigões (Lago et al. 1998), have associated megalithic cemeteries (fig. 4.1).

Household and Community Production

Households display a very limited variability in structure and wealth. Most documented houses are circular, and frequently include one or more hearths, cooking and small size storage pots, grinding stones, and other evidence for domestic activities. There is some variability in the evidence of craft production (such as flint arrowheads; see Molina et al. 1986; Ramos Millán 1998), which some scholars consider proof of specialization, but unambiguous evidence is lacking. If elites did exist, they did not feather their nests. They seem to have been ‘faceless,’ leaving no clear trace in the archaeological record of their everyday life.

The economy is mainly based on domestic crops (wheat and barley) and animals (sheep/goat, cattle, and pigs), with no clear evidence for intensified production and a limited technological development.

Collective Burial Practices

Funerary architecture includes monumental burials, such as megalithic chamber tombs, although less visible burials — in artificial caves, silos, or ditched enclosures — are not infrequent. As at Los Millares (Almería), many monumental cemeteries are associated with earthen and stone-walled enclosures (Cheles, Valencina de la Concepción, Perdigões). Burials are collective, with both primary and secondary disposal of the deceased. The quality and quantity of grave goods are variable, and may depend on such factors as the number of individuals buried, the use period and/or the size (and power?) of corporate groups.

Long-distance Exchange and Ritual Paraphernalia

The Copper Age of Iberia has, in quantity and quality, the best evidence for long-distance exchange prior to the participation of Iberia in the Mediterranean world-system during the first millennium BC. This evidence includes ivory, ostrich-egg shell, or amber, mostly recovered from funerary contexts, but also occasionally found inside settlements. This is also the case with other ritual paraphernalia, which includes pottery with symbolic decorations and a wide variety of bone or stone idols. The amount and concentration of these objects seems to be correlated to the size of the site, with the largest accumulations found at the biggest sites. This suggests that those corporate groups capable of attracting more followers were also those in position to expand and increase their exchange connections and alliance networks.
All these features suggest that the size and complexity of these groups relied on their ability to attract and maintain a labor force, the key factor that would allow further options to increase surplus production and to trigger wealth generation.

Out of all the excavated Iberian Copper Age sites, Los Millares is probably the best known in the Anglo-American archaeological literature. The site has been extensively dug, but only partially published, and may be worth revisiting because of its paradigmatic place in the debates concerning the rise of complex societies.

Los Millares as a Case-Study

The site of Los Millares has been at the center of Iberian archaeological interpretations on the emergence of complex societies since its discovery in the late nineteenth century. This is not surprising when the site is compared to its Iberian and Western European contemporaries. Los Millares (Almería, southeast Spain) is a 5 ha fortified site located at the tip of a promontory by the confluence of the Rambla de Huechar and the Andarax River. The easiest access is through the west, where one has to cross 13 ha of cemetery with up to 80 communal tombs, mainly passage graves with false vaults in their chambers. In the immediate surrounding hills are 13 smaller settlements (so-called “forts”).

Archaeological interpretations of the populations associated with Los Millares have followed a surprising pattern throughout the second half of the twentieth century, in that they have climbed all the steps of the neo-evolutionary ladder. During the 1960s, Los Millares was considered egalitarian (Almagro and Arribas 1963); by the 1980s and 1990s it was a big-man (Ramos Millán 1981), ranked society (Chapman 1990) or group-oriented chiefdom (Ramos Millán 1998:36). In the twenty-first century, Los Millares reached the status of a tributary state, at least for the custodians of its archaeological record (Molina et al. 2004; Molina and Cámara 2005).

This recent interpretation of the site is part of a contemporary trend among some Spanish archaeologists to create narratives that trace the origin of the state to early phases of Iberian prehistory (for an overview, see Vicent 2006). Drawing on Marxist thought, these archaeologists highlight coercion as the main means by which populations would have been enlisted to construct and live in such a site; this coercion would have been subsequently used to build a tributary system in its surrounding area.

Throughout this chapter, I will argue that, with the available information, the most reasonable interpretation of Los Millares (and many cases of early aggregation sites) is that its population, in some way, enjoyed the benefits of being together by belonging to more or less powerful lineages. These lineages were the dominant social institution throughout the process. While sharing everyday practices, funerary ritual became the arena for social competition and the final depository of most long-distance objects, special crafts, and other ritual paraphernalia.

As Elster argues, “institutions prevent society from falling apart as long as there is something that prevents institutions falling apart” (1996: 146, my translation). Many factors can be suggested to explain why, after some 500 years, these Copper Age lineages were incapable of maintaining aggregated populations, such as intergroup strife, decreasing production, internal disputes or competition, or the inability to transform...
collective ideologies into a stable structural power. Lacking the infrastructural investments that could have prevented fission, groups would have been capable of voting with their feet whenever these processes and social institutions reduced their material benefits. The available evidence for Los Millares is still insufficient and frequently inadequate for generalizations, but I believe that it supports my arguments better than others. This interpretation does not downplay the archaeological evidence but, in applying Ockam’s razor, it simply requires fewer unsupported narratives.

In order to present this case study, I will draw on the following evidence: settlement patterns, intrasite dynamics, variability in domestic building and food consumption, and, finally, ritual and wealth patterns in burial practices.

Settlement Patterns

There is clear evidence for an increase in the number of settlements throughout southeast Iberia beginning in the late fourth millennium BC. Copper Age settlement distribution in the Southeast is said to follow a two-tier pattern at the regional scale. Small settlements of less than a hectare contrast with the seven fortified sites that some authors say exist (Aranda and Sánchez Romero 2005: 184, 186). Of them, only Los Millares, at 5 ha, would be a good candidate for a central place. Nevertheless, if intergroup conflict was a triggering cause for the aggregation process, one would expect that other groups would have also aggregated in the surrounding region, creating their own fortified sites. Unfortunately, Millares is unique in many ways. The site of Las Pilas (see fig. 4.1), the closest potential competitor, is located more than 60 km from it, and “the long tradition of research in southeastern Iberia makes it unlikely that any others remain undiscovered” (Aranda and Sánchez Romero 2005: 186–87).

The poorly published Andarax valley survey has documented three kinds of archaeological features in the surroundings of Los Millares (Cara and Rodríguez 1984; 1989; fig. 4.2):

1. In the immediate area, there are up to 13 small sites, known as “forts.” They are located in the surrounding cliffs and show an important variability in both their size and building complexity. Not one of them is bigger than 0.5 ha.

2. There are sites in the vicinity of Los Millares, though at least two km away (Loma de Huechar). All these sites are supposed to be contemporary to Millares, although we do not know to what specific phase, and they all lack radiocarbon dates. As the authors of the survey suggest, the relationship between these sites does not seem functionally hierarchical, as they “all approximately shared the same options and resources” (Cara and Rodriguez 1984: 72).

3. There are megalithic cemeteries surrounding some of the settlements and dispersed in the landscape. These tombs are constructed in a similar manner to those at the Los Millares cemetery and are believed to be contemporary with them.
4. LABOR IN THE MAKING OF IBERIAN COPPER AGE LINEAGES

As states are required to have territorial control, members of the Millares project suggest that the site’s territorial influence extended over 3700 square km (Molina and Cámara 2005: 102, fig.), three times more than, for example, the suggested Prepalatial Aegean state of Malia (Knappett 1999 in Chapman 2005: 91). They also suggest that its hinterland shows a three-tier hierarchy settlement pattern, with the site of Terrera Ventura considered to be a “principal settlement” (Molina and Cámara 2005: 104). However, Terrera Ventura is located on a spur that measures no more than 1 ha (Gilman and Thorne 1985: 111; Gusi and Olaría 1991: 30). One just cannot imagine how small the third-level sites may be.

If the information concerning regional settlement patterns does not support coercion as a primary factor in the aggregation process, one should then look at other evidence, such as, for example, the evolution of the site of Los Millares itself.

Intra-site Dynamics

Los Millares is situated at the junction of the Rambla de Huéchar and the Andarax River. It is, as mentioned above, a 5 ha settlement with four different stone wall enclosures built of local limestone. Monks (1997) calculated the total amount of labor invested in its construction to be more than 150,000 work-days. Radiocarbon dates (Molina et al. 2004)
suggest that the site was first occupied some time around 3000 BC with the construction of two separate enclosures, one at the tip of the promontory (Line IV or “citadel”), the other some 70 m away, covering the highest area of the meseta (Line III; fig. 4.3). Both are similar in size, although the latter is bigger. This duality in the foundation of Los Millares may suggest either a functional differentiation between apparently similar spaces, or some kind of moiety pattern at the origin of the aggregation process.

Whatever it may be, the second enclosure expanded sometime later with the subsequent construction of a wall that extended the potentially inhabited area (Line II). Last of all, an external and complex wall (Line I) was built when part of Line III had been already abandoned. Unlike the others, this external wall has projected structures known as “bastions.”

By 2500 BC, all walls except for the so-called “citadel” had been abandoned, although domestic activities are said to have been found in the remaining areas (Molina et al. 2004). This enclosure, located at the tip of the promontory, controls the highly productive river junction, but lacks any view over the remaining areas of the site (Monks 1997: 15). As radiocarbon dates seem to support (Molina et al. 2004: 149), the so-called “forts” were built at this time (Castro et al. 1996; Díaz-del-Río 2004a; Rovira 2002). By the beginning of the transition to the Argaric period, the regional Bronze Age, all locations were definitely abandoned.

The 13 “forts” are distributed throughout the crests of the nearby hills. To date, six of them have been excavated. They are all highly variable in plan and size (0.01 to 0.47 ha).

FIG. 4.3 Schematic occupation pattern at Los Millares. Question marks in number 5 locate the position of those small “forts” that have not been mapped in detail.
FIG. 4.4 Construction dynamics of the first line of Los Millares (modified from Arribas et al. 1983).
The Millares team suggests that their main function would have been to “accentuate control and coercion” (Molina and Cámara 2005: 62), although other functions could have been for defense, visual control of productive areas, grain storage and grinding areas, redistribution centers (Arribas and Molina 1991: 415), areas for the initiation of young males in arrowhead production, and a propagandistic monument charged with ritual and symbolic aspects (Molina and Cámara 2005: 75).

Surprisingly enough, another dual pattern seems to emerge when all the contemporary enclosures that we know for sure were in use by 2500 BC are mapped. These are the “citadel” and Fort 1, both of very similar dimensions. The fact that this pattern seems to appear both at the beginning and at the end of the aggregation process is suggestive as to the kind of socio-political dynamics of complementarity that may have been at work. Unfortunately, one just cannot compare both enclosures: the “citadel” has been barely excavated, while Fort 1 has more than half of its extension completely recorded.

As the “citadel” cannot be analyzed in detail, any interpretation has to rely on the evidence recovered at Fort 1. This settlement is a circular enclosure with a double line of walls and towers, constructed in at least two subsequent phases. The interior enclosure was first, the exterior and central building last (Arribas et al. 1983: 136; Molina and Cámara 2005: 69–70). Fortunately enough, and as a result of the micro-spatial methodology applied during the excavation (Molina et al. 1986), this site has afforded an important amount of information on the activities that were performed in the interior, such as copper smelting, flint knapping, and cereal grinding.

Out of all, grinding has been particularly highlighted. This activity, and the “high presence of grinding stones” throughout the site (Molina et al. 1986: 199), has been used to propose the occurrence of cereal processing that exceeded the food production needs of its inhabitants (Chapman 2003: 124; Molina and Cámara 2005: 75; Molina et al. 1986: 199). Certainly, the published evidence confirms the existence of an open area of approximately 38 sq m, with up to eight contemporary small cobble platforms, six of them with associated grinding stones. Such evidence can be reasonably interpreted as a communal working space, something not unusual in seasonal processing activities in most traditional rural villages. As Chapman argues, “Fort 1 at Los Millares is the best evidence so far for concentration of the means of production above the amount necessary to cater for domestic consumption” (Chapman 2003: 129), although the scarce quantity and concentration of grinding stones seems not much, given the expected production control of a tributary state.

As we have seen, the overall pattern at Los Millares is one of a dual origin, subsequent expansion, and final dual dissolution. Nevertheless, this potential duality is misleading when interpreting the kind of social organization at work at the site. In order to do so, one would have to analyze how surplus labor was deployed at, for example, the main collective work: the fortifications.

The several interim reports do not allow to reconstruct a complete sequence of construction events, but we can get a fairly reasonable view of how the front line of the fortification was built. All walls were built with a double line of stones and an inner fill of rubble. Although frequently represented as a thick black wall (fig. 4.4), I have followed published plans and redrawn them into their constituent pieces. In my plan, shadings
do not represent phases, but only highlight how this fortification seems not to be a pre-planned wall, but a series of building and rebuildings. Obviously, all authors have noted that walls were sequentially enlarged through the incorporation of reinforcements: “the mean thickness of this [wall] is around 2 meters, and was obtained through the attachment of several reinforcements to the internal face of the principal wall” (Molina and Cámara 2005: 34). Nevertheless, this interpretation gives a unitary view of how labor was deployed in the first term, something not so obvious when one observes in detail the construction dynamic as recorded during the excavation. When separating reinforcements and later modifications, one can clearly observe that the so-called “principal wall” is, in fact, an aggregation of different segments. Some are built in a strange manner for a pre-planned design, such as wall segments that end with a tower, but lack a continuing wall that is in fact another building project in its own. Others are just wall segments built over previously constructed circular structures (“bastions” or houses?), or segments with subsequently attached towers,15 most of them with evidence for indoor domestic activities. The image of an impressive fortification with eleven strategically designed bastions (as reconstructed in the recently published archaeological guide of Los Millares; see Molina and Cámara 2005: 33), is openly misleading:16 there is enough evidence to support that those bastions and walls were neither designed nor contemporaneously functioning.

I believe that this evidence gives insightful clues as to how labor was organized and deployed, but most of all, it reveals the kind of surplus labor control that could have been at work. It would be unreasonable to consider that the society that built Los Millares lacked the practical knowledge to construct a “principal wall” with bastions if they wished so. Consequently, one would suggest that whatever social institutions were behind the deployment of surplus labor, they lacked the means to recruit, to organize, and to mobilize it in order to create a unified monumental project. As a result, the final picture is one of an aggregation of segmented building projects with a somehow similar idea as to what the result should look like. The tactical or organizational power, to use Eric Wolf’s terms (1999: 5), was then probably confined to the variable recruitment capacities of each group. The multiple constituent pieces of the fortifications at Los Millares are no metaphor,17 but a result of the actual structure of its society.

What then gave a sense of community to this seemingly unstructured Copper Age group? In order to respond, we need to observe the variability in labor investments in domestic infrastructures and consumption patterns inside the settlement.

Intra-site Variability

Although Los Millares has been excavated for several generations, we still lack detailed contextual information to quantitatively assess household variability in wealth or food consumption. From what we know, all excavated Copper Age houses, except for one, are circular or oval (see fig. 4.5). They frequently include one or more hearths, cooking and small-size storage pots, grinding stones, and other evidence for domestic activities (Molina et al. 2004: 144). Certain variability does exist in the size of individual houses. As the excavators have recently pointed out, houses situated inside the first line of fortification are always smaller than those documented in the second or third line (Molina...
They suggest that this variability may well be related to social differences: the biggest houses would correspond to the elites, those who had the privilege of living in the interior sectors of the site. But even though differences do exist between houses inside the first line and the rest, the evidence is not so clear-cut (fig. 4.5). Line III does have a house that resembles those from Line I, and Line II has all sizes, from those identical to Line I to bigger ones. This suggests that clusters of different-size houses may have been contemporary, as in fact happens in other contemporary sites like El Malagón (Ramos Millán 1997). Other interpretations are, of course, possible, including functional diversification. Nevertheless, I would highlight the fact that most houses from Line I are constituent parts of clearly separated compounds, creating “private” areas that would have been bigger than the biggest individual house in Millares.\(^{18}\)

In any case, if elites did in fact live in these inner sectors of the site, one would expect them to have better living conditions, for example in relation to meat consumption. Although we lack detailed information on the food remains recovered from each one of the excavated houses, we can approach meat consumption through the recent reevaluation (Navas et al. 2005) of Peters’ and von den Driesch’s (1990) thorough faunal analysis of the remains recovered at all four defense lines.
The sample of mammal remains (excluding forts) increases to 25,950 fragments, out of which around 50% have been identified. This sample is unevenly distributed throughout the four enclosures (Lines I to IV) and is completely unrelated to the amount of square meters dug in each area (Table 4.1, fig. 4.6).

There is a striking difference between mammal remains recovered at the so-called “citadel” (Line IV) in relation to all other defense lines. This could be partially related to the cubic meters of sediment dug in each area, although it may not completely account for this enormous variability. It would seem that at least some of the layers dug at the “citadel” were middens. The second difference worth highlighting is the scarce quantity of bone remains at Fort I, when compared to Fort V or any other defense line. Considering the excellent preservation conditions of Fort I, and the micro-spatial recovery of its archaeological record (Molina et al. 1986), it seems that its inhabitants either tossed their garbage outside the site (maybe into the second non-excavated ditch), or were just not involved in everyday consumption of meat.

When considering the number of identified remains of mammal species, sheep/goat, pig, and cow were the main domestics consumed, although this order would be altered when taking weight into consideration, with cows being the main meat source at the site (Navas et al. 2005: 91). The distribution of these domestics throughout the fortification lines does not seem to show clear-cut differences in the proportion of the consumed species, and when some slight differences are recognized, they seem to show a random distribution between enclosures. This slight variability may be related to chronological variation, differential sample size, cubic meters dug at each area, or all these factors.

Consumption patterns are also very similar when considering body part distribution of mammals throughout the site. All areas have an important amount of Group 1 bones, those that suggest that butchering and quartering were probably carried out by

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SITE SIZE, HA (APPROX.)</th>
<th>EXCAVATED AREA, SQ M (APPROX.)</th>
<th>TOTAL # MAMMAL REMAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line I</td>
<td>2.00</td>
<td>3401</td>
<td>3257</td>
</tr>
<tr>
<td>Line II</td>
<td>0.80</td>
<td>1498</td>
<td>7710</td>
</tr>
<tr>
<td>Line III</td>
<td>0.72</td>
<td>601</td>
<td>4997</td>
</tr>
<tr>
<td>Line IV/”Citadel”</td>
<td>0.60</td>
<td>148</td>
<td>9986</td>
</tr>
<tr>
<td>Fort I</td>
<td>0.47</td>
<td>1832</td>
<td>793</td>
</tr>
<tr>
<td>Fort V</td>
<td>0.04</td>
<td>400</td>
<td>693</td>
</tr>
</tbody>
</table>

The sample of mammal remains (excluding forts) increases to 25,950 fragments, out of which around 50% have been identified. This sample is unevenly distributed throughout the four enclosures (Lines I to IV) and is completely unrelated to the amount of square meters dug in each area (Table 4.1, fig. 4.6).
each household. Nevertheless, an outside area of the exterior Line I, by the monumental entrance, has significant amount of these bones. This would point to some kind of communal butchering, or an area preferred for discard when defense was unnecessary. Group 4, mid-food utility parts of pigs (pork ribs), and Group 3, high-food utility parts of sheep/goat (lamb legs) and deer, were the highest consumed portions throughout the site. When it comes to deer, a mammal that surely was not raised at the site, all sectors, without exception, consumed the meatiest portions. Overall, the inhabitants of Los Millares seem to have shared and enjoyed almost identical meaty portions.

As Gilman (2001: 79) claims, “when our colleagues think they see patterns in their evidence, they are only too happy to tell us.” The authors that reanalyzed the faunal remains, of course, highlighted spatial differences in meat consumption patterns, likely a result of their interest in signifying the economic inequalities at work if Los Millares was a tributary state. But when they do so, they inevitably have to rely on clear-cut differences between the four enclosures and the only two analyzed “forts.” Unfortunately, as radiocarbon dates demonstrate, these “forts” were contemporaneous to the latest phase of the site, when the citadel seems to be the only occupied sector of Los Millares. If, as the authors suggest, there is no chronological variation in consumption patterns throughout the life of the site21 (Navas et al. 2005: 96), than the only clear difference in meat consumption of domestic species would have been between the citadel and “fort” V. Of
course, one would expect the inhabitants of a 0.04 ha compound, such as “fort” V, to be somehow related to their close-by neighbors.

In answering our question, it would seem that an equal share of food provided the inhabitants of Los Millares with a sense of community. But if the settlement’s archaeological record does not sustain the existence of clear-cut wealth or consumption variations, where can one find evidence for differential consumption patterns? In order to do so, one would have to look at the remaining evidence: burial practices.

Ritual and Wealth in Collective Burial Practices

The Los Millares megalithic cemetery extends over 13 ha west of the settlement. A radiocarbon date of one of the tombs suggests that burial practices probably began with the foundation of the settlement, sometime around 3000 cal BC. The majority of the 80 known tombs are passage graves of dry-stone construction with false vaults in their chambers (Chapman 1990: 179). All burials are collective, with both primary and secondary disposal of the deceased. These funerary monuments are variable in their size and architectural complexity, and also in the quantity and quality of grave goods. The most reasonable (and statistically based) interpretation of the cemetery suggests that the observed variability may depend on such factors as the number of individuals buried per tomb, the use period, and/or the size and power of each corporate group (Micó 1990 in Chapman 2003).

Burials concentrate most of the evidence for semi-specialized crafts. Some special objects, such as long flint blades and a variety of arrowheads were mainly produced for deposition in ritual contexts (Ramos Millán 1998). Although most grave goods were probably locally produced, the Los Millares cemetery stands out, both in quantity and quality, for having the clearest long-distance exchange evidence in Iberia prior to the introduction of Iberia into the Mediterranean world-system. This evidence includes ivory items, ostrich-egg shell, and amber beads, which are only occasionally found inside settlements. To date, no evidence for production of these items has been found at Los Millares, all of which suggests that they may have been introduced as finished objects through exchange.

Other than this evidence for long-distance exchange, the cemetery is associated with most of the ritual paraphernalia recovered in the whole region. This includes pottery with symbolic decorations and a wide variety of bone or stone “idols.” Escoriza (1991–92) analyzed 235 of these southeastern Chalcolithic objects known as “idols.” Out of them, 156 belong to Los Millares, mainly—but not only—recovered in funerary contexts (95%). These objects, made out of bone, ivory, alabaster, marble, clay, or slate, represent, for the most part, human images (93%) in passive positions, that is, never performing activities. Only six of them are clearly gendered: five are female and one is male. With these proportions, stressing gender inequalities by these means becomes a difficult task.

The funerary structures at Los Millares are associated with most of the potential evidence for the unequal distribution of wealth. This wealth was variable, and seems to have been linked to the capacity of each one of the constituent corporate groups to attract new labor force. The intensification of rituals and ritual paraphernalia created the
arena for social competition between these groups, competition that does not seem so palpable in their everyday life. While lineages shaped and controlled the contexts for this competition, they were only capable to command and allocate the social labor of their own followers.

Concluding Remarks

The available evidence from Los Millares suggests that the size and complexity of these groups relied on their ability to attract and maintain labor force, the key factor that would allow further options to increase surplus production and trigger wealth mechanisms. The Copper Age saw the rise of some kind of corporate groups (maybe lineages), made possible and sustained through the cyclical involvement of different segments of society in collective labor processes. This surplus labor was available as a consequence of the demographic increase suggested by the proliferation of Copper Age sites covering most of Iberia’s landscape. The construction of collective and often impressive non-agricultural infrastructures created a sense of community beyond individual groups, and extended the bases for the emergence of lineage structures. In order to maintain this emerging social organization, lineages tactically organized the cyclical deployment of labor in communal projects by sharing the benefits of being together (consumption patterns). The competitive nature of this kind of society was materialized in the differential deposition of aesthetic ritual objects, metal, and other items in funerary contexts. Collective funerary rituals involved finely crafted paraphernalia and long-distance exchange of exotic objects. As with food, these objects were likely shared and distributed along lineage lines. Of course, some exotic or prestige objects may have been unequally distributed between lineages, perhaps depending on the amount of members they were capable of attracting.

A sense of community and the resulting political structure could be maintained while commoners gained material benefits from their participation in surplus labor investments and production, as food consumption patterns seem to support. For competing lineages, the increase of labor force would be the most straightforward way to increase surplus, and consequently the options for expanding prestige, wealth, and power. Nevertheless, collective infrastructural investments were overall non-agricultural facilities: enclosures, fortifications, and monumental burials. Unlike intensified agricultural infrastructures, such as irrigation systems, they could be easily abandoned whenever social mechanisms allowed fissioned groups to reproduce themselves. Thus, competition and shifts in factional support, and contradictory interests between potential emerging elites and commoners would have undermined the particular interests of each group. These social dynamics were not only at work at Los Millares, but they occurred throughout Copper Age Iberia in different places and with different paces. By the time the aggregation at Los Millares was declining, another larger aggregation was emerging in the inlands of Andalusia at the site of Marroquies Bajos (Díaz-del-Río 2004a; Hornos et al. 1999). But all potentially leading lineages failed to consolidate stable political structures. Copper Age political dynamics were not a zero-sum game. Aggregation processes ended well before critical political and economic inequalities arose. The striking difference be-
between Copper and the subsequent Bronze Age societies are the material expression of the short-term success of these political strategies.

Acknowledgments

I would like to thank Maribel Martínez Navarrete, Ignacio Montero, Robert Chapman, Antonio Gilman and Leonardo García Sanjuán for commenting on previous versions of this chapter. I am especially grateful to Katina Lillios, for her comments and thorough editing.

Notes

1 Since the complete publication of earlier excavations at Los Millares in the 1960s (Almagro and Arribas 1963), it is ironic that one of the best—if not the best—funded long-term project in Spanish archaeology has only been published through interim reports. What follows is a review of the most relevant information available.

2 This is an oversimplification for the purpose of my introduction. As Martinez Navarrete highlights (1989: 366, n. 80), Almagro and Arribas' opinion is unclear, shifting from a defense of Los Millares as lacking authority to suggesting the existence of some “kind of aristocracy” (Almagro and Arribas 1963: 46).

3 As noted by Gilman (2001: 71, n. 20) an increase in aridity happened sometime around the “fall” of Los Millares (c. 2500 BC).

4 Rappaport’s irritation coefficient (1968). A recent review of fission as an archaeological explanation can be found in Bandy (2004).

5 That is, in Eric Wolf’s terms (1999), transforming the control of contexts of social interaction (tactical power) into the capacity to allocate social labor within these contexts (structural power).

6 These are: Los Millares, Las Pilas, Cerro de la Virgen, El Malagón, Almizaraque, Cabezo del Plomo and Campos (Aranda and Sánchez Romero 2005: 184, 186). It is not infrequent that scholars build their narratives over the presence of these sites, although their importance as “centers” is not always clear when their characteristics are detailed. Out of the seven listed, three are pretty small: Campos is a 0.02 ha enclosure, and Almizaraque and Cabezo del Plomo are around 0.3 ha each, the former without clear defense system (Delibes et al. 1986: 173). Considering the other four, Cerro de la Virgen is a 1.2 ha fortified site, although excavations have been too partial to document all the enclosed area; Las Pilas is certainly big, ranging to 5.5 ha, but only “partial remains of a wall” are known to exist (Aranda and Sánchez Romero 2005: 186); and El Malagón has 4 ha, although not too much has been excavated as to know if all was occupied at once during the Copper Age.

7 “We have encountered several methodological problems such as assessing settlement contemporaneity” (Maldonado 1995: 75, my translation). If these sites were dated around 2500 BC, they could then be a result of a fission process initiated at Los Millares, a pattern that has been observed at other Copper Age sites (Díaz-del-Río 2004b).

8 The biggest one, Loma de Huechar, is 1.6 ha, although most of them are smaller than 1 ha, as the 0.2 ha settlement of El Mojón (Cara and Rodríguez 1984: 69).
Molina et al. (2004: 152) insist on arguing against all evidence that Fort 1 is contemporaneous to the maximum extension of Los Millares, around 3000–2900 cal BC. The argument is based on the fact that the initial phase of Fort 1 has not been dated. But two samples from the oldest phase of the site, the “inner enclosure occupation deposits,” have been dated (Beta-125861 and Beta-125860), and their calibrated chronology falls sometime around 2500 cal BC, when only the “citadel” was occupied. While we await further absolute dates from the foundation layer of Fort 1, one would suspect that proving the contemporaneity of the entire Millaran complex was behind the already dated samples of the inner enclosure.

Some “forts” are the size of most houses found at the contemporary site of Cerro de la Virgen. Consequently, instead of “watchtowers,” they could be reasonably interpreted as houses (see fig. 4.5). Others have certain evidence that suggest corral functions. The interior of “Fort V” has coprolite remains (Molina et al. 2004: 144). This function fits the building’s scarce defensive conditions: a defender situated by any of the two symmetrical doorways would lack any view of the potential outside attacker (see Molina and Cámara 2005: 77).

But note the difference in the number of bones recovered: 9986 from 148 sq m at the “citadel,” 793 from 1832 sq m at Fort 1.

Five mapped in Molina et al. 1986, fig. 5; in some photographs one can count up to six (Molina and Cámara 2005: 73). Other areas for sure have grinding stones, as for example the three grinding stones that can be seen in one of the pictures of hut CE15 (Molina and Cámara 2005: 71), a flint arrowhead production area in a domestic context (Ramos Millán 1998). Although we lack quantitative information as to how many grinding stones were in fact recovered at Fort 1, we do know of similar and contemporary enclosures from undoubtedly less “complex” areas of Iberia where grinding stones were not unusual. For example, 248 grinding stone fragments (335 kg) were recovered in 10% of the 1 ha enclosure of Fuente de la Mora (Madrid), and 138 (115 kg) in 15% of the 0.3 ha enclosure of Gózquez (Díaz-del-Río 2004b: 115, table 1).

What follows can be a good case for comparison with, for example, Pueblo Bonito. It seems that similar “monumental” constructions have nevertheless very different building strategies and probably very different social dynamics behind the deployment of labor.

Whenever a different building event was located, the excavators highlighted it with a thicker black line.

For example, bastion XI is probably a house of a later phase (Arribas et al. 1979: 81) and bastion VIII may well have been there even before the wall was erected (idem: 80).

And openly false in some cases. For example, no projected bastions have been documented other than in Line I. Nevertheless, recreations of the site always present all defense lines with bastions. This, of course, makes the recreation look like a medieval city.

A kind of metaphor frequently used for European Neolithic causewayed enclosures.

These compounds are attached to the latest phase of Line I, and thus represent the latest phase excavated at the area. We lack information as to when these compounds begun in relation to the general abandonment process at the site. In any case, it is suggestive to think that they are at the end of the sequence, representing a similar change in household structure as the one documented at the Copper Age site of Marroquíes Bajos (Díaz-del-Río 2004a; Hornos et al. 1999). At this site, small individual houses organized around some kind of community areas, are followed by enclosed, probably extended family-household compounds.
For example, Navas et al. (2005: 93) say that “there is a high percentage of bovid in the first line” (17%), but Line II has 15%, something that seems to run against the hypothesis of elites living in the interior sector of this second enclosure, unless beef was preferred as a nutrient by the “lower classes.”

Some more bovid in Line I, wild species in Line II, pigs in Line III and sheep/goat in Line IV.

“All the stratigraphic phases maintain the same butchering and refuse patterns, sheep/goat tibiae and pork ribs dominate the sample throughout the whole life of the site” (Navas et al. 2005: 96, original in Spanish, my translation).

For a thorough history and analysis of the Millares cemetery see Chapman 1990: 178–95.

“There are no other tombs in the rest of the Andarax valley which contain grave goods of exotic materials, and only five contain copper objects” (Chapman 1990: 195).

References

