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Abstract— Robotic cloth manipulation is an increasingly
relevant area of research, challenging classic control algorithms
due to the deformable nature of cloth. While it is possible to
apply linear model predictive control to make the robot move
the cloth according to a given reference, this approach suffers
from a large dimensionality of the state-space representation of
the cloth models. To address this issue, in this work we study
the application of an input-output model predictive control
strategy, based on quadratic dynamic matrix control, to robotic
cloth manipulation. To account for uncertain disturbances
on the cloth’s motion, we further extend the algorithm with
suitable chance constraints. In extensive simulated experiments,
involving disturbances and obstacle avoidance, we show that
quadratic dynamic matrix control can be successfully applied in
different cloth manipulation scenarios, with significant gains in
optimization speed compared to standard model predictive con-
trol strategies. The experiments further demonstrate that the
closed-loop model used by quadratic dynamic matrix control
can be beneficial to the tracking accuracy, leading to improve-
ments over the standard predictive control strategy. Moreover,
a preliminary experiment on a real robot shows that quadratic
dynamic matrix control can indeed be employed in real settings.

I. INTRODUCTION

Robotic cloth manipulation is a challenging and increas-
ingly relevant area of research, and introduces novel prob-
lems, related to task learning [1]–[3], perception [4], dy-
namical system identification [5], [6], and benchmarking [7],
due to the deformable nature of cloth. When considering
cloth handling policies, dynamic strategies are particularly
effective, as they leverage the dynamics and inertia of the
cloth, being able to reach configurations outside the ma-
nipulator’s workspace [1]. However, most of the approaches
in the literature of dynamic cloth manipulation are tailored
to a specific task (e.g., cloth folding), and are data and
computationally intensive [8].

A more general framework, introduced by [9], considers
moving the cloth based on the desired trajectory of some
points of interest, such as the corners or the edges. A
surrogate analytical model of the cloth is defined, and the
cloth is controlled in real-time by means of model predictive
control (MPC) [10]. Due to the highly nonlinear nature of
the true cloth’s dynamics, traditional control techniques, such
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as static feedback laws, might fail [11]. Conversely, MPC
strategies are capable of retrieving dynamic feedback laws,
that are endowed with optimality properties w.r.t. suitable
figures of merit, and are subject to constraints that may stem
from an evolving environment.

In particular, [9] proposes to combine a standard Cartesian
controller of a bimanual robotic manipulator with the surro-
gate cloth model. This strategy yields a novel control pipeline
where the robot controls the cloth movement in closed-loop
by means of MPC, while the robot’s end-effectors are moved
with impedance control in the operational space [12]. In the
case study proposed in [9], the robot is holding the cloth
from its two upper corners, whose position is the input of the
cloth dynamical system, while a reference signal is specified
for the two lower corners, that serve as outputs. As we
will show in our experiments, decoupling the dynamics of
the cloth from that of the manipulator allows to counteract
disturbances, such as wind, that do not affect the manipulator
at all, but may alter the behavior of the garment significantly.
While these disturbances are likely to be absent in controlled
environments, they are the norm in domestic setups, in which
robotic cloth manipulation may be applied successfully.

The surrogate cloth model defined in [9], referred to
as control oriented model (COM), must give a proper
approximation of the cloth’s behavior, while being simple
enough to be used in an online optimization, as it is done
by MPC. Hence, [9] proposes to model the cloth with a
mesh of particles connected with linearized springs and
dampers, to be used in a linear MPC (LMPC) algorithm.
While effective in practice, this modeling choice allows for
arbitrarily stretching of the cloth. This fact underlines the
need for constraints on the displacement of the upper corners,
besides the ones on the mesh of the cloth, and both types of
constraints can be easily handled by an MPC strategy.

All the aforementioned advantages of LMPC come with
the burden of a computational cost related to solving an
optimization problem online. This downside is particularly
true for systems with a high dimensionality of the state-space
representation, such as the mesh-based cloth model previ-
ously described. For instance, given a 4× 4 mesh, the state
of the model, which includes the position and velocity of
each particle in the mesh, belongs to R96. One popular way
to deal with high-dimensional state-space representations in
the context of MPC is to use the so-called quadratic dynamic
matrix control (QDMC) [13]. In contrast to standard output-
feedback models, which require state estimation [14], QDMC
bypasses the state-space representation, by directly modeling
the system of interest with a discrete-time input-output
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Fig. 1. Schematic representation of the setup considered in our work. A
robot is grasping a piece of cloth (the green square in the picture) from its
upper corners, to follow a reference with the lower corners. The motion of
the cloth in space is perturbed by a possibly stochastic disturbance caused
by wind. The model for the cloth is represented w.r.t. a local cloth base,
shown in red. The black axes represent the world’s frame.

relationship. This model boosts the speed of the control
algorithm, making it viable for real-time requirements.

In this work, we investigate the use of QDMC in cloth ma-
nipulation. In addition to the standard deterministic QDMC
implementation, we propose a stochastic formulation of
QDMC, useful when the constraints stemming from the
environment are combined with uncertain disturbances, as
shown in Fig. 1. We consider time-variant uncertainty, in
contrast to prior work in stochastic QDMC that was focusing
on time-invariant uncertainty [15], [16]. While one way
to deal with uncertainty is by means of robust predictive
controllers [17], it is known that these approaches are often
too conservative, and degrade the overall performance by
considering unlikely scenarios with equal importance to
the most likely ones [15]. In our approach, we mimic
the derivations in chance-constrained MPC [18], where a
probabilistic model of the uncertainty (e.g., the probability
density function) is assumed to be known and used to derive
constraints holding with high probability.

The structure of this paper is as follows: In Section II, we
introduce the case study, and formalize the background of
our work. In Section III, we describe the proposed chance-
constrained QDMC formulation, while in Section IV we de-
tail the experimental setup and the results for the algorithms
used. Finally, the conclusions are reported in Section V

II. PROBLEM STATEMENT AND BACKGROUND

In this section, we introduce our case study, and report the
main background of our work.

A. Linear Model of the Cloth

In this work, we consider the following setup. A bimanual
robot is holding a square piece of cloth from the two
upper corners, and the position of the two lower corners is
measured. The goal is to move the cloth so that the lower
corners follow a reference trajectory. This setup results in a
multi-input-multi-output (MIMO) system modeling the cloth
behavior, where the inputs are u ∈ R6 and correspond to the
3-dimensional position of the upper corners of the piece of
cloth. Likewise, the outputs are y ∈ R6 and correspond to the

3-dimensional position of the lower corners of the piece of
cloth. The cloth is modeled as a mesh of P×P particles, and
the state of the system is given by the position and velocity
of each particle in the mesh, that is, χ ∈ RNx , where Nx =
6P 2. To retrieve a suitable state-space representation of the
COM, the complex, nonlinear dynamics of the cloth must
be linearized. This can be done as follows. Each particle in
the mesh is connected to the neighboring ones by structural
springs and a damper. This means that, at each time-step
in the execution of a task, each particle is subject to three
types of forces: the elastic force, the damping, and gravity.
The elastic force is a nonlinear function of the difference
between the nodes’ positions, i.e., a nonlinear function of
the states, as it depends on the Euclidean distance ∥ ·∥2. The
elastic term is linearized by replacing ∥·∥2 with ∥·∥1. Besides
this linearization, the elastic and damping terms are modified
so as to allow for different stiffness and damping constants
along each direction of the space. In this way, a linear state-
space representation is obtained and validated in [9].

Model Parameters: As described in [9], the spring-mass-
damper system can potentially stretch under its own weight.
To avoid this, we can set the initial length of the springs
to an offset in the vertical axis, so that the weight of the
particles is balanced by the actual elastic force. This initial
offset, together with the stiffness and damping values along
each Cartesian axis, are parameters to be tuned to obtain a
stable system given the chosen sampling time of 0.02 s.

B. Quadratic Dynamic Matrix Control

As it is clear from the previous subsection, the major
drawback of the linear cloth model is the high dimensionality
of its state, which is quadratic in the number of nodes in the
mesh. If a predictive controller with constraints is used, as
we shall see in Section IV, this complexity slows down the
optimization significantly, as the number of state constraints
grows quadratically in the mesh size. Thus, we propose to
design a QDMC algorithm for controlling the cloth, as we
detail in the sequel.

1) Finite-Step Response Model: As a start, we can in-
troduce a suitable finite-step response (FSR) model for our
linear system. It is known that the response of a discrete-time,
single-input-single-output (SISO) linear system, at time-step
k, can be obtained from the superposition of responses
to steps of varying amplitude, applied at subsequent time-
steps [13]. In the MIMO case, thanks to the superposition
principle, each output is obtained by summing up the re-
sponses due to every input. More formally, let Nu be the
number of inputs, Nss be the number of steps until the
outputs are in steady-state (also known as model length [15]),
Ny be the number of outputs. When considering cloth,
Nu = 6, Ny = 6. Moreover, as we will show in Section IV-
B, Nss = 500. Furthermore, let Sl

i,j be the l-th step response
coefficient from input i to output j. This coefficient is the
value, at time-step l, of the output j, when we observe a
unitary step in input i at time-step 0. Lastly, let yjss be the
steady-state value of output j, and ui

ss be the corresponding
input value on channel i. It can be shown that the outputs



are given by the expression [13]

yjk = yjss +

Nu∑
i=1

[
Nss−1∑
l=1

Sl
i,j∆ui

k−l + SNss
i,j (ui

k−Nss
− ui

ss)

]
,

(1)
for j ∈ {1, . . . , Ny}. Equation (1) indicates that the output
value at time-step k is the convolution of suitable response
coefficients and the input variations backwards in time. All
the input variations ∆u before time-step k −Nss affect the
current output by the same steady-state coefficient SNss

i,j .
Note that the FSR model assumes a stable system [15].

2) Calculation of the FSR Coefficients: The first key
challenge within the design of a QDMC strategy is the calcu-
lation of the aforementioned step response coefficients, when
dealing with nonlinear systems. One option would be to
directly approximate the nonlinear input-output relationship
with a linear function, identified by means of a least-squares
estimate [19]. However, as we have outlined in Section II-
A, a linear model for the cloth is available, and we can
use it to compute the coefficients. In order to compute the
coefficients, we firstly put the cloth at the equilibrium so that
no oscillations happen. Then, we apply a step variation in the
x, y and z coordinates of both the upper corners, and measure
all the outputs. The step coefficients are readily retrieved
from the ratio between the output and the input amplitudes.

3) Predictive Model: Once we have reached time-step
k of the simulation, the FSR model can be used to make
predictions of the output values. Linearity of the output
response w.r.t. the inputs allows us to decouple between the
effect of past inputs (i.e., applied until time-step k− 1), and
future inputs, which need to be determined by optimizing
a suitable risk function. The former output values are called
free response, and are the value of output j at time-step k+1
if no input variation happens at time-step k. We denote the
free response as f j

k+1|k. We can therefore define the one-
step-ahead predicted output j due to an input variation on
channel i as

ŷjk+1|k = S1
i,j∆ui

k + f j
k+1|k. (2)

Stacking the predicted outputs over the prediction horizon
Hp in the vector ŷj

k, the control actions over the control
horizon Hc in ∆ui

k, and the free response in f jk , the predic-
tion model generalizes to

ŷj
k = Si,j∆ui

k +Ψf jk . (3)

Usually, Hc ≪ Hp for stability [13]. A detailed explanation
on how to construct matrices Si,j and Ψ can be found in [15].

4) Model Mismatch Handling: QDMC accounts for mis-
matches in the prediction model. In particular, at time-
step k, the measured output j is denoted by yj,meas

k . The
current mismatch, d̃jk, is computed as the difference between
yj,meas
k and the predicted output after the last input has been

applied (at time-step k− 1), that is, f j
k|k. The disturbance is

assumed to be constant along the whole prediction horizon,
and summed to Ψf jk . Note that, when a new input is applied,
the free response must be updated with the FSR model [19].
The model mismatch is used by QDMC to close the loop

with measurements from the real system, while the nominal
dynamics associated to the COM are propagated recursively.
Note that the fact that the model mismatch error is kept con-
stant over the prediction window makes closed-loop QDMC
different from closed-loop LMPC. In the latter, the prediction
starts from the current measured state in an autoregressive
way, and therefore the error between the nominal and the
real state is propagated through the system’s dynamics.

5) Final Prediction Model: The predictions on the differ-
ent output channels, along with the control actions and the
free responses (with the model mismatch), can be stacked in
column vectors to obtain the following model, for a suitable
coefficient matrix S̃, as defined in [19]:

ỹk = S̃∆ũk + f̃k. (4)

6) Optimization Problem: Let r̃k be a vectorized
reference signal, i.e., a vector where the references for
the output channels have been stacked vertically. We can
use Equation (4) to compute the tracking error ek over a
prediction horizon Hp, that is,

ek = S̃∆ũk + f̃k − r̃k ∈ RNy·Hp . (5)

This output can be used to define a suitable risk to be
optimized online throughout the simulation, depending on
weighting factors Q̃ and R̃:

Rk = eTk Q̃ek +∆ũT
k R̃∆ũk. (6)

Let us now define a region for admissible input variations,
∆U, and a region of admissible outputs, ∆Y. The final
optimization problem that we solve is given by

min
∆ũk

Rk (7)

subject to ek = f̃k + S̃∆ũk − r̃k,

∆uk ∈ ∆U,
ỹk ∈ Y.

III. PROPOSED CHANCE-CONSTRAINED QDMC

In this section, we propose a stochastic QDMC (SQDMC)
formulation with chance constraints, by detailing how the
QDMC prediction model in Section II-B.3 can be extended
to include exogenous disturbances, and how the optimization
problem (7) can be modified to account for time-variant
uncertainty. As we will show in Section IV, this formulation
allows us to reject disturbances such as wind acting on the
cloth (thanks to the disturbance included in the prediction
model), and avoid obstacles with safety margins (thanks to
the proposed chance constraints). In particular, the chance
constraints allow to safely move apart from the obstacle,
with a confidence that is proportional to the aforementioned
uncertainty, quantified in terms of standard deviation of the
outputs of the cloth system.

A. QDMC with Disturbances

In order to embed the disturbance in the QDMC prediction
model, we can start by observing that the linear state-space
model described in Section II-A can be extended to include



the effect of the disturbances on the states. For a state vector
χ (position and velocity of the particles in the cloth mesh),
constant offset on the states χct, exogenous disturbance δk ∈
RNd , and a matrix Bδ ∈ RNx×Nd , we have that

χk+1 = Aχk +B∆uk + χct +Bδδk. (8)

The disturbance vector can be considered as a d-dimensional
non-controllable input. Thus, we need to find a suitable FSR
model for mapping every channel in δk to every output of
our MIMO system. Thanks to the linearity of the COM,
its output vector is given by the superposition (i.e., sum)
of the outputs due to ∆u and ∆δ. As before, let N be
the model length, Nu the number of input channels, and
Nd the number of disturbance channels, i.e., the number of
components in the disturbance vector. Output channel j at
time-step k, originally given by Equation (1), becomes

yjk = yjss +

Nu∑
i=1

[
N−1∑
l=1

Sl
i,j∆ui

k−l + SN
i,j(u

i
k−N − uss)

]
(9)

+

Nd∑
i=1

[
N−1∑
l=1

Dl
i,j∆δik−l +DN

i,j(δ
i
k−N − δss)

]
.

The new coefficients Dl
i,j can be obtained as we described

in Section II-B.2. In particular, we start at the equilibrium.
Setting all the other inputs to 0, we apply a step to each
of the disturbance components, measure the corresponding
output, and obtain the coefficients as the ratio between output
and input at every time-step l. We can group the disturbance
FSR coefficients from channel i to output channel j, over
Hp, as a square lower triangular matrix

Di,j =


D1

i,j , 0 . . . 0
D2

i,j , D1
i,j . . . 0

...
...

. . .
...

D
Hp

i,j D
Hp−1
i,j . . . D1

i,j

 ∈ RHp×Hp . (10)

Then, for a known disturbance profile on channel i defined by

∆δik = [∆δik|k, . . . ,∆δik+Hp−1|k]
T ∈ RHp , (11)

the prediction model is given by

ỹk = S̃∆ũk + f̃k +

 D1,1 . . . DNd,1
...

. . .
...

D1,Ny
. . . DNd,Ny


︸ ︷︷ ︸

:=D̃

 ∆δ1k
...

∆δNd

k


︸ ︷︷ ︸

:=∆δ̃k

.

(12)
The error to be used in the optimization problem (7) becomes

ek = f̃k + S̃∆ũk + D̃∆δ̃k − r̃k ∈ RNy·Hp . (13)

B. Stochastic Formulation

The disturbance profile in Equation (11) is often affected
by some degree of uncertainty. In particular, let us consider a
random Gaussian noise, ϵi, corrupting the disturbance chan-
nel i independently at every time-step. That is, the joint dis-
tribution of the noise over the whole simulation horizon T is
given by ϵi ∼ N (0,Σϵi), Σϵi = diag

(
σi
1
2
, σi

2
2
, . . . σi

T
2
)

.

When applying the predictive model in Equation (12), we
consider a slice of such disturbance vector, that is,

ϵik = [ϵik|k, . . . , ϵ
i
k+Hp−1|k]

T ∈ RHp , (14)

The FSR model in Equation (9) depends on the disturbance
variations (∆δ) at each time-step. When the disturbance is
affected by noise, we can introduce the variation vector

νi
k := ∆δik +∆ϵik ∈ RHp . (15)

Note that, for suitable selection matrices Nk and Ξk,

∆ϵik = ϵik − ϵik−1 = Nkϵ
i −Ξkϵ

i. (16)

Thus, νi
k is distributed as

νi
k ∼ N

{
∆δik, (Nk −Ξk)Σϵi (Nk −Ξk)

T
}
. (17)

Furthermore, let ∆δ̃k be as of Equation (12), and ν̃k be the
vector in which the νi

k have been stacked vertically, for all
channels. Its distribution is given by ν̃k ∼ N

(
∆δ̃k,Σν̃k

)
,

where the covariance matrix is block diagonal, and each
block is the covariance of a single νi

k, since we assume that
the noise on each disturbance channel is independent of the
others. Since the predicted output in Equation (12) is a linear
transformation of the noisy vector ν̃k, it is in turn a Gaussian
random variable with distribution

ỹk ∼ N (f̃k + S̃∆ũk + D̃∆δ̃k, D̃Σν̃kD̃
T ) ∼ N (µỹk

,Σỹk
).

(18)
The distribution of the predicted output can be used to
formulate a novel optimization problem accounting for
stochasticity. In particular, let E[·] denote the expectation
of a random variable, and Pr[·] the probability of an event.
Then, Equation (7) becomes

min
∆ũk

E [Rk] (19)

subject to ek = µỹk
− r̃k,

∆uk ∈ ∆U,
Pr [ỹk ∈ Y] > 1− α,

α > 0.

The risk Rk contains a quadratic form in the random
variable ỹ. Let Tr[·] be the matrix trace operator. Linearity
of the expectation leads to the well-known result [20]

E [Rk] = Tr
[
Q̃Σỹk

]
+ eTk Q̃ek +∆ũT

k R̃∆ũk. (20)

The first addendum can be dropped from the risk since it is
independent of ∆ũk.

C. Chance Constraints

The problem in (19) includes probabilistic constraints that
can be converted into deterministic ones to be implemented
within the controller. Since the predicted output is a Gaussian
random vector, we can leverage a concentration bound to
retrieve a deterministic constraint on ỹ. In particular, let
us assume that the set Y is given by the outputs satisfying



Fig. 2. The tool used in our real-world experiments. To resemble it, the
distance between the upper corners in our simulation is fixed.

ỹmin ≤ ỹk ≤ ỹmax. For a suitable matrix H and vector h,
this constraint can be rewritten as

Hỹk ≤ h. (21)

This inequality results in a set of 2NyHp constraints that
must hold simultaneously. We can now follow the derivations
in [21]. In particular, let Hm be the m-th row of H, and hm

the corresponding upper bound. By using the union bound,
for α ∈ (0, 1], we can readily observe that

Pr[Hỹk ≤ h] = Pr

2NyHp∧
m=1

Hmỹk ≤ hm

 (22)

≥ 1−
2NyHp∑
m=1

Pr [Hmỹk ≥ hm] (23)

≥ 1− α, (24)

provided that

Pr [Hmỹk ≥ hm] ≤ α/ (2NyHp) , ∀m ∈ {1, . . . , 2NyHp}.
(25)

This condition is the well-known uniform risk allocation
policy, i.e., enforcing that the bounds on the probabilities
of violating each constraint are equal [22]. Now, let
Φ(·) be the cumulative densitive function of the standard
Gaussian distribution. Therefore, as shown in [21],
after standardization, the individual constraints given by
Equation 25 are fulfilled if and only if

Hmỹk ≤ hm − Φ−1 [1− α/ (2NyHp)] Σ̃
1/2
Hmỹk

. (26)

IV. EXPERIMENTS

In this section, we will show the experimental results of
the application of QDMC to the task of cloth manipulation.
After some preliminary definitions and tuning, we show
two experiments that benchmark LMPC, QDMC, and their
stochastic counterparts. After these simulations, we show a
preliminary experiment on a real robot that indicates that
QDMC is a feasible control algorithm in practice. All the
simulated experiments were performed on a custom laptop
(MacBook Pro 2019), and were implemented in Matlab,
with the CasADi library for optimization and the IPOPT
solver. The real-world experiment uses ROS and a 7-DOF
Barrett WAM manipulator1. We refer the interested reader

1The code for simulations, the trajectories used, and the ROS
nodes are available at https://github.com/caedoard/
qdmc-cloth-manipulation.

to [9] for an extensive and detailed empirical evaluation of
the linear state-space representation of the cloth, the LMPC
baseline, and its implementation, as used here.

A. Preliminary Definitions and Parameter Tuning

We start by introducing some definitions and parameter
tuning related to our experiments.

1) Additional Constraints and Local Cloth Base: To avoid
potential synchronization errors in a real-world bimanual
setup, we instead used a single manipulator with an end-
effector with two linked grasp points, as shown in Fig. 2, in
all of our experiments. This end-effector introduced an ad-
ditional constraint in the optimization problem (the distance
between the two upper corners of the cloth must be con-
stant), turning it into a quadratically constrained quadratic
programming problem [23]. In practice, this modification
did not slow down the optimization excessively, as already
discussed in [9]. Moreover, in order to account for different
cloth orientations w.r.t. the world’s frame, a local cloth base
for the COM was used, as introduced in [9].

2) Simulation-Oriented Model: Besides the COM, a
simulation-based MPC algorithm requires the usage of a
simulation-oriented model (SOM), which is as complex as
possible, to mimic the behavior of the real-world system.
In our case, we choose as SOM the mesh-based system
presented in [5], which is treated as a black-box to get
the measurements of the cloth outputs and close the output
feedback loop. Note that no knowledge of the internal state-
space representation of the SOM is needed in the design of
QDMC. The COM is a 4×4 mesh, while the SOM is 7×7.

3) FSR coefficients: As outlined in Section II-B, QDMC
requires to compute the step-response coefficients Sl

i,j and
Dl

i,j of the linear cloth system, over a time window of
[0, Nss]. To guarantee that the system is in steady-state
regime, we choose Nss = 500. We report in Fig. 3 some
illustrative examples for the FSR coefficients obtained with
the methodology described in Section II-B.2.

4) Disturbance Model: When performing our experi-
ments, we consider wind as a disturbance, which is often
overlooked in standard robotic tasks, but is important in
cloth manipulation. Wind is modeled as a 3-dimensional
vector, representing the force exerted on each particle of the
cloth’s mesh in the Cartesian space. Let vwind ∈ R3 be the
wind speed along each axis, Acloth be the area of the cloth’s
surface, and ρa be the air density. The overall wind force
exerted on the cloth’s surface is

Fwind = 1/2ρaAclothv
2
wind. (27)

Note that we assume that the wind force vector is the same
for all the points in the mesh, except for the upper corners,
which are grasped by the manipulator. All particles are
subject to an additive acceleration that can be readily fit in
the state-space model of Equation (8). As we will detail in
the next subsection, the wind force is corrupted by i.i.d.,
zero-mean Gaussian noise.

https://github.com/caedoard/qdmc-cloth-manipulation
https://github.com/caedoard/qdmc-cloth-manipulation


Fig. 3. Illustrative values of the FSR coefficients Si,j and Di,j . Input and disturbance channels are numbered increasingly from the x coordinates of left
(resp. right) upper corner. By input channel and disturbance channel we denote the entries of the input vector and of the disturbance vector. The outputs
are numbered accordingly. In all these cases, the system is stable, making QDMC a viable control algorithm.

Fig. 4. Runtime vs. the tracking error of both LMPC and QDMC, on a
sample trajectory, with different control horizons Hc and a fixed prediction
horizon Hp = 25 observations. As expected, QDMC is much faster than
LMPC.

5) Key Performance Indicators: In order to quantitatively
evaluate the performance of the control algorithms, we
can consider the following two key performance indicators
(KPIs). Since we are interested in tracking the output of the
cloth system, we can consider the absolute tracking error
E, averaged over the whole time horizon T and the number
of outputs. While the main goal of the control algorithm is
to provide a proper tracking of the reference trajectory, it is
also important to consider the time taken to run the MPC
simulations. Hence, we also consider the average runtime
per iteration across the simulation (Titer)2.

6) Tuning the QDMC Control Horizon: Having defined
suitable KPIs, we can now move on to consider two of the
parameters of the QDMC algorithm, namely the control hori-
zon, Hc, and the prediction horizon, Hp, introduced in Sec-
tion II. As described in [13], QDMC benefits from a shorter
control horizon than Hp, which is fixed to 25 observations.
This is confirmed by the results in Fig. 4, where we observe
that the control horizon can be reduced significantly, with no
loss in the tracking accuracy, up to the minimum considered
of 13 observations. One might argue that we could, in princi-
ple, shrink the control horizon of LMPC as well. While this
is not a conventional operation for standard LMPC, it would
be beneficial for the running time, as fewer optimization
variables are used. However, if the control horizon of LMPC

2Note that in our simulations the optimization step freezes the execution
of the code, i.e., the program waits for the optimization problem to be solved
before updating the state of the SOM. On the other hand, one could also
consider as KPI the number of successfully completed optimization steps
in the timespan [0, T ], if the implementation is asynchronous and the state
of the SOM is updated independently of the optimization being completed
or not (i.e., with a default control policy in the latter case). This KPI would
be higher (better) for QDMC, as it is faster in solving the optimization
problem. Conversely, in the real-robot experiment, the control algorithm
does not freeze, to make the algorithms physically implementable.

TABLE I
MEAN TRACKING ERROR E , AND RUNTIME PER ITERATION Titer , WITH

STANDARD DEVIATION, EVALUATED ON 10 TRAJECTORIES WITHOUT

DISTURBANCES, FOR LMPC, QDMC, AND A MODEL-FREE BASELINE.

NoMDL LMPC QDMC
E [mm] 3.19± 1.19 2.96± 0.90 1.83± 0.85
Titer [ms] − 13.79± 0.98 5.97± 0.14

TABLE II
MEAN TRACKING ERROR E , AND RUNTIME PER ITERATION Titer , WITH

STANDARD DEVIATION, EVALUATED ON AN OBSTACLE AVOIDANCE

TASK WITH A STOCHASTIC WIND DISTURBANCE. 10 DIFFERENT NOISY

REALIZATIONS ARE CONSIDERED, AND α = 0.1.

NoMDL SLMPC SQDMC
E [mm] 15.57± 0.50 11.01± 0.42 10.50± 1.37
Titer[ms] − 33.14± 1.46 23.14± 1.12

is reduced, there is no clear benefit in the tracking error, as
shown in Fig. 4. Thus, the control horizon of LMPC is set
equal to Hp, as it is usually done in the literature.

B. Simulated Experiments

With the setup described before, we can now consider the
KPIs of our QDMC implementation and LMPC on different
simulated scenarios.

a) Simulated Trajectories without Disturbances: As
a start, we can test both LMPC and QDMC (in their
deterministic version) on a set of 10 different trajectories
involving different speeds, durations, and orientations of the
cloth w.r.t. the world’s frame. Table I reports the mean
KPIs for this first experiment, with standard deviation. The
algorithms are also benchmarked with a simple baseline
(NoMDL), in which the cloth model is ignored and the upper
corners move following the reference of the lower corners.
Our QDMC implementation exhibits a running-time that is
roughly 43% of the LMPC’s one. Furthermore, the tracking
error is roughly 61% of the benchmark. Moreover, the model-
free baseline exhibits a worse performance. An illustrative
tracking result is shown in Fig. 5.

b) Chance Constraints and Obstacle Avoidance: As
a second experiment, we can benchmark our chance-
constrained SQDMC and the standard stochastic LMPC
(SLMPC) [18] in presence of a noisy wind disturbance on



Fig. 5. The tracking obtained by QDMC on one of the considered simulated motions. QDMC is able to accomplish both slow (e.g., between 0 s and 4
s) and fast movements o the cloth (e.g., between 8 s and 10 s).

Fig. 6. View from above of our simulated obstacle avoidance setup. The
bounding box of the obstacle is represented by the blue square. The plots
also shows the reference signals for the lower corners, along with the two
lines separating the different constraints used (black dashed).

Fig. 7. View from above of the trajectory performed in the obstacle
avoidance task by the right lower corner of the cloth, for various values of
constraint violation probability α. As this parameter increases, the trajectory
performed moves further from the obstacle. We further show the reference
signal (black dashed) and the trajectory we would obtain without chance
constraints (i.e., with QDMC instead of SQDMC). As expected, this gets
very close to the obstacle.

the cloth. In order to test the proposed chance constraint
formulation for SQDMC, we compare the algorithms on the
task of obstacle avoidance. The robot is required to move
the piece of cloth around an obstacle, without touching it.
The obstacle is represented as a cube imposing a constraint
in the x-y plane, as shown in Fig. 6. Note that the plane is
split into three regions, each one corresponding to a different
linear inequality. The nominal wind speed is a Gaussian
curve peaking at −2.4 m/s on the y axis, and 0.8 m/s on the x
axis, at 5 s, and is assumed to be known. Moreover, the noise
standard deviation is 0.07 N. As we discussed in Section III-
C, a chance constraint reshapes the original constraint by
an amount that depends on the noise variance, based on
the desired constraint violation probability α, defined in
Section III-C. As expected, tuning this parameter has the
effect of moving the cloth far from the obstacle, as we can
appreciate from Fig. 7. Moreover, for a fixed value of α,

TABLE III
AVERAGE TRACKING ERROR E , AND RUNTIME PER ITERATION Titer ,

EVALUATED IN A REAL-WORLD EXPERIMENTS.

E [mm] Titer [ms]
LMPC 33.72 15.23
QDMC 32.30 10.89

Table II shows the mean and standard deviation of the KPIs
across 10 noisy realizations of the disturbance profiles. The
presence of the obstacle constraint significantly slows down
the algorithms, nonetheless, SQDMC is much faster than
SLMPC. The performance of NoMDL is poor due to the
fact that the dynamics of the cloth (and therefore the effect
of wind) are not taken into consideration.

C. Real-Robot Tracking

Besides testing our algorithm in simulation, we propose
a preliminary implementation on a real manipulator that
indicates that our QDMC controller can be ported to the
real world. For the real-world implementation, we performed
some slight modifications to the setup presented in the
simulation part. In particular, to favor slower responses from
the controller (needed for safety reasons) we reduced the
prediction horizon to 20 observations, both for LMPC and
QDMC. The feedback on the state of the cloth was measured
with a Kinect camera and processed by a black-box vision
node 3. The experiment consists of running both LMPC and
QDMC on the aforementioned setup, on a trajectory without
wind. A visualization of the tracking for the right lower
corner is shown in Fig. 8, while the KPIs for all outputs are
reported in Table III. While the tracking errors for LMPC
and QDMC are similar, QDMC allows to perform smoother
trajectories than LMPC, as shown in Fig. 8. Moreover, this
real-robot experiment confirms that QDMC is much faster
than LMPC in solving the associated optimization problem.

V. CONCLUSION

In this work, we have studied the application of quadratic
dynamic matrix control to dynamic cloth manipulation.
Furthermore, we have introduced a suitable stochastic
formulation of such a control algorithm, which is effective

3The code of this ROS node is available at https://github.com/
miguelard/cloth_point_cloud_segmentation.

https://github.com/miguelard/cloth_point_cloud_segmentation
https://github.com/miguelard/cloth_point_cloud_segmentation


Fig. 8. The real-robot results of QDMC and LMPC on a reference trajectory for the right and left lower corners of the cloth. The reference is shown in
black dashed in the picture.

in presence of disturbances corrupted by time-variant
noise. Our approach has been shown to be successful in
simulation, and a viable option for real-robot control. While
the main focus of this work was on offering a showcase
of the potentialities of dynamic matrix control applied
to cloth manipulation, it constitutes the starting point of
interesting future research. In particular, the joint effects of
prediction horizon, control horizon and controller gains on
disturbance rejection can be studied in depth in a sensitivity
analysis, similar to [9]. Moreover, the vision feedback can
be closed with a new vision node, specifically designed for
tracking the lower corners of the cloth. This extension will
allow to test the behavior of the proposed controller under
disturbances in the real setup, potentially validating the solid
performance shown in simulation. Lastly, the predictive
controller can be enhanced with a fast learning module,
such as the kernel-based approach discussed in [24], to infer
and predict the disturbance profile directly from data.
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