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ABSTRACT
Iron is required for the replication and growth of almost all bacterial species and in the production 
of myelin and neurotransmitters. Increasing clinical studies evidence that the gut microbiota plays 
a critical role in iron metabolism and cognition. However, the understanding of the complex iron- 
microbiome-cognition crosstalk remains elusive. In a recent study in the Aging Imageomics cohort 
(n = 1,030), we identified a positive association of serum ferritin (SF) with executive function (EF) as 
inferred from the semantic verbal fluency (SVF,) the total digit span (TDS) and the phonemic verbal 
fluency tests (PVF). Here, we explored the potential mechanisms by analyzing the gut microbiome 
and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. 
Different bacterial species belonging to the Proteobacteria phylum (Klebsiella pneumoniae, 
Klebsiella michiganensis, Unclassified Escherichia) were negatively associated both with SF and 
executive function. At the functional level, an enrichment of microbial pathways involved in 
phenylalanine, arginine, and proline metabolism was identified. Consistently, phenylacetylgluta-
mine, a metabolite derived from microbial catabolism of phenylalanine, was negatively associated 
with SF, EF, and semantic memory. Other metabolites such as ureidobutyric acid and 19,20- 
DiHDPA, a DHA-derived oxylipin, were also consistently and negatively associated with SF, EF, 
and semantic memory, while plasma eicosapentaenoic acid was positively associated. The associa-
tions of SF with cognition could be mediated by the gut microbiome through microbial-derived 
metabolites.
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Introduction

Iron is required for the replication and growth of 
almost all bacterial species. Approximately 5–20% of 
the iron is absorbed in the duodenum, and 80% of 
the iron ingested is used by the gut microbiota, 
mainly in the colon.1 The gut microbiota uses iron 
as a cofactor in proteins involved in metabolic path-
ways critical for its survival such as short-chain fatty 

acids production, DNA synthesis, redox reactions, 
and electron transport chain.1 In iron-deficient 
environments, the abundance of some bacterial spe-
cies (Roseburia spp./Eubacterium rectale) decreases, 
while members of the Enterobacteriaceae (E. coli, 
Salmonella and Klebsiella pneumoniae) and 
Lactobacillaceae families increase. Conversely, iron- 
rich

CONTACT José-Manuel Fernández-Real jmfreal@idibgi.org; Jordi Mayneris-Perxachs jmayneris@idibgi.org Department of Diabetes, Endocrinology 
and Nutrition, Dr. Josep Trueta University Hospital, Avinguda de França s/n, Girona 17007, Spain

Supplemental data for this article can be accessed online at https://doi.org/10.1080/19490976.2023.2290318

GUT MICROBES                                              
2023, VOL. 15, NO. 2, 2290318 
https://doi.org/10.1080/19490976.2023.2290318

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0002-7442-9323
http://orcid.org/0000-0003-3788-3815
https://doi.org/10.1080/19490976.2023.2290318
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2023.2290318&domain=pdf&date_stamp=2023-12-07


environments lead to decreased relative abundance 
of Bifidobacterium spp. and raised Enterobacteria/ 
Lactobacilli ratio due to enhanced growth of the 
Escherichia/Shigella genus.1 The presence of intricate 
adaptive mechanisms, such as the secretion of mod-
ified forms of the siderophore enterobactin, empow-
ers members of the Enterobacteriaceae family to 
thrive and proliferate not only in iron-deficient but 
also in iron-rich environments.1

Iron is also involved in the production of myelin 
and neurotransmitter synthesis in the central ner-
vous system.2 It has been proposed that serum 
ferritin (SF) can transport iron into cells, constitut-
ing the main pathway of iron supply to oligoden-
drocytes for myelin production.3 In fact, in a recent 
study in young adults, higher levels of SF were 
found to be associated with enhanced working 
memory.4

There is an increased awareness that the gut 
microbiota plays a critical role in iron metabolism 
and cognition and recent observations linked 
impaired executive function (EF) to gut microbiota 
composition.5,6 To our knowledge, the potential 
relationships among SF, cognition, and gut micro-
biota composition and functionality in the elderly 
have not been explored.

In a recent study, we identified that higher levels 
of SF were associated with an enhanced EF and 
semantic memory (SM) in the Aging Imageomics 
cohort (n = 1,030). Therefore, our aim was to char-
acterize the metagenomic and metabolomic pro-
files associated with SF, EF, and SM in the same 
cohort (Aging Imageomics). This study would be 
the first to analyze the microbiome-gut-brain-SF 
axis.

Results

We first assessed the relationships of microbial com-
position and SF in a discovery cohort (Aging 
Imageomics; n = 1,030). The subjects’ clinical fea-
tures are shown in (Table 1). We identified 77 
(Padj <0.1) species associated with SF in the entire 
cohort (Figure 1a, Table S1).

SF was negatively associated with species belonging 
to the Proteobacteria phylum (Klebsiella michiganen-
sis, Klebsiella quasipneumoniae, Shigella sonnei, 
Unclassified Klebsiella,) and the Streptococcus genera 

(Streptococcus sanguinis, Streptococcus salivarius, 
Streptococcus oralis) (Figure 1a, Table S1).

We then explored the gut microbiota composi-
tion in relation to EF (Table S2, Table S3). Again, 
species from the Proteobacteria phylum (Klebsiella 
michiganensis, Shigella sonnei, Klebsiella pneumo-
niae, Unclassified Enterobacter, Unclassified 
Enterobacteriaceae, Unclassified Raoultella) were 
significantly and negatively associated with both SF 
and TDS score (Figure 1b). Another species of the 
Proteobacteria phylum (Klebsiella michiganensis, 
Shigella sonnei, Klebsiella pneumoniae, Unclassified 
Enterobacter, Unclassified Klebsiella, Unclassified 
Enterobacteriaceae,) were negatively associated 
with SF and PVF (Figure 1c).

When we stratified the population according to 
sex, we identified 53 species associated with SF in 
men (Padj <0.1) (Figure 1d, Table S4). As in the 
whole population, several bacteria belonging to the 
Proteobacteria phylum (Klebsiella pneumoniae, 
Klebsiella michiganensis, Klebsiella quasipneumo-
niae, Unclassified Escherichia,) were negatively 
associated with SF (Figure 1d, Table S4). Species 
from the phyla Proteobacteria were strongly nega-
tively associated with both SF and TDS (Figure 1e).

Table 1. Clinical and neuropsychological data of the Aging 
Imageomics cohort.

Characteristics
Total population 

(n = 1,030)

Age (years) 67,05 ± 7,38
Females n (%)/Males n (%) 473 (45,9)/557 (54,1)
Education (years) 8 [8–12]
BMI (kg/m2) 27,55 [24,85–30,12]
Waist (cm) 99 [91–107]
PVF (score) 12 [9–15]
SVF (score) 16 [13–20]
TDS (score) 12 [10–14]
PHQ9 (score) 3 [1–6]
FPG (mg/dL) 102,0 [94,0–121,0]
HbA1c (%) 5,7 [5,5–6,2]
Fasting Insulin (mU/L) 8,7 [6,1–12,4]
HOMA-IR 2,32 [1,48–3,58]
Serum creatinine (mg/dL) 0,84 [0,71–0,97]
Serum urate (mg/dL) 5,4 [4,5–6,4]
Total cholesterol (mg/dL) 195,7 ± 35,04
HDL-C (mg/dL) 50 [42–61]
LDL-C (mg/dL) 118,76 ± 31,18
Fasting triglycerides (mg/dL) 105,0 [77,5–146,0]
Hemoglobin (g/dL) 14,4 [13,5–15,3]
Serum ferritin (ng/ml) 115,0 [58,0–209,5]

Results are expressed as number and frequencies for categorical variables, 
mean and standard deviation (SD) for normal distributed continuous vari-
ables and median and interquartile range [IQ] for non-normal distributed 
continuous variables. BMI, body mass index; PVF, phonemic Verbal Fluency; 
SVF, Semantic verbal fluency; FPG, fasting plasma glucose; HbA1c, glycated 
hemoglobin; HOMA-IR, homeostasis model assessment of insulin resis-
tance; HDL-C, high density lipoprotein cholesterol; LDL-C low-density lipo-
protein-cholesterol.
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Figure 1. Association of the gut microbiota composition with serum ferritin and executive function in the entire cohort and in men. 
(a-c) Volcano plots of the gut microbiota associated (p adjusted < 0.05) with serum ferritin (a), TDS (b), and PVF (c) in the entire cohort 
as calculated by ANCOM-BC from shotgun metagenomic sequencing, adjusting all three models for age, BMI, and sex; and for years of 
education in TDS, and PVF models. Only the microbial species associated with serum ferritin, TDS (b) and serum ferritin, and PVF (c) are 
shown. (d-f) Volcano plots of the gut microbiota associated (p adjusted < 0.05) with serum ferritin (d), TDS (e), and PVF (f) in men as 
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Similarly, species from the phylum Proteobacteria 
were negatively associated with SF and PVF 
(Figure 1f).

Next, we identified 49 species associated with SF 
in women (Table S5). In contrast to the observa-
tions in men, species belonging to Firmicutes 
(Veillonella atypica, Veillonella parvula, 
Veillonella tobetsuensis, and Streptococcus gordonii) 
were negatively associated with SF. Furthermore, 
species belonging to the phylum Firmicutes 
(Blautia producta, Lactobacillus ruminis, 
Lachnospiraceae bacterium), Bacteroidetes 
(Bacteroidetes mediterraneensis, Bacteroidetes acid-
ifaciens), and Uroviricota (CrAssphage LMMB, 
CrAssphage ZA) were negatively associated with 
both SF and TDS (Figure 2).

To further assess the potential effects of the gut 
microbiome on SF and cognition, we performed 
functional analyses by mapping reads to KEGG 
orthologues. We identified microbiome molecular 
functions associated with SF after adjusting for age, 
sex, BMI, and years of education. We identified 
1384 microbial functions (Padj <0.1) associated 
with SF, 832 with PVF, and 494 with TDS in the 
entire cohort, respectively (Figure 3a-c, Table S6– 
8). In men we identified 1180 microbial genes 
associated with SF, 829 with PVF, and 1282 with 
TDS, respectively (Figure 4, Table S9–11). We 
identified 296 microbial genes associated with SF, 
and 175 with PVF, respectively in women 
(Figure 5, Table S12–13).

To obtain insights into the microbial pathways 
involved in these associations, we performed 
a pathway overrepresentation analysis of the 
KEGG orthologues associated with SF and PVF. 
Both in the entire cohort and in men, we identified 
a significant enrichment of pathways involved in 
phenylalanine, arginine, and proline metabolism 
(Figure 3de). Other significant pathways included 
the Geraniol degradation, the Biosynthesis of side-
rophore group nonribosomal peptides, and 
Glycolysis/Gluconeogenesis in men (Figure 3e). 

Additionally, a gene-concept network was per-
formed to represent the linkage between significant 
KEGG orthologues involved in KEGG pathways 
associated with SF and PVF in the entire cohort 
(Figure 3f), in men (Figure 4) and in women 
(Figure S5).

Next, we analyzed the plasma metabolic profiles 
by HPLC-ESI-MS/MS and applied a machine 
learning variable selection strategy to identify 
metabolic signatures associated with SF 
(Figure 6a). After calculation of SHAP value, we 
found that SF was strongly associated with meta-
bolites derived from the microbial catabolism of 
aromatic amino acids such as tryptophan 
(Indolylacryloylglycine, Indolealdehyde, Indole 
acetaldeyde, Indole lactic acid) and tyrosine (cre-
sol), and with LysoPI (20:5) (Figure 6b). In the 
negative mode, we found strong negative associa-
tions of SF with phenylacetylglutamine, derived 
from the microbial catabolism of phenylalanine 
(Figure 6c); and positive associations of SF with 
phosphatidylcholine plasmalogen (PC(P-36:3)) 
and Eicosapentaenoic acid (EPA). Similar results 
were found in the case of men (Figure 7). Of the 
metabolites associated with SF in the positive 
mode, only sphingomyelin species SM(d36:2) had 
positive associations with SVF and TDS, while 
Ubiquinone-2 had negative associations with the 
three tests (Figure 6e). Notably, EPA had strong 
positive associations with PVF, FVS, and TDS, 
while phenylacetylglutamine and ureidoisobutyric 
acid were strongly negatively associated with PVF, 
FVS, and TDS . In women, the results were differ-
ent from those obtained in the entire cohort and in 
men. We found that SF was negatively associated 
with proline, linoleyl carnitine, and phosphatidyli-
nositol phosphate (PIP (36:4)), among others, 
while it was positively associated with EPA, sphin-
gomyelin(d36:2), and hydroxybutyric acid. PIP 
(36:4) had a strong negative association with PVF, 
FVS, and TDS, while linoleyl carnitine only with 
PVF and TDS (Figure 8).

calculated by ANCOM-BC from shotgun metagenomic sequencing, adjusting for age and BMI (serum ferritin, TDS, and PVF), and years 
of education (TDS, and PVF). Only the microbial species associated with serum ferritin and TDS (e) and SF and PVF (f) are shown. The 
log2 fold change of the association with a unit change in the ANCOM-BC-transformed variable values and the log10 p values adjusted 
for multiple comparisons using a sequential goodness of fit were plotted for each taxon. Significantly different taxa are colored 
according to phylum. TDS, total digit span; PVF, phonemic verbal fluency; BMI, body mass index.
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Finally, we also found positive associations of SF 
with several bacterial species belonging to the 
Firmicutes phylum (Phascolarctobacterium succi-
natutens, Coprococcus comes, and Lactobacillus 
rhamnosus) and with Collinsella tanakaei 
(Actinobacteria phylum) and Bacteroides stercoris 
(Bacteroidetes phylum). Similarly, in men, SF was 
positively associated with species belonging to the 
Firmicutes phylum such as Provencibacterium mas-
siliensis, Blautia hansenii, Fournierella massiliensis, 
and Lactobacillus rhamnosus, Bacteroides stercoris 

(Bacteroidetes phylum) and Collinsella tanakaei 
(Actinobacteria phylum) (Figure 1). However, all 
these positive associations were not observed 
regarding cognitive test scores.

Discussion

Ferritin exists in both intracellular and extra-
cellular compartments and has a major role in 
iron storage. Although extracellular ferritin or 
SF is poor in iron (compared to intracellular

Figure 2. Association of the gut microbiota composition with serum ferritin and executive function in women. (a-c) Volcano plots of 
the gut microbiota associated (p adjusted < 0.05) with serum ferritin (a), TDS (b), and PVF (c) in women as calculated by ANCOM-BC 
from shotgun metagenomic sequencing, adjusting all three models for age and BMI; and for years of education in TDS, and PVF 
models. Only the microbial species associated with serum ferritin, TDS (b) and serum ferritin, and PVF (c) are shown. The log2 fold 
change of the association with a unit change in the ANCOM-BC-transformed variable values and the log10 p values adjusted for 
multiple comparisons using a sequential goodness of fit were plotted for each taxon. Significantly different taxa are colored according 
to phylum. TDS, total digit span; PVF, phonemic verbal fluency; BMI, body mass index.
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Figure 3. Association of serum ferritin and executive function with bacterial functionality in the Aging Imageomics cohort. (a-c) volcano 
plots of microbiome molecular functions associated (p adjusted < 0.05) with serum ferritin (a), PVF (b), and TDS (c) as calculated by 
ANCOM-BC from shotgun metagenomic sequencing, adjusting all three models for age, BMI, and sex; and for years of education in TDS, 
and PVF models. The log2 fold change of the association with a unit change in the ANCOM-BC-transformed variable values and the log10 
p values adjusted for multiple comparisons using a sequential goodness of fit were plotted for each microbiome function. Significantly 
associated genes are colored in green (upregulated) or red (downregulated). d-e) Barplot plot of the KEGG pathway over-representation 
analyses (q value < 0.1) mapping the KEGG orthologues significantly associated with serum ferritin and PVF in the entire cohort (d) and in 
men (e). f) Gene-concept network depicting the linkage of significant KEGG orthologues participating in KEGG pathways related to 
lipopolysaccharide biosynthesis, sulfur relay system, and phenylalanine, arginine, and proline metabolism for serum ferritin and PVF in 
the entire cohort. TDS, total digit span; PVF, phonemic verbal fluency; BMI, body mass index.
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ferritin), it could be crucial in iron transport to 
oligodendrocytes for the synthesis of myelin.7,8 

Our study examined metagenomic and metabo-
lomic profiles associated with SF, SM, and EF.

In line with previous observations in which 
iron-deficient environments led to increased 

species of the Enterobacteriaceae and 
Lactobacillaceae families, higher SF levels were 
associated with a decrease in species belonging 
to the Proteobacteria phylum (Klebsiella pneumo-
niae, Klebsiella michiganensis, Klebsiella quasip-
neumoniae, Unclassified Escherichia). Of note,

Figure 4. Association of serum ferritin and executive function with bacterial functionality in men. (a-c) Volcano plots of microbiome 
molecular functions associated (p adjusted < 0.05) with serum ferritin (a), PVF (b), and TDS (c) in men as calculated by ANCOM-BC from 
shotgun metagenomic sequencing, adjusting all three models for age and BMI; and for years of education in TDS, and PVF models. The 
log2 fold change of the association with a unit change in the ANCOM-BC-transformed variable values and the log10 p values adjusted 
for multiple comparisons using a sequential goodness of fit were plotted for each microbiome function. Significantly associated genes 
are colored in green (upregulated) or red (downregulated). d) Gene-concept network depicting the linkage of significant KEGG 
orthologues participating in KEGG pathways related to Glycolysis/Gluconeogenesis, biosynthesis of siderophore group nonribosomal 
peptides, geraniol degradation and phenylalanine, arginine, and proline metabolism for serum ferritin and PVF. TDS, total digit span; 
PVF, phonemic verbal fluency; BMI, body mass index.

GUT MICROBES 7



these same bacteria were also associated with 
worse scores in the EF tests (PVF and TDS). In 
humans with cognitive impairment in the context 
of systemic amyloidosis, an increased abundance 
of Escherichia/Shigella and proinflammatory 
cytokines (IL-6, CXCL2, NLRP3, and IL-1β) 
have been reported.9 Also, in line with current 
results, a study of 116 subjects negatively asso-
ciated species belonging to the Proteobacteria 
phylum with memory and EF tests.5

We also observed relationships between micro-
bial functionality, SF, and EF. We found an over-
representation of genes involved in proline, 
arginine, and phenylalanine metabolism pathways 
in the gut microbiota associated with both SF and 
EF. Almost all microbial genes involved in argi-
nine, proline, and phenylalanine metabolism were 
negatively associated with SF and EF. Thus, the 
higher the SF levels, the greater the downregulation 
of those genes, and the better the cognitive scores.

Figure 5. Association of serum ferritin and executive function with bacterial functionality in women. (a-b) Volcano plots of microbiome 
molecular functions associated (p adjusted < 0.05) with serum ferritin (a), and PVF (b), in women as calculated by ANCOM-BC from 
shotgun metagenomic sequencing, adjusting all models for age and BMI; and for years of education in PVF model. The log2 fold change 
of the association with a unit change in the ANCOM-BC-transformed variable values and the log10 p values adjusted for multiple 
comparisons using a sequential goodness of fit were plotted for each microbiome function. Significantly associated genes are colored in 
green (upregulated) or red (downregulated). c) Barplot plot of the KEGG pathway over-representation analyses (q value < 0.1) mapping 
the KEGG orthologues significantly associated with serum ferritin and PVF in women. d) Gene-concept network depicting the linkage of 
significant KEGG orthologues participating in KEGG pathways related to glyoxylate and dicarboxylate metabolism and two-component 
system for serum ferritin and PVF. PVF, phonemic verbal fluency; BMI, body mass index.
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Figure 6. Plasma metabolomics associated with serum ferritin, executive function, and semantic memory in the entire cohort. Boxplots 
of the normalized variable importance measure (VIM) (a and c) and SHAP summary plots (b and d), for the metabolites associated with 
the SF levels measured by HPCL-ESI-MS/MS in positive (a) and negative (c) models. (e and f) Heatmap displaying the Spearman 
correlation (adjusted by age, sex, body mass index, and education years) between PVF, SVF, and TDS and the plasma metabolomics in 
positive mode (e) and negative mode (f). Significant associations are shown with a cross: **** <0.001, ***<0.01, **<0.05, *<0.1.
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These findings are similar to observations in sub-
jects with mild cognitive impairment and 
Alzheimer’s disease, in whom increased levels of 
L-arginine were detected.10 In fact, L-arginine sup-
plementation in older adults at high cardiovascular 
risk led to worsened EF.11 Proline metabolism has 
also been associated with depression12 and is also 

crucial in the progression of mild cognitive impair-
ment in Alzheimer’s disease.13

Phenylalanine enters the brain using the amino 
acid transporter type (LAT1, SLC7A5). The affinity 
of LAT1 for phenylalanine is so high that even with 
small plasma elevations, it is preferentially trans-
ported to the brain over amino acids such as

Figure 7. Plasma metabolomics associated with serum ferritin, executive function, and semantic memory in men. Boxplots of the 
normalized variable importance measure (VIM) (a and c) and SHAP summary plots (b and d), for the metabolites associated with the 
serum ferritin levels measured by HPCL-ESI-MS/MS in positive (a) and negative (c) models. (e and f) heatmap displaying the Spearman 
correlation (adjusted by age, body mass index, and education years) between PVF, SVF, and TDS and the plasma metabolomics in 
positive mode (e) and negative mode (f). Significant associations are shown with a cross: **** <0.001, ***<0.01, **<0.05, *<0.1. PVF, 
phonemic verbal fluency; SVF, semantic verbal fluency; TDS, total digit span.
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tryptophan and tyrosine. Reduced brain concentra-
tions of tyrosine and tryptophan could lead to 
insufficient production of dopamine and seroto-
nin, respectively.14 A study involving 19 early trea-
ted phenylketonuria patients showed that subjects 
with phenylketonuria had worse attention, 

memory, and EF compared to healthy controls.15 

Remarkably, we found a strong negative associa-
tion of phenylacetylglutamine with SF when ana-
lyzing the plasma metabolic profiles. Therefore, the 
higher the SF levels, the lower the phenylacetylglu-
tamine levels. Furthermore, phenylacetylglutamine

Figure 8. Plasma metabolomics associated with serum ferritin, executive function, and semantic memory in women. Boxplots of the 
normalized variable importance measure (VIM) (a and c) and SHAP summary plots (b and d), for the metabolites associated with the 
serum ferritin levels measured by HPCL-ESI-MS/MS in positive (a) and negative (c) models. (e and f) Heatmap displaying the Spearman 
correlation (adjusted by age, body mass index, and education years) between PVF, SVF, and TDS and the plasma metabolomics in 
positive mode (e) and negative mode (f). Significant associations are shown with a cross: **** <0.001, ***<0.01, **<0.05, *<0.1. PVF, 
phonemic verbal fluency; SVF, semantic verbal fluency; TDS, total digit span.
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was associated with a worsening of EF and SM. 
Phenylacetylglutamine is derived from the micro-
bial metabolism of phenylalanine. Altered pheny-
lacetylglutamine levels were associated with EF in 
obese subjects.5 Another metabolite negatively 
associated with SF, SM, and EF was ureidoisobu-
tyric acid, suggesting that lower ureidoisobutyric 
acid levels were associated with higher SF levels 
and enhanced SM and EF. Ureidoisobutyric acid 
is a degradation product of pyrimidine metabo-
lism. Interestingly, two microbial functions (thyX 
and dut) involved in pyrimidine metabolism were 
strongly negatively associated with inhibitory con-
trol (executive function) in subjects without 
obesity.6

EPA levels were positively associated with SF, 
SM, and EF, indicating that higher EPA concentra-
tions were associated with higher SF levels and 
improved SM and EF. EPA is an omega-3 polyun-
saturated fatty acid with anti-inflammatory 
properties.16 Several studies have described that 
a low omega-3 intake predisposes to faster cogni-
tive decline16 and has been positively associated 
with EF in obese subjects.6 EPA supplementation 
in older adults has been positively associated with 
EF.17 and memory.18

Lastly, SF was associated with increased Blautia 
hansenii, Fournierella massiliensis, and 
Lactobacillus rhamnosus. The genus Blautia is 
a well-known producer of short chain fatty acids 
(SCFAs), particularly acetic acid and butyric acid, 
and Blautia hansenii has been linked to less visceral 
fat accumulation.19 Fournierella massiliensis is also 
an acetic acid producer.20 SCFAs contribute to the 
integrity of the blood-brain barrier, inhibiting neu-
roinflammation and regulating the development 
and function of microglia.21 Lactobacillus rhamno-
sus has been associated with increased hippocam-
pal neurogenesis, inhibiting the release of 
proinflammatory cytokines by the microglia, thus 
reducing hippocampal microgliosis and 
inflammation,22,23 which are known to impair 
learning and memory.24 In mice, supplementation 
with Lactobacillus rhamnosus led to improved 
memory and EF22,23 in mice and in subjects with 
mild cognitive impairment.25

To date, studies have focused on evaluating the 
composition of the gut microbiota in iron- 
deficient or iron-excess environments, or in 

subjects with associated diseases such as inflam-
matory bowel disease and nonalcoholic fatty liver 
disease. Therefore, the results described in the 
literature on iron and gut microbial composition 
are not comparable with those obtained in this 
study. Our results suggest that the beneficial 
associations of SF with EF and SM found in our 
recent article could be mediated by the gut 
microbiome and microbial-derived metabolites. 
However, these results should be interpreted 
with caution, as they are purely associative and 
represent a first step in human research that 
requires further validation in animal models. In 
addition, the data analyzed were obtained in 
a cross-sectional study. Longitudinal studies are 
required to validate and elucidate the complex 
interaction between the gut microbiota-brain 
axis and SF.

Materials and methods

Subjects

The Aging Imageomics Study is an observational 
study that included subjects from the province of 
Girona (Spain). The subjects originated from two 
independent cohorts: Maturity and Satisfactory 
Ageing in Girona study (MESGI50 study) and the 
Improving interMediAte RisK management study 
(MARK study). Data were collected at the 
Dr. Josep Trueta University Hospital facilities 
between November 14th, 2017, and June 19th, 
2019. The study protocol was approved by the ethics 
committee of the Dr. Josep Trueta University 
Hospital.

The Aging Imageomics Study aimed to identify 
biomarkers of human aging by analyzing imaging, 
biopsychosocial, metabolomic, lipidomic, and 
microbiome variables. Consequently, the selection 
criteria were age ≥50 years, residing in the commu-
nity, no infection within the last 15 days, and 
absence of contraindications to perform the mag-
netic resonance imaging (MRI). Participants were 
visited twice. Clinical history, physical examination, 
dietary evaluation, MRI, and neuropsychological 
evaluation of the participants were conducted. 
Blood, urine, and feces samples were obtained. 
Extensive information on the study protocol can 
be found elsewhere.26
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Laboratory parameters
Anthropometric and clinical history were acquired 
by bioimpedance and ad hoc questionnaire, corre-
spondingly. Fasting plasma glucose, lipids profile, 
serum creatinine, serum urate, hemoglobin and SF 
levels were obtained by standard laboratory meth-
ods using an analyzer (Cobas 8000 c702, Roche 
Diagnostics, Basel, Switzerland). Glycated hemoglo-
bin was measured by performance liquid chromato-
graphy (ADAMA1c HA-8180 V, ARKRAY, Kyoto, 
Japan).

Neuropsychological assessment
A neuropsychological examination was performed 
to assess EF and SM. All tests were displayed as raw 
scores.

Executive function

Total Digits Span (TDS) is subtest of the Wechsler 
Adult Intelligence Scale-III (WAIS-III). TDS eval-
uates executive function, specifically working 
memory. TDS includes the Forward and 
Backward Digit Span tests. In the Forward Digit 
Span test, the subject repeats a series of numbers in 
the same order presented, whilst in the Backward 
Digit Span test, the subject repeats the sequence of 
numbers in reverse order. The Total Digit Span is 
the sum of the scores of the two previous tests. The 
higher the test score, the better the working 
memory.27

Phonemic verbal Fluency (PVF) evaluates the 
executive function and is influenced by processing 
speed. PVF is a spontaneous verbal production task 
that requires the production of words with 
a specific letter (P, M y R) for one minute each.28,29

Language function or semantic memory

Semantic verbal fluency (SVF) evaluates language. 
This is a test that requires producing as many 
words as possible in one minute for a specified 
category, typically “animals”.28,29

Extraction of fecal genomic DNA and whole-genome 
shotgun sequencing

Total DNA was obtained from frozen human stool 
using PowerSoil DNA extraction kit (MO BIO 

Laboratories). Illumina DNA Prep kit (Illumina) 
was used for Illumina sequencing library prepara-
tion with 400-500ng of total DNA. A TapeStation 
Highly Sensitive DNA kit (Agilent Technologies) 
was used to evaluate the library. Qubit (Invitrogen) 
was used in the quantification of the library. 
Equimolar amounts of validated libraries were 
pooled, then sequenced as a paired-end 150-cycle 
run on an Illumina NextSeq2000. Using an in- 
house python script raw readings were filtered for 
QV > 30.

FASTQ output files were first pre-processed 
using fastp for the taxonomic and functional diver-
sity analysis of the microbiota.30 FASTQ is a data 
pre-processing tool for quality control, adapter 
trimming and quality filtering. To eliminate reads 
of human origin, the clean reads were mapped 
against Homo sapiens genome database (GRCh38. 
p13) using Bowtie2.31 SqueezeMeta v1.3.132 was 
used to execute unmapped reads in the co- 
assembly mode, which pools all samples into 
a single assembly. Contig assembly was performed 
with megahit.33 Mapping of reads in contigs was 
done with Bowtie2. Then, to anticipate codifying 
regions, Prodigal v2.6.342 was utilized.34 The func-
tional subcategory, pathway, and annotation of 
genes were determined using HMMER35 against 
the 2016 version of the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database.36 The sta-
tistical package R 4.2.237 was used for the selection 
of the best annotations and for assigning the orf 
annotation to each read. Also, R was utilized to 
count the aligned reads, to add the category and 
its coverage, and to construct abundance matrices. 
Kaiju v1.6.2 was used to implement taxonomic 
annotation on the human-free readings.38 

Information on lineages, taxa count, and an abun-
dance matrix was generated for all samples using R.

Metabolomics analyses

HPCL-ESI-MS/MS metabolomics analyses
Methanol was used to extract metabolites from 
plasma samples for non-targeted metabolomics ana-
lysis (containing phenylalanine-C13 as an internal 
standard).39 To each 10 μl of plasma, 30 μl of cold 
methanol was added, then vortexed for 1 minute and 
incubated for 1 hour at −20°C. FastPrep-24 (MP 
Biomedicals) was used to homogenize the samples
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and then were incubated overnight at 4°C in 
a rocker. Afterwards, all samples were centrifuged 
at 12.000 g for three minutes. The supernatant was 
separated and filtered through a 0.2 μm Eppendorf 
filter. Two μL of the extracted sample were put on 
a reversed-phase column (Zorbax SB-Aq 1.8 μm 
2.1 × 50 mm; Agilent Technologies) equipped with 
a precolumn (Zorbax-SB-C8 Rapid Resolution 
Cartridge 2.1 × 30 mm 3.5 μm; Agilent 
Technologies) with a column temperature of 60°C. 
The flow rate was 0.6 mL/min. Solvent A was 
formed by water with 0.2% acetic acid and solvent 
B was formed by methanol with 0.2% acetic acid. 
The gradient increased from 2% B to 98% B in 13  
minutes before remaining at 98% B for 6 minutes. 
Post-time was set in 5 min.

Using N2 as nebulizer gas (5 L/min, 350°C), data 
were acquired in positive and negative electrospray 
modes, time-of-flight operated in full scan mode at 
50–3000 m/z over an extended dynamic range (2  
GHz). A scan rate of 1 scan/s was used with 
a capillary voltage of 3500 V. For the continuous, 
low-level (10 L/min) introduction of reference 
mass compounds 121.050873 and 922.009798, the 
ESI source utilized a separate nebulizer. These 
compounds in turn were used for continuous, 
online mass calibration. The data analysis software 
MassHunter (Agilent Technologies, Barcelona, 
Spain) was used to obtain the results. MassHunter 
qualitative analysis software (Agilent Technologies, 
Barcelona, Spain) provided the molecular charac-
teristics of the samples. Different ionic species co- 
migrating from a given molecular entity were 
represented using the Molecular Feature Extractor 
algorithm (Agilent Technologies, Barcelona, 
Spain). Samples with at least 2 ions were chosen. 
Multiple charge states were forbidden. Utilizing 
a mass window of 20.0 ppm 2.0 mDa and 
a retention time window of 0.1%± 0.25 minutes, 
compounds from various samples were aligned. 
Those corrected for individual bias and present in 
at minimum 50% of the samples were chosen.

Statistical analyses

Normal distribution and homogeneity of variances 
were determined. The results are presented as 
number and frequencies for categorical variables, 

mean and standard deviation for normally distrib-
uted continuous variables, and median and inter-
quartile range for non-normally distributed 
continuous variables. These statistical analyses 
were conducted with SPSS, version 28.0 (IBM 
SPSS Statistics) or R Statistics. The statistics appear 
in the figures and legends. Analyses were per-
formed on the entire population and then divided 
by sex, with findings being more consistent in men.

Metagenomics statistical analysis

Differential abundance analyses to identify bac-
terial species associated with the SF and cognitive 
test (Total Digit Span (TDS), PVF (phonemic 
verbal fluency) and semantic verbal fluency 
(SVF)) were performed using the microbiome 
compositional analysis methodology with bias 
correction (ANCOM-BC).40 By including 
a sample-specific offset to a linear regression 
model that is generated from the observed data, 
ANCOM-BC considers the bias resulting from 
differing sampling fractions between samples. To 
consider the compositional nature of metage-
nomics datasets, the linear regression model in 
log scale is equivalent to a log-ratio transforma-
tion and the offset term acts as the bias correction. 
All models were adjusted for age, sex, and body 
mass index (BMI). In the models including cog-
nitive tests, we also adjusted for education years. 
P-values were corrected for multiple comparisons 
using a Sequential Goodness of Fit (SGoF). SGoF 
methods increase their power with a larger num-
ber of tests, in contrast to FDR methods which 
decrease their statistical power as the number of 
tests grows. In settings with a high number of tests 
and small sample size, as in large metagenomic 
datasets, SGoF has proven to perform better than 
FDR methods.41 Statistical significance was fixed 
at Padj < 0.1. Pathway overrepresentation analyses 
were conducted by mapping the KEGG orthologs 
to the KEGG pathways using the R package 
“ClusterProflier” (“enrichKEGG” function). 
A hypergeometric test was used to determine the 
significance of the pathway, and a Storey proce-
dure (q-values) was adopted for multiple testing 
correction. Statistical significance was set at 
q-values <0.1.
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Machine learning analysis (metabolomics)

A probabilistic quotient normalization was used to 
normalize the metabolomics data. Then, data from 
metabolomics were analyzed using Machine learning 
methods. We implemented an all-relevant machine 
learning variable selection strategy using multiple 
random forests as implemented in the Boruta 
algorithm.42 All models were adjusted for age, BMI, 
sex, and years of education. We performed the 
Boruta algorithm with 500 iterations, a confidence 
level of 0.005 for the Bonferroni adjusted p-values, 
and 5000 trees to grow the forest. To facilitate the 
interpretation of the models, we used the exact com-
putation of Shapley Additive explanations (SHAP) 
scores, which leverages the internal structure of the 
random forest models. SHAP calculates the contri-
bution of each metabolite to the predicted response 
variable.43 The SHAP scores were computed and 
plotted using the R packages “treeshap” and 
“SHAPforXGBoost.” The association between meta-
bolomics and cognition (TDS, PVF, SVF) was 
explored using R, by Spearman correlation, adjusting 
the data for sex, BMI, age, and years of education.
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