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Algorithms for associative memory typically rely on a network of many connected units. The
prototypical example is the Hopfield model, whose generalizations to the quantum realm are mainly
based on open quantum Ising models. We propose a realization of associative memory with a single
driven-dissipative quantum oscillator exploiting its infinite degrees of freedom in phase space. The
model can improve the storage capacity of discrete neuron-based systems in a large regime and we
prove successful state discrimination between n coherent states, which represent the stored patterns
of the system. These can be tuned continuously by modifying the driving strength, constituting a
modified learning rule. We show that the associative-memory capability is inherently related to the
existence of a spectral separation in the Liouvillian superoperator, which results in a long timescale
separation in the dynamics corresponding to a metastable phase.

Artificial neural networks (ANNs) are brain-inspired
computational systems that can solve and model nu-
merous kinds of tasks, ranging from pattern and speech
recognition [1, 2] to big data analysis [3]. An important
family of ANNs is given by attractor networks, whose
temporal evolution settles on stable solutions, exploited
in a wide range of problems [4, 5] with the prominent
example of associative memory (AM). In an AM task,
a system stores a set of memory states. Then, it is in-
terrogated using a clue state similar but not necessarily
identical to one of the memories; a system equipped with
AM can identify the stored pattern most similar to the
clue according to a properly defined distance. AMs are
commonly modeled through the (classical) Hopfield neu-
ral network (HNN) [6], which makes use of a network of
binary neurons, and exhibits stable attractors – the mem-
ories – defined through a proper learning rule written in
the weights of the neural connections [4, 5]. One main
limitation of the HNN is that the number of patterns that
can be stored is much smaller than the dimension of the
network itself [7, 8].

Quantum machine learning aims to find ways to exploit
the features of quantum mechanics for machine learning
purposes [9–12]. In the context of quantum AM, general-
izations of classical models are mainly based on the quan-
tized version of the HNN [13–21], where binary systems
are replaced by quantum spins, and where the necessary
dissipative dynamics are provided by the interaction with
some external bath (which can also encode the learning
rule [22, 23]). The main findings concern the existence
of dynamical phases, not found in classical systems, that
can be employed in new types of retrieval. Yet, memories
remain strings of classical bits. Still, an open point is the
promise that the richer dynamics of quantum systems
can improve the storage capacity, that is, the number
of memories over the system size. A general discussion
about the possibility of achieving such a quantum advan-
tage can be found in [24, 25], where the storage capacity
is estimated according to the Gardner program [26, 27].

However, direct application to specific models does not
seem to give conclusive answers [28, 29].

In this Letter, we take an alternative route to AM in
quantum systems moving from spin networks to a sin-
gle driven-dissipative nonlinear quantum oscillator where
one can exploit its (in principle infinite) number of de-
grees of freedom. The main ingredient of our approach
lies in the nonlinearity which determines the form and
phase symmetry of the steady state, changing from (al-
most classical) coherent states to purely quantum states,
depending on the model parameters. Together with a
metastable dynamical phase long enough compared to
all timescales relevant to pattern recognition and mem-
ory retrieval. Concerning AMs, metastability allows sys-
tems that converge towards a unique steady state to span
a manifold of relevant addressable memories [30].

In principle, a quantum oscillator spans an infinite
Hilbert space with potentially unlimited storage capacity
[24]. This can be seen as a (generally complex) network
whose computational nodes can be built using every or-
thogonal basis of the Liouville space (a similar approach
was taken in Ref. [31] in the context of quantum reservoir
computing). Nevertheless, we are bounded by the size
of the metastable manifold. Considering the minimum
Hilbert space size needed to correctly describe the sys-
tem dynamics, we will show that our model can achieve a
higher storage capacity than the (classical and quantum)
discrete neuron models.

Let us briefly review the concept of metastability,
which emerges whenever disparate timescales are present
in the evolution of a dynamical system [30]. In our
case, as we will see, metastability can be traced back to
the presence of a separation in the Liouvillian spectrum
[32, 33] and is in close connection with quantum entrain-
ment and dissipative phase transitions [34]. It is charac-
terized by the long-lived occupation of high Liouvillian
modes and is normally observed after a short transient
time and before the final relaxation towards the steady
state.
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For a system described by the Gorini-Kossakowski-
Sudarshan-Lindblad master equation ∂tρ = Lρ [35, 36],
the dynamics can be understood in terms of the set of
complex eigenvalues {λj} of the (non-Hermitian) Liou-
villian superoperator L and of the right ({Rj}) and left
({Lj}) eigenvectors, obeying, respectively, LRj = λjRj
and L†Lj = λ∗jLj with normalization trL†jRk = δjk [32].
Then, assuming the presence of at least one steady state
ρss (which is always true in finite dimensions [37, 38]),
the time evolution of a state ρ(0) can be decomposed as

ρ(t) = ρss +
∑
j>1

tr
[
L†jρ(0)

]
eλjtRj , (1)

where for convenience the eigenvalues are sorted such
that 0 ≥ Reλj ≥ Reλj+1.

A metastable dynamical phase will emerge before the
final relaxation whenever there is a large separation be-
tween two consecutive eigenvalues, i.e. τn � τn+1

where τ−1
n = −Reλn [33]. This divides the decay

into different timescales: a fast regime for t < τn+1, a
metastable period where dynamics are apparently frozen
for τn+1 < t < τn; and finally, the last decay for t > τn.
In the middle region, the dynamics can be approxi-
mated by ρ(t) =

∑n
l=1 pl(t)µl [39], where {µl}nl=1 are

the metastable states spanning the metastable manifold
[40] and {pl(t)}nl=1 are quasiprobabilities, as they might
take negative values, but satisfy that their sum is 1.

Our quantum model for AM consists of a driven-
dissipative oscillator described by the master equation

∂ρ

∂t
= −i[Ĥn, ρ] + γ1D [â] ρ+ γmD [âm] ρ , (2)

where we have standard terms for linear (single-photon)
and nonlinear (multiphoton) damping [41, 42] with rates
γ1 and γm respectively. The Hamiltonian, which contains
a n-order squeezing drive [43, 44], in the rotation frame
and after the parametric approximation is

Ĥn = ∆â†â+ iη
[
âneiθn − (â†)ne−iθn

]
. (3)

Here, ∆ = ω0−ωs is the detuning between the natural os-
cillator frequency and that of the squeezing force, η and θ
the magnitude and phase of the driving, respectively. We
observe that the model possesses Zn symmetry, that is,
the transformation â → â exp(i2π/n) leaves the master
equation invariant [45].

Although particular solutions have been found for spe-
cific cases [34, 46], no general analytical solution exists
for Eq. (2). We can restrict to the case m = n and write
it as [41, 47, 48]

∂ρ

∂t
= −i∆[â†â, ρ] + γ1D [â] ρ+ γnD [ân − βn] ρ , (4)

where βn = 2ηeiθn/γn corresponds to the amplitude of n
symmetrically distributed coherent states or lobes

|βj〉 = |βei(2j+1)π/n〉 , j = 1, . . . , n (5)
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FIG. 1. Wigner representation of the steady state for n = 3
(normalized). Parameters: (a) γ2/γ1 = 0.2, η/γ1 = 0.1; (b)
γ2/γ1 = 1.5, η/γ1 = 2.7; (c) γ2/γ1 = 0.2, η/γ1 = 1.455.

which span the kernel of the nonlinear damping term in
Eq. (4). We notice that β is a function of the ratio be-
tween squeezing strength and nonlinear damping. In the
limit of small detuning and large β, we observe numeri-
cally that the lobes become almost orthogonal (F (β) =

|〈βj |βj+1 mod n〉|2 → 0), and thus the steady state can
be well approximated by ρss ≈ (1/n)

∑n
j=1 |βj〉〈βj | [49].

Instead, in the absence of squeezing in Eq. (3), only a
single solution with β = 0 persists. In the following, we
fix θ = 0 and ∆ = 0.4γ1.

By numerically solving the steady state equation
Lρss = 0, we show in Fig. 1 its Wigner representation
for four different parameter choices [50]. In the first row,
we can see two different situations for n = m = 3: in
panel (a) we have set η � ∆, which makes the lobes in-
distinguishable, while for η > ∆ [panel (b)] we can appre-
ciate three coherent states corresponding to an amplitude
β ∼ 3. The separation between these two regimes could
also be observed at the mean-field level, as explicitly dis-
cussed in [40, sec. S1]. Finally, in Fig. 1(c), we show
the steady state for n = 3 and m = 2. Here, we again
see three lobes, as expected from the symmetry of the
system, but now show signatures of squeezing and quan-
tumness. This also applies to other values of n 6= m. In
all situations, the Wigner representation is non-negative
as a consequence of the linear damping which removes
the coherences between states [49, 51].

To establish the existence of metastability, let us ex-
plore how the separation of the Liouvillian eigenvalues
depends on the system parameters. An example is given
in Fig. 2 (for n = m = 4). There, the separation appears
between the fourth and fifth eigenvalues, which separates
slow metastable dynamics from fast decay modes [33].
During the slow phase, the dynamics can be approxi-
mated by n metastable phases {µj}nj=1, constructed as
extreme superpositions of the first n eigenmodes [40, sec.
S3]. These, in the regime of large β, are approximately
equal to the coherent states in Eq. (5). The larger the
separation, the farther apart the lobes are, increasing the
metastable properties [52].

The results above are consistent with particular sit-
uations studied in the literature. Concretely, the case
n = m = 2 was studied in Ref. [34] using linear ampli-
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FIG. 2. Separation between the 4th and 5th low-lying
eigenvalues where darker colors indicate longer metastabil-
ity. Three contour lines show the decay time of the fourth
eigenvalue, the end of metastability.

fication instead of linear damping (the presence of both
damping and amplification was analyzed in Ref. [53] in
the context of quantum synchronization). The change,
motivated by its experimental feasibility [41, 54, 55],
leads to a slight increase in metastability because there is
no competition between dissipative terms. Yet, no other
qualitative difference is appreciated.

We now turn our attention to the dynamic properties
that lead to the AM capabilities of the system. Our goal
is to exploit the metastable dynamics to discriminate be-
tween the nmetastable phases. This can be seen as a gen-
eralized discrimination problem between n symmetrical
coherent states [56, 57] because the initial state does not
have to be any of the lobes. More specifically, within the
metastable transient, an initial state will move towards
the closest lobe (representing one of the stored memo-
ries) and remain there for a long time. Consequently, by
measuring the state within this regime, we can extract
information about the corresponding lobe. Furthermore,
the ability to tweak the target states using the (tunable)
Liouvillian parameters can be interpreted as a modified
learning rule, commonly given in ANN by changing the
network weights to select the desired family of steady
states [6].

In Fig. 3, we compute the time evolution of 〈â〉 for
three different values of the parameters (γn, η) corre-
sponding to γ1τn = {2, 10, 100}. The initial state is a co-
herent state with amplitude 0.5β(γn, η) exp(i2π/9), dif-
ferent from any lobe. Then, the evolution is evaluated by
comparing the full master equation (solid lines) with the
metastable approximation described in Ref. [39] (dotted
lines), which, of course, is expected to be valid since the
metastable transient.

Looking at the upper two lines, for both n, we can
distinguish the different dynamical regimes. First, a fast
decay of the high modes (i.e. Rj>n) occurs, which takes
the state from its initial amplitude to that of the lobes in

FIG. 3. Time evolution of |〈â〉| for three different parame-
ter sets as shown in Fig. 2. Full master equation evolution
in solid lines (for truncated Hilbert space with dimH = 50)
and deterministic evolution in the metastable manifold in dot-
ted lines. Shaded areas indicate the metastability regime per
color.

a time τn+1. Here, as expected, the metastable approxi-
mation fails to describe the dynamics. Then, the solution
penetrates into the metastable transient where a plateau
of constant amplitude is observed. From this point on-
wards, the two descriptions coincide with high accuracy,
showing that the state is confined to the metastable man-
ifold. Thus, in this setting, metastability is completely
described by the Liouvillian spectrum. In contrast, when
the separation between lobes is small (lower red lines),
the metastable transient disappears. We can also appre-
ciate a longer plateau for n = 4 than for n = 3, even
after the metastable transient, which is a consequence of
the slowest eigenvalues distribution [40, sec. S4].

Next, we assess the AM efficiency by numerically com-
puting the probability that the system is found in the tar-
get lobe at each time t. We use a Monte Carlo simulation
with a coherent state of random amplitude [0, 2β] and
phase as initial state. The system is then measured with
the (ambiguous) POVM {Pk}nk=1, obtained numerically
from the Liouvillian left eigenmodes [39], where each op-
erator corresponds to a division of the phase space cen-
tered around each lobe (5) [58]. Hence, the success prob-
ability is equal to the click probability of the kth operator
assuming the initial state is most similar to the kth lobe
(according to trace distance) [40, sec. S5]. We repeat this
process 400 times with different initial states and average
the results to obtain the solid lines in Fig. 4(a).

Focusing on the dimHeff = 40 (solid red) line, the
time evolution can be compared to the metastable evo-
lution in Fig. 3 with a plateau of high success probabil-
ity that spans times even before the metastable regime
begins. This is because any state in the basin of at-
traction of the lobe will trigger the associated operator,
failing to determine whether the state has converged to
the exact pattern. Thus, we repeat the calculation with
a second (unambiguous) POVM, used experimentally for
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FIG. 4. (a) Probability of identifying the correct lobe with
time using the ambiguous (solid lines) and unambiguous
(dashed lines) strategies for increasing system sizes. Param-
eters corresponding to the green line in Fig. 2b. (b) Storage
capacity over lobe amplitude for a different number of pat-
terns: α̃c (solid lines) and αc (dashed lines). (c) Points corre-
sponding to the maximal storage capacity in (b). Compared
with Hebbian critical capacity αHebb

c = 0.138 (dotted line).

m-ary phase-shifted keys [59, 60], that only triggers when
the state is inside the metastable manifold. As a result,
looking at the dashed lines in Fig. 4(a), we note that
the success probability is initially small – the state is not
over any lobe – but converges to the plateau by the start
of the metastable transient, thus showing its ability to
optimally discriminate the patterns in this regime.

A fundamental question in the context of AM concerns
the storage capacity αc of a system. While our model
has an infinitely dimensional Hilbert space, the coherent-
state solutions discussed so far can be described with high
accuracy by truncating above high Fock state occupancy
of the boson mode [44]. This allows us to adapt the defini-
tion of the storage capacity of finite systems. In Fig. 4(a),
we show the effect of truncation on the lobe identification.
As expected, under a certain system size, the dynamical
state cannot be well approximated and metastability is
lost, which leads to a fast decrease in the success prob-
ability. The dimension of the truncated Hilbert space
Heff represents the effective system size to be compared
with the number of stored memories. Assuming that n
patterns can be successfully stored, one can define the
storage capacity as αc = n/ dimHeff . However, the pos-
sibility to distinguish them can be strongly hindered de-
pending on the parameter choice [61]. This highlights the
importance of accounting for correlations between pat-
terns [26, 29]. Hence, we define α̃c = [1− F (β)]αc, with
F (β) as specified above, which vanishes for indistinguish-
able lobes (β → 0) and large dimensions (β → ∞) but
is maximal for intermediate amplitudes. In Fig. 4(b), we
plot the storage capacity as a function of the lobe am-

plitude for different values of n. Although contrasting
different learning rules is not immediate, we compare it
with the standard Hebbian rule which has been found to
limit the capacity in both classical [7] and quantum [21].
In this way, we can appreciate a wide range of solutions
where such classical limit is exceeded [62]. Further, in
Fig. 4(c), we show how the maximal storage capacity of
our model reduces the system size required to store the
same number of patterns in a Hebbian-based HNN.

In this Letter, we have proposed a different approach
to AM considering a single driven-dissipative quantum
nonlinear oscillator. We have shown that it allows for
successful state discrimination during the metastable
regime. Our approach shares some features with the
classical continuum space limit of the Wilson-Cowan
model [63], whose stochastic versions [64, 65] account for
metastable neural population activity. In this sense, the
Wigner function plays the role of a neural field whose
excitations represent the stored patterns [40, sec. S7].
In contrast to these models where the solutions settle at
long times, our AM is transient, which may provide a
speed-up in the convergence towards the patterns [66].

Even if bosonic models can potentially encode an in-
finite number of memories [67], our system is upper-
bounded by two values: the power of the nonlinear term
n and the overlap between the lobes F (β). The latter
is similar to the conditions for patterns in HNNs, which
require them to be orthogonal. At the same time, the
former determines the dimension of the metastable man-
ifold, i.e. the number of metastable solutions. In this
respect, we saturate the maximum number of patterns of
the system [24], and most importantly, n is not upper-
bounded in theory.

We can compare our proposal, where the number of
solutions can be increased with the nonlinearity degree
n, with the standard Hebbian learning strategy, where
one needs to increase the dimension of the Hilbert space
(number of spins). As the former can be well approx-
imated by truncation, we have found a superior stor-
age capacity α̃c > αHebbc . Furthermore, truncation
saves computational resources and time, and more im-
portantly, in experimental realizations, its validity wit-
nesses a bound in the maximum excited state and thus
in the operation energy (Fig. 4(c)). In any case, the
experimental viability of our system mainly depends on
the capacity to engineer an oscillator with a high non-
linear term. Superconducting resonators are a good can-
didate when n = m due to their ability to realize any
nonlinearity by modifying only the flux pump frequency
[44, 54] with three-photon down-conversion achieved in
Ref. [68]. Those systems have been used to generate cat-
like states by removing the linear dissipative term [41].
Consequently, the appearance of the linear term makes
it easier to realize in practice. Aside, experiments realiz-
ing phase-shifted coherent state discrimination have been
pursued with success [60].
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To conclude, we believe this work heralds a new way
of pursuing AM beyond typical spin chains. It would be
interesting to see the robustness and scalability of this
proposal when coupling a few nonlinear oscillators. More
complex metastability scenarios where the spectral anal-
ysis is not sufficient could arise, e.g. in the presence of
skin and topological effects [69–71]. Also, in Ref. [34], it
was shown that the onset of metastability relates to an
exceptional point in the Liouvillian spectrum of the van
der Pol oscillator. This and other dynamical aspects need
to be further explored. An additional open question con-
cerns the possibility of storing quantum memories. While
for the sake of clarity in this work we have focused on
the case n = m, which is built around coherent-state dis-
crimination, Fig. 1(c) shows that in different scenarios
metastable squeezed states can emerge. This aspect is
left for future work.
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Supplemental Material

S1: Mean-field limit

To gain intuition about the quantum system, we can analyze the mean-field equations of motion. Hence, we assume
α = 〈â〉 and approximate

〈
âx(â†)y

〉
∼ 〈â〉x

〈
â†
〉y

. Then, we take tr âρ̇ from the master equation (4) and factorize all
high-order moments in the right-hand side to obtain

α̇ = −γ1

2
α− i∆α− nη(α∗)n−1e−inθ − m

2
γm|α|2(m−1)

α , (S1)

which can be written as a coupled ODE system for the real variables R and φ using α = R exp(iφ),

Ṙ = −γ1

2
R− m

2
γmR

2m−1 − nηRn−1 cos[n(φ− θ)] (S2)

φ̇ = −∆ + nηRn−2 sin[n(φ− θ)] . (S3)

Setting Ṙ = φ̇ = 0, we get the fix point equations of the system which leads to sinn(φ − θ) = ∆/nηRn−2. Thus, a
solution can only exist for φ̇ = 0 if ∆ < nηRn−2. In this regime, assuming a large separation between lobes (R� 1)
and small detuning (∆� 1), the phase can be approximated by φ− θ ≈ πj/n with j = 1, . . . , n. Substituting in the
first equation leads to

− 1−mγm
γ1
R2(m−1) − 2n

η

γ1
Rn−2(−1)j = 0 , (S4)

where all parameters are positive. Therefore, we need j to be odd for a solution to exist. In this way, again with the
assumption R� 1, we arrive at

mγmR
2(m−1) = 2nηRn−2 =⇒ R2m−n =

2nη

mγm
. (S5)

The amplitude is identical to the one found in Eq. (5) for n = m. Furthermore, the power of the driving is limited
by the power of the nonlinear dissipation, that is n < 2m. For higher values, the amplitude would be inversely
proportional to η/γm which can be seen as a reversal between the action of the driving and the dissipation. The case
n = 2m has to be treated separately and we obtain a relation R2m−2 ∝ 1/(2η − γm). Thus, the fix points only exist
for 2η > γm. In the other cases, for n < 2m, we can always find n fix points symmetrically distributed except for
η = 0 where the state |0〉 is the only stable. This makes sense because all the Lindblad operators are dissipative, i.e.
all energy is lost to the environment.

In the numerical simulations made to obtain the results presented throughout the paper we have chosen θ = 0 for
simplicity as its value only shifts the position of the lobes and has no impact on metastability or the lobes. Moreover,
we have fixed the detuning to ∆ = 0.4γ1 to situate the system in a regime where lobes can emerge for relatively small
amplitudes (R). Lastly, since all the parameters are scaled in terms of the linear dissipative rate, we set γ1 = 1 in all
cases, without affecting the outcomes. The value of the other parameters will be specified in the text when necessary.

S2: Role of linear dissipation

In the master equation introduced in the main text, apart from the nonlinear dissipative term shaping the steady
state, there is also a linear dissipative term D [â] with rate γ1. The effect of this term is to reduce coherences between
the lobes that form the steady state [42]. We can clearly see this in Fig. S5, where we show the Wigner representation
for n = m = 4 and different values of γ1. For vanishing γ1 the steady state manifold is comprised of four orthogonal
4-cat states [47], being |ψ〉ss ≈ (1/

√
n)
∑n
j=1 |βj〉 an example depicted on the left of Fig. S5. Entanglement between

the lobes can be appreciated in the negative values acquired by the Wigner representation. Conversely, when γ1 > 0,
no matter how small, the steady state becomes a statistical mixture of the lobes, i.e. ρss ≈ (1/n)

∑n
j=1 |βj〉〈βj |.

Furthermore, the actual value of γ1 (γ1 > 0) controls the steady-state decay time. Looking at the x axis of Fig. 2
we see that time is normalized in units of this parameter τ = γ1t. Hence, by reducing γ1 we can increase the decay
time and, consequently, the metastable time.
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FIG. S5. Steady state Wigner representation for different values of γ1. Parameters: n = m = 4, γ4 = 0.1, η = 1.14 and
∆ = 0.4.

We note that despite working in a finite-dimensional Hilbert space, previous studies have shown that, for vanishing
detuning and no linear dissipation, the infinite-dimensional Liouvillian also has n steady states corresponding to the
coherent superposition of n symmetrically distributed coherent states (i.e. n-cat states) [74]. The particular case
n = m = 2 has also been studied including linear dissipation [73] with similar results to the ones presented in our
work. Hence, even if our study covers a broader range of parameters and regimes where other singular behaviors
cannot be excluded, we remark that our truncated solutions provide a good approximation to the analytical ones
in infinite Hilbert space, in the mentioned known cases (i.e. n = m = 2 or for vanishing detuning and no linear
dissipation).

S3: Construction of metastable phases

The fact that the spectrum separates exactly n states allows us to construct n metastable phases as extreme
combinations of the corresponding eigenstates [39]. We need to be careful as the numerical diagonalization [78,
79] returns “raw” versions of the eigenvectors {R̃j , L̃j} which are in general not hermitian and do not satisfy the
orthogonality conditions between left and right eigenstates. To meet such conditions, we must transform the state
within its subspace. Hence, if λj ∈ R then Aj = (Ãj + Ã†j)/2 where A ∈ {L,R} and normalize one of them as

Lj = Lj/ tr
(
L†jRj). On the other hand, if λj ∈ C then it is guaranteed that exists a second eigenvalue λj+1 = λ∗j .

So, the corresponding set of eigenstates is Aj = (Aj +Aj+1)/2 and Aj+1 = (Aj −Aj+1)/2i with proper normalization
as for the real case.

At this point, Ref. [39] proposed a method to obtain the metastable states as linear combinations of the right
eigenvectors. This performs random rotations to the eigenvectors until the volume in coefficient space is maximized.
Alternatively, for small n, one can find the right combination by using the extreme eigenvalues of the left eigenvectors
(cminj , cmaxj ) [34]. Then, by inspecting the Wigner form of Rj and using the symmetry of the system we easily find
the metastable states for n = 3

µ1 = ρss + cmin2 R2, (S1a)

µ2 = ρss + cmax2 R2 + cmin3 R3, (S1b)

µ3 = ρss + cmax2 R2 + cmax3 R3 (S1c)

and n = 4

µ1 = ρss + cmin2 R2 + cmin3 R3 + cmax4 R4, (S2a)

µ2 = ρss + cmax2 R2 + cmin3 R3 + cmin4 R4, (S2b)

µ3 = ρss + cmax2 R2 + cmax3 R3 + cmax4 R4, (S2c)

µ4 = ρss + cmin2 R2 + cmax3 R3 + cmin4 R4. (S2d)

In general, cminj = −cmaxj and converge to an absolute value of 1 in the thermodynamic limit. Nevertheless, in the

case n = 3, we have that cmin2 ≈ −2cmax2 such that the relation ρss = (1/n)
∑
j µj holds.
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FIG. S7. First 9 eigenvalues of the Liouvillian for n = 3 (left) and n = 4 (right), where we only show those contributing to
metastability (the first n) in the bottom plots. The parameter sets chosen are the same as in Fig. 3 of the main text.

In Fig. S6, one can check that the previous states correspond with high accuracy to the theoretical states in Eq. (5)
of the main text. We can see that as n increases, the numerical β gets closer to the theoretical value. Indeed, to
obtain Eq. (5) we neglected the first two terms of Eq. (4) so when the nonlinear dissipative term gets stronger (n
grows), the approximation improves.

S4: Liouvillian eigenvalues structure

In the previous section, we saw that the relation between the minimum and maximum eigenvalue changes between
the even and odd cases. This result can be traced back to the different structures of the Liouvillian spectrum.

In Fig. S7 we show three different cases for n = 3 and n = 4 corresponding to the lines in Fig. 3 of the main text. By
looking at the global picture (upper row), we appreciate a similar behavior. The slowest eigenmodes are gathered to
the right close to the steady state eigenvalue λ1 = 0 and as we move to the left (increasing negative real part) we find
the fastest eigenmodes that rapidly decay in the time evolution. Of course, the higher τn, the larger the separation
between slow and fast modes.

The most significant difference occurs in the arrangement of the first n modes. On the one hand, for n = 3, they
form a triangular shape where the second and third eigenvalues are complex conjugates of each other. On the other
hand, for n = 4, the inclusion of the fourth eigenvalue in the metastable manifold results in a diamond shape with the
last eigenvalue (τ4) being real and slightly separated from λ2/3. This results in an intermediate time range between
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the end of the metastable transient (τ4) and the start of the final decay (τ2/3) which apparently extends the plateau
of constant amplitude as seen in Fig. 3(b) as compared to Fig. 3(a). Nevertheless, for t > τ4, the metastable states in
Eq. (S2) are slowly lost which already reduces the success probability in Fig. 4.

S5: Ambiguous and Unambiguous POVM

In Fig. 4 of the main text, we compare the success probability of identifying the correct lobes between two POVMs:
an ambiguous strategy (solid lines) and an unambiguous strategy (dashed lines). Let’s see the details for both.

The ambiguous POVM is obtained numerically from the theory of classical metastability [39]. In the ideal case
where Eq. (5) is exact, the projectors consist of a division of the identity around each lobe [58], that is

I =
1

π

∫
d2α |α〉〈α| = 1

π

n−1∑
j=0

∫ φj+δ

φj−δ
dϕ

∫ ∞
0

dR R
∣∣Reiϕ〉〈Reiϕ∣∣ =

n−1∑
j=0

Pj (S1)

where φj = π(2j + 1)/n+ θ and δ = π/n. Performing the integrals gives

Pj =
I

n
− 1

n

∞∑
k 6=l

Γ
(
k+l

2 + 1
)

(k − l)
√
k!l!

ei(φj−δ)(k−l) sin

(
2π
k − l
n

)
|k〉〈l| . (S2)

So all coherent states whose phase is inside [φj − δ, φj + δ] will be classified as being in the j-th lobe, no matter the
absolute amplitude.

In Fig. S8 we compare the theoretical POVM (lower row) obtained from Eq. (S2) with the projectors obtained
numerically (middle row) using the Liouvillian eigenmodes as explained in Ref. [39]. The average trace distance
between the two operators is ∼ 0.05 which results from neglecting the ∆ and γ1 terms in Eq. (S2). Despite the small
difference, in the main text, we have used the numerical POVM to compute the success probability in Fig. 4(a).

The problem of the previous POVM is the following: our goal is to identify if our system can work as an associative
memory, i.e. a state converges to the most similar lobe, but this measure does not permit us to distinguish whether
the state is actually over the lobe or in some region nearby.

Therefore, we propose the unambiguous measure which is used for m-ary phase-shifted keys [59, 60]. These types of
strategies are characterized by the addition of an extra projector Π? that captures all states different from our targets
[72], in our case, the lobes. Hence, assuming perfect detector efficiency and no optimization of the displacements, we
have {Πj = |βj〉〈βj |}nj=1 and Π? = I −

∑n
j=1 Πj which satisfies tr Πkµj = δjk (|β| � 1). An example of the Wigner

representation for Πj is given in the first row of Fig. S8. In this way, when the k-th operator triggers, we are certain
that the state was over the k-th lobe. In any other situation, the inconclusive operator Π? will be selected.

In both cases, the probability of measuring the correct lobe k at a time t is P [k̂ | ρ(t)] = trAk̂ρ(t) where Ak ∈
{Pk,Πk}. Here, k̂ is the estimation of the most similar lobe at time t = 0 that is determined using the trace norm,

i.e. k̂ = argminj=1,...,n‖ρ(0)− |βj〉〈βj |‖. Then, we average P [k̂ | ρ(t)] over 400 random initial coherent states ρ(0) with
[0, 2β] and phase [0, 2π] to avoid biases over particular states. Using this, we obtain the total success probability of

identifying the lobe as Ps = 1
n

∑n
k=1 〈P [k̂ | ρ(t)]〉.

S6: Critical storage capacity

The storage capacity αc quantifies the density of patterns that can be stored over the size of the system. In the
standard HNN, the Hebbian rule is used to encode the patterns in the connections between the N spins forming the
network. However, it was shown that using this rule only 0.138N patterns could be stored and retrieved correctly [7].

In our case, the number of patterns is determined by n, the power of the driving, while the size of the system is
infinite (dimH =∞). However, only the lowest levels of the Fock space are excited once restricted to the metastable
manifold [58]. Therefore, we can truncate the Hilbert space to a level dimHeff = Lmax determining the maximum
occupation number that cannot be neglected. Hence, assuming the states in the metastable manifold are coherent
and the occupation number follows a Poisson distribution {pl(β)} with mean |β|2, we have Lmax = argminl|pl(β)− ε|
where ε = 10−9 is an arbitrary numerical accuracy threshold. This leads to the immediate definition of αc = n/Lmax
which corresponds to the dashed lines in Fig. 4(b).
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FIG. S8. Wigner distribution of the metastable states (top), numerical POVM calculated from [39] (middle) and theoretical
POVM calculated from Eq. (S2) (bottom). Parameters: γ3 = 0.6, η = 4.6875, D = 0.4, n = m = 3.

This would mean that for small β we could have a larger storage capacity compared to the HNN. Of course, this
is not realistic as for low β (small η) the lobes become indistinguishable, and thus, the success probability becomes
1/n. Consequently, we defined a scaled version of α̃c that takes into account the separation between lobes, this is

α̃c =
n[1− F (β)]

Lmax
, (S1)

where F (β) = |〈βj |βj+1 mod n〉|2 is the fidelity between two neighbouring lobes that depends on β and n. We note that
as a consequence of the Zn symmetry, the lobes are identical to each other so the fidelity is equal for all j = 1, . . . , n.
The final result is that for β → 0 ⇒ αc → 0 which correctly describes the impossibility of measuring the lobes
independently.

In comparing with the 0.138 Hebbian capacity we would like to mention two points. First, it is the most well-known
and established critical value for associative memories. Second, most practical examples that we encountered in the
literature store few amount of patterns, even though the system size is large. For instance, Fuchs and Haken [80]
uses 3600 classical neurons to store 10 patterns (α = 0.0028) and Fiorelli et al. [23] uses 50 quantum spins to store 2
patterns (α = 0.04). Further, Marsh et al. [21] found numerically that this limit persists with at least 200 neurons.

We emphasize that in our model, Lmax corresponds to the effective dimension of the Hilbert space, which is larger
than the number of lobes. To see this comparison more clearly, we show in Fig. 4(c) the minimum size of the system
for the required number of patterns. There we can see that for the same amount of patterns, the dimension is smaller
in our system than the one required by the Hebbian rule.

In the previous approach, we choose the Fock basis to calculate the effective dimension of the Hilbert space. It is
possible to argue that in the metastable transient the states inside the metastable manifold form a displaced Fock
basis spanned by the extreme metastable states [73, 75]. In such a case, the effective dimension of the system is
exactly n, leading to a storage capacity αc = (n/n)[1 − F (β)] = 1 − F (β). Hence, the storage capacity saturates to
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one for large β which is convenient to use as it approaches the ideal limit found by [27]. Despite that, restricting
the dynamics to the metastable manifold limits the choice of initial states as the initial dynamics are not correctly
described on such a basis. In this sense, the choice of the Fock basis is the most prudent option, as it allows the
dynamics of any initial state to be studied, and despite this, it displays an advantage over the storage capacity of
classical systems.

S7: Wigner representation

Using the states, we aim to build a HNN [6] with a single quantum system that can distinguish between the n
solutions. The model is dissimilar once compared to the original HNN consisting of a net of coupled spins. However,
there exist generalizations of the associative network for continuous space [63]. In this case, the patterns are excitations
of the neuronal field {vj(x)}nj=1. In our system, we can represent the states using the Wigner quasi-probability

distribution ω(α) [77] that constitutes a 2d-field. Then, the patterns are the Wigner representations of the lobes in

Eq. (5), vj(α) = 2
π exp

(
−2|α− βj |2

)
. Hence, the evolution of a state is given by

∂ω(α; t)

∂t
= −ω(α; t) + g

(∫
K(α;β)ω(β; t)d2β

)
(S1)

where g(x) is the sigmoid function and the kernel K(α;β) =
∑n
j=1 vj(α)vj(β) [76].

The time evolution of the Wigner representation W (α), for n = m, is given by

∂W

∂t
=− γ1W + i∆(α∂α − α∗∂α∗)W − γ1

2
[α∂α + α∗∂α∗ + ∂α∂α∗ ]W

+
γn
2

n∑
k=0

(
n

k

)
1− (−1)k

2k
αn−k∂kα∗

[
βn −

(
α∗ +

∂α
2

)n]
W (S2)

where β has the same definition as in Eq. (4).
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